
Programs, Proofs, and
Classical Logic

Aaron Stump
Dept. of Computer Science

The University of Iowa
Iowa City, Iowa, USA

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



About This Talk

Part 1: The Verification Renaissance
Part 2: versat, a Verified Modern SAT Solver
Part 3: Classical Proofs as Programs
Ad: U. Iowa CS grad programs

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Verification Reborn

Language-Based Verification Will Change the World,
T. Sheard, A. Stump, S. Weirich, FoSER 2010.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Computing systems are doing so much:

Why can’t we guarantee they work?

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Computing systems are doing so much:

Why can’t we guarantee they work?

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Why not just use testing?

+ Integrates well with programming
+ No new languages, tools required
+ Conclusive evidence for bugs

– Difficult to assess coverage
– Cannot demonstrate absence of bugs
– No guarantees for safety-critical systems

Alternative: Formal Verification

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Why not just use testing?

+ Integrates well with programming
+ No new languages, tools required
+ Conclusive evidence for bugs

– Difficult to assess coverage
– Cannot demonstrate absence of bugs
– No guarantees for safety-critical systems

Alternative: Formal Verification

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Instead of tests, use proofs
Deduction and proof provide universal guarantees
Prove that software has specified properties
From this...

“seL4: formal verification of an OS kernel”, Klein et al., SOSP 2009

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



To this:

“Astrée: From Research to Industry”, D. Delmas et al., SAS 2007

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Proofs and Size of Systems

seL4 microkernel (mobile phones):
I Around 9,000 lines of code
I 200,000 lines of computer-checked proof, written by hand
I Isabelle proof tool

Airbus A380:
I Millions of lines of code
I cf. Mercedes S-class: 100M lines of code
I Astrée can analyze 100Kloc programs

Why the difference in scale?

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Two Kinds of Computer Proof

1 Automated Theorem Proving (Astrée)

I Fully automatic

I Shallow reasoning, but

I Large formulas

Φ

Logic Solver

Valid Invalid

2 Computer-Checked Manual Proof (Isabelle)

I Written by hand

I Needed for deep reasoning

I Use solvers to fill in easy parts

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Large formulas: megabytes

Logic Solver

Valid Invalid

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Large formulas: megabytes

Logic Solver

Valid Invalid

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Programs as Proofs?

Solvers test huge formulas
⇒ solvers must be very efficient
⇒ solvers must be complicated

What if the solver is wrong?
Who watches the watchers?

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



About This Talk

Part 1: The Verification Renaissance
Part 2: versat, a Verified Modern SAT Solver
Part 3: Classical Proofs as Programs
Ad: U. Iowa CS grad programs

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



versat

A Verified Modern SAT Solver

versat: A Verified Modern SAT Solver,
D. Oe, A. Stump, C. Oliver, K. Clancy, VMCAI 2012.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



SAT: Propositional Satisfiability

Given a propositional formula, test satisfiability
I Propositional: and (∧), or (∨), not (¬), variables (p, q, r )
I Satisfiable: boolean values for variables exist making formula true

Examples:
I Satisfiable: p ∧ (q ∨ ¬p)

Set p = true and q = true
I Unsatisfiable: (p → q) ∧ (q → r) ∧ p ∧ ¬r

Many optimizations for SAT solvers in last 15 years
I Solvers can handle huge formulas (100k vars, 1M clauses)

Validating answers:
I When satisfiable, can check assignment
I When unsatisfiable, some solvers dump proofs

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



versat Overview

SAT solver with modern optimizations
Implemented in GURU

I Research language developed in my group
I Used for verified programming
I Combine rich types with inductive proofs

Statically verified unsat-soundness
I If versat says unsat
I Then input formula is contradictory

sat-soundness not verified
Efficiency:

I Uses standard efficient data structures
I Can handle formulas on modern scale

Around 2kloc code, 8kloc proofs

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Main Specification

The solve function has type:

Fun(F:formula)(...).<answer F>

answer records proof for unsat case:

Inductive answer : Fun(F:formula).type :=
sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F False>).
<answer F>

pf is an indexed datatype of propositional proofs
Data of type <pf F1 F2> are proofs that F1 entails F2
We have proved that a propositional proof exists
Not constructed at run-time

I Some solvers actually emit such proofs
I Requires much extra time, space

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Results: versat vs. proof checking
The Certified Track benchmarks of SAT Competition 2007

16 benchmarks (believed to be UNSAT)
System: Intel Core 2 Duo 2.40GHz w/ 3GB of memory
One hour timeout for solving and checking, individually

Systems #Solved #Certified
versat 6 6
picosat + RUP 14 4
picosat + TraceCheck 14 12

Trusted Base:
versat: GURU compiler + 259 lines of GURU code
checker3 (RUP checker): 1,538 lines of C code
tracecheck (TraceCheck checker): 2,989 lines of C code +
boolforce library (minisat-2.2.0 is ≈2,500 lines of C++)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



The Broken-Window Theory

Fix broken windows and the neighborhood improves
Verify some properties and others hold, too

=⇒

For versat:
I We proved unsat-soundness
I What about sat-soundness?

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Fuzzing versat

cnfuzz generates random instances [Brummayer+2010]
Used to find bugs in competition SAT solvers (2007, 2009)
Applied to versat:

I Generated 10,000 random formulas
I 54% satisfiable
I Compare versat and MiniSat 2.2.0, 60 second timeout
I versat timed out on 27 formulas
I Otherwise, complete agreement

Wow!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Fuzzing versat

cnfuzz generates random instances [Brummayer+2010]
Used to find bugs in competition SAT solvers (2007, 2009)
Applied to versat:

I Generated 10,000 random formulas
I 54% satisfiable
I Compare versat and MiniSat 2.2.0, 60 second timeout
I versat timed out on 27 formulas
I Otherwise, complete agreement

Wow!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



About This Talk

Part 1: The Verification Renaissance
Part 2: versat, a Verified Modern SAT Solver
Part 3: Classical Proofs as Programs
Ad: U. Iowa CS grad programs

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Classical Proofs as Programs

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



A Logic Game

Them Us
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A Defend: B → A
Attacking B → A
Grant: B Defend: A

Win (A granted).

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



A Logic Game

Them Us
Defend: A→ (B → A)

Attacking A→ (B → A)

Grant: A Defend: B → A
Attacking B → A
Grant: B Defend: A

Win (A granted).

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



A Logic Game

Them Us
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A Defend: B → A

Attacking B → A
Grant: B Defend: A

Win (A granted).

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



A Logic Game

Them Us
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A Defend: B → A
Attacking B → A

Grant: B Defend: A
Win (A granted).

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



A Logic Game

Them Us
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A Defend: B → A
Attacking B → A
Grant: B Defend: A

Win (A granted).

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



A Logic Game

Them Us
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A Defend: B → A
Attacking B → A
Grant: B Defend: A

Win (A granted).

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



The Rules of the Game

To attack A→ B, must grant (defend) A and attack B
To attack A ∧ B, can attack A or attack B
To attack A ∨ B, opponent can defend A or defend B
If no move, other player continues
First player wins if defending formula granted by other player

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)

Grant: A ∧ B Defend: A ∨ B
Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B

Attacking A
Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A

Attack: A ∨ B
Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A

Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Constructive Logic

Considering constructive (aka, intuitionistic) logic
I To prove A ∨ B, must prove one or the other
I To prove ∃x .A, must have a witness for x

Example constructive proof:

Theorem
There exist irrational numbers x and y such that xy is rational.

Proof. Take
√

2 for x and log29 for y :

√
2

log29
= 2

log29
2 = 2log2(9

1
2 ) = 9

1
2 = 3

QED

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Constructive Proofs and Programs

You Me
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A

λx .

Defend: B → A
Attacking B → A
Grant: B

λy .

Defend: A

x

Win (A granted)

The program is λx .λy .x .

So lambda calculus can serve as language of proofs.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Constructive Proofs and Programs

You Me
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A λx . Defend: B → A
Attacking B → A
Grant: B

λy .

Defend: A

x

Win (A granted)

The program is λx .λy .x .

So lambda calculus can serve as language of proofs.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Constructive Proofs and Programs

You Me
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A λx . Defend: B → A
Attacking B → A
Grant: B λy . Defend: A

x

Win (A granted)

The program is λx .λy .x .

So lambda calculus can serve as language of proofs.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Constructive Proofs and Programs

You Me
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A λx . Defend: B → A
Attacking B → A
Grant: B λy . Defend: A

x Win (A granted)

The program is λx .λy .x .

So lambda calculus can serve as language of proofs.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Constructive Proofs and Programs

You Me
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A λx . Defend: B → A
Attacking B → A
Grant: B λy . Defend: A

x Win (A granted)

The program is λx .λy .x .

So lambda calculus can serve as language of proofs.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Constructive Proofs and Programs

You Me
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A λx . Defend: B → A
Attacking B → A
Grant: B λy . Defend: A

x Win (A granted)

The program is λx .λy .x .

So lambda calculus can serve as language of proofs.

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Non-Constructive Reasoning

Non-constructive: A ∨ ¬A, also (¬¬A)→ A
I Suppose A is “Turing-machine M halts”
I Constructive proof of A ∨ ¬A solves the halting problem for M
I (So this is impossible)

Example non-constructive proof:

Theorem
There exist irrational numbers x and y such that xy is rational.

Proof. Case split on whether or not
√

2
√

2
is rational.

If so, done. If not:

(
√

2
√

2
)
√

2 =
√

2
2
= 2

QED

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A

Grant: (A→⊥)→⊥ Defend: A
Attacking (A→⊥)→⊥

Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥

Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥

Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥
Attacking A→⊥

Grant: A Defend: ⊥
Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A
Defend: A
Defend: ¬A

Attacking A→⊥
Grant: A Defend: ⊥

Win: A granted

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A

Defend: A
Defend: ¬A

Attacking A→⊥
Grant: A Defend: ⊥

Win: A granted

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A
Defend: A

Defend: ¬A
Attacking A→⊥
Grant: A Defend: ⊥

Win: A granted

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A
Defend: A
Defend: ¬A

Attacking A→⊥
Grant: A Defend: ⊥

Win: A granted

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A
Defend: A
Defend: ¬A

Attacking A→⊥

Grant: A Defend: ⊥
Win: A granted

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A
Defend: A
Defend: ¬A

Attacking A→⊥
Grant: A Defend: ⊥

Win: A granted

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A
Defend: A
Defend: ¬A

Attacking A→⊥
Grant: A Defend: ⊥

Win: A granted

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



A ∨ (A→⊥): a Devil’s Bargain (as told by Phil Wadler)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Going Back In Time?

Classical reasoning: win by satisfying earlier obligations
Like going back to an earlier state
Q. What programming feature is like that?
A. Exceptions!
For ((A→⊥)→⊥)→ A:

λf .catch y.(f (λx .throw x to y))

I f :+ (A→⊥)→⊥
I x :+ A
I y :− A
I throw x to y :+⊥

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Back to the Future?

Exceptions useful for programming
Also useful for classical proofs!
Extensions of lambda calculus with exceptions

I Duality between input/output
I Use for duality between inductive/coinductive types
I Extend programs-as-proofs to classical logic

May serve as foundation for next generation of proof tools

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Conclusion

Verification: prove properties of programs
Case study: versat

I First verification of efficient modern SAT solver
Non-constructive proofs as programs raising exceptions

I New foundations for program-verification tools?

Slides online at my blog, QA9:

http://queuea9.wordpress.com

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012

http://queuea9.wordpress.com


Graduate Study in CS at U. Iowa

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



U. Iowa CS Grad Programs

MCS: Master of Computer Science
I Course-based program
I Deepen CS knowledge beyond undergraduate curriculum
I Basically: 10 CS graduate courses
I No guarantees, but many TAships available
I Strengthen credentials for industry

PhD: Doctor of Philosophy
I Research-based program
I Develop students into independent researchers

F Building systems, designing algorithms, proving theorems, etc.
I Minimal, flexible course requirements
I Funding through RAships, TAships, fellowships
I Leads to careers in academics, research labs, and industry

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Research Areas

Algorithms (Pemmaraju, Varadarajan)
I Computational Geometry, Approximation and Randomization

Computational Logic (Stump, Tinelli, Zhang)
I Verification, Programming Languages, Automated Theorem Proving

Graphics, HCI (Cremer, Hourcade, Kearney, Wyman)
I Interactive Rendering, Virtual Environments, Assistive Technologies

Informatics (Segre, Srinivasan)
I Text/Web Mining, Social Network Analysis, Comp. Epidemiology

Distributed Systems (Chipara, Gosh, Herman)
I Sensor Networks, Fault Tolerance, Distributed Algorithms

Numerical Methods (Oliveira)

Voting Technology (Jones)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Yelena Majova, PhD 2012 (Advisor: Srinivasan)

“My PhD research was on opinion
extraction and sentiment analysis of
social media text.”

“I am a post-doc at Yahoo! Research in
Barcelona, working on semantic entity,
relationship, and property extraction
from free text and image collections,
serendipitous search, user behavior
tracking using web data, and continuing
political speech analysis.”

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Duckki Oe, PhD 2012 (Advisor: Stump)

Started postdoc at MIT August 2012.

What are your career plans after MIT?

“I’d certainly want to research and apply formal verification methods. My first choice
would be a faculty position (preferably in Korea).

How do you feel about your time at Iowa CS?

“I feel very grateful that I had a very supportive advisor (mentally and financially) and
other professors who are respected in my field. [...] Studying and raising children at
the same time wasn’t easy. But, it was easier at Iowa because of child-friendly
environment, low child care expenses and subsidy from the school.”

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Thanks for listening!

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012




