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About This Talk

Part 1: The Verification Renaissance
Part 2: versat, a Verified Modern SAT Solver
Part 3: Classical Proofs as Programs
Ad: U. Iowa CS grad programs
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Verification Reborn

Language-Based Verification Will Change the World,
T. Sheard, A. Stump, S. Weirich, FoSER 2010.
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Computing systems are doing so much:

Why can’t we guarantee they work?

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Computing systems are doing so much:

Why can’t we guarantee they work?

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



Why not just use testing?

+ Integrates well with programming
+ No new languages, tools required
+ Conclusive evidence for bugs

– Difficult to assess coverage
– Cannot demonstrate absence of bugs
– No guarantees for safety-critical systems

Alternative: Formal Verification
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Instead of tests, use proofs
Deduction and proof provide universal guarantees
Prove that software has specified properties
From this...

“seL4: formal verification of an OS kernel”, Klein et al., SOSP 2009
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To this:

“Astrée: From Research to Industry”, D. Delmas et al., SAS 2007
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Proofs and Size of Systems

seL4 microkernel (mobile phones):
I Around 9,000 lines of code
I 200,000 lines of computer-checked proof, written by hand
I Isabelle proof tool

Airbus A380:
I Millions of lines of code
I cf. Mercedes S-class: 100M lines of code
I Astrée can analyze 100Kloc programs

Why the difference in scale?
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Two Kinds of Computer Proof

1 Automated Theorem Proving (Astrée)

I Fully automatic

I Shallow reasoning, but

I Large formulas

Φ

Logic Solver

Valid Invalid

2 Computer-Checked Manual Proof (Isabelle)

I Written by hand

I Needed for deep reasoning

I Use solvers to fill in easy parts
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Large formulas: megabytes

Logic Solver

Valid Invalid
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Programs as Proofs?

Solvers test huge formulas
⇒ solvers must be very efficient
⇒ solvers must be complicated

What if the solver is wrong?
Who watches the watchers?
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versat

A Verified Modern SAT Solver

versat: A Verified Modern SAT Solver,
D. Oe, A. Stump, C. Oliver, K. Clancy, VMCAI 2012.
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SAT: Propositional Satisfiability

Given a propositional formula, test satisfiability
I Propositional: and (∧), or (∨), not (¬), variables (p, q, r )
I Satisfiable: boolean values for variables exist making formula true

Examples:
I Satisfiable: p ∧ (q ∨ ¬p)

Set p = true and q = true
I Unsatisfiable: (p → q) ∧ (q → r) ∧ p ∧ ¬r

Many optimizations for SAT solvers in last 15 years
I Solvers can handle huge formulas (100k vars, 1M clauses)

Validating answers:
I When satisfiable, can check assignment
I When unsatisfiable, some solvers dump proofs
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versat Overview

SAT solver with modern optimizations
Implemented in GURU

I Research language developed in my group
I Used for verified programming
I Combine rich types with inductive proofs

Statically verified unsat-soundness
I If versat says unsat
I Then input formula is contradictory

sat-soundness not verified
Efficiency:

I Uses standard efficient data structures
I Can handle formulas on modern scale

Around 2kloc code, 8kloc proofs
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Main Specification

The solve function has type:

Fun(F:formula)(...).<answer F>

answer records proof for unsat case:

Inductive answer : Fun(F:formula).type :=
sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F False>).
<answer F>

pf is an indexed datatype of propositional proofs
Data of type <pf F1 F2> are proofs that F1 entails F2
We have proved that a propositional proof exists
Not constructed at run-time

I Some solvers actually emit such proofs
I Requires much extra time, space
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Results: versat vs. proof checking
The Certified Track benchmarks of SAT Competition 2007

16 benchmarks (believed to be UNSAT)
System: Intel Core 2 Duo 2.40GHz w/ 3GB of memory
One hour timeout for solving and checking, individually

Systems #Solved #Certified
versat 6 6
picosat + RUP 14 4
picosat + TraceCheck 14 12

Trusted Base:
versat: GURU compiler + 259 lines of GURU code
checker3 (RUP checker): 1,538 lines of C code
tracecheck (TraceCheck checker): 2,989 lines of C code +
boolforce library (minisat-2.2.0 is ≈2,500 lines of C++)

Aaron Stump Programs, Proofs, and Classical Logic Truman Math & CS, 2012



The Broken-Window Theory

Fix broken windows and the neighborhood improves
Verify some properties and others hold, too

=⇒

For versat:
I We proved unsat-soundness
I What about sat-soundness?
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Fuzzing versat

cnfuzz generates random instances [Brummayer+2010]
Used to find bugs in competition SAT solvers (2007, 2009)
Applied to versat:

I Generated 10,000 random formulas
I 54% satisfiable
I Compare versat and MiniSat 2.2.0, 60 second timeout
I versat timed out on 27 formulas
I Otherwise, complete agreement

Wow!
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Classical Proofs as Programs
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A Logic Game

Them Us
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A Defend: B → A
Attacking B → A
Grant: B Defend: A

Win (A granted).
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The Rules of the Game

To attack A→ B, must grant (defend) A and attack B
To attack A ∧ B, can attack A or attack B
To attack A ∨ B, opponent can defend A or defend B
If no move, other player continues
First player wins if defending formula granted by other player
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Another Example

Them Us
Defend: (A ∧ B)→ (A ∨ B)

Attacking (A ∧ B)→ (A ∨ B)
Grant: A ∧ B Defend: A ∨ B

Attacking A ∧ B
Attacking A

Defend: A
Attack: A ∨ B

Defend: A
Win (A granted)
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Constructive Logic

Considering constructive (aka, intuitionistic) logic
I To prove A ∨ B, must prove one or the other
I To prove ∃x .A, must have a witness for x

Example constructive proof:

Theorem
There exist irrational numbers x and y such that xy is rational.

Proof. Take
√

2 for x and log29 for y :

√
2

log29
= 2

log29
2 = 2log2(9

1
2 ) = 9

1
2 = 3

QED
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Constructive Proofs and Programs

You Me
Defend: A→ (B → A)

Attacking A→ (B → A)
Grant: A

λx .

Defend: B → A
Attacking B → A
Grant: B

λy .

Defend: A

x

Win (A granted)

The program is λx .λy .x .

So lambda calculus can serve as language of proofs.
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Non-Constructive Reasoning

Non-constructive: A ∨ ¬A, also (¬¬A)→ A
I Suppose A is “Turing-machine M halts”
I Constructive proof of A ∨ ¬A solves the halting problem for M
I (So this is impossible)

Example non-constructive proof:

Theorem
There exist irrational numbers x and y such that xy is rational.

Proof. Case split on whether or not
√

2
√

2
is rational.

If so, done. If not:

(
√

2
√

2
)
√

2 =
√

2
2
= 2

QED
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Logic Game for Non-Constructive Formulas

Let ⊥ denote falsity.

Them Us
Defend: ((A→⊥)→⊥)→ A

Attacking ((A→⊥)→⊥)→ A
Grant: (A→⊥)→⊥ Defend: A

Attacking (A→⊥)→⊥
Defend: ⊥ Grant: A→⊥
Attacking A→⊥
Grant: A Defend: ⊥

Win (A granted).

We won by satisfying an earlier obligation!
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Another Non-Constructive Game

¬A abbreviates A→⊥.

Them Us
Defend: A ∨ ¬A

Attacking A ∨ ¬A
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A ∨ (A→⊥): a Devil’s Bargain (as told by Phil Wadler)
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Going Back In Time?

Classical reasoning: win by satisfying earlier obligations
Like going back to an earlier state
Q. What programming feature is like that?
A. Exceptions!
For ((A→⊥)→⊥)→ A:

λf .catch y.(f (λx .throw x to y))

I f :+ (A→⊥)→⊥
I x :+ A
I y :− A
I throw x to y :+⊥
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Back to the Future?

Exceptions useful for programming
Also useful for classical proofs!
Extensions of lambda calculus with exceptions

I Duality between input/output
I Use for duality between inductive/coinductive types
I Extend programs-as-proofs to classical logic

May serve as foundation for next generation of proof tools
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Conclusion

Verification: prove properties of programs
Case study: versat

I First verification of efficient modern SAT solver
Non-constructive proofs as programs raising exceptions

I New foundations for program-verification tools?

Slides online at my blog, QA9:

http://queuea9.wordpress.com
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Graduate Study in CS at U. Iowa
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U. Iowa CS Grad Programs

MCS: Master of Computer Science
I Course-based program
I Deepen CS knowledge beyond undergraduate curriculum
I Basically: 10 CS graduate courses
I No guarantees, but many TAships available
I Strengthen credentials for industry

PhD: Doctor of Philosophy
I Research-based program
I Develop students into independent researchers

F Building systems, designing algorithms, proving theorems, etc.
I Minimal, flexible course requirements
I Funding through RAships, TAships, fellowships
I Leads to careers in academics, research labs, and industry
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Research Areas

Algorithms (Pemmaraju, Varadarajan)
I Computational Geometry, Approximation and Randomization

Computational Logic (Stump, Tinelli, Zhang)
I Verification, Programming Languages, Automated Theorem Proving

Graphics, HCI (Cremer, Hourcade, Kearney, Wyman)
I Interactive Rendering, Virtual Environments, Assistive Technologies

Informatics (Segre, Srinivasan)
I Text/Web Mining, Social Network Analysis, Comp. Epidemiology

Distributed Systems (Chipara, Gosh, Herman)
I Sensor Networks, Fault Tolerance, Distributed Algorithms

Numerical Methods (Oliveira)

Voting Technology (Jones)
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Yelena Majova, PhD 2012 (Advisor: Srinivasan)

“My PhD research was on opinion
extraction and sentiment analysis of
social media text.”

“I am a post-doc at Yahoo! Research in
Barcelona, working on semantic entity,
relationship, and property extraction
from free text and image collections,
serendipitous search, user behavior
tracking using web data, and continuing
political speech analysis.”
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Duckki Oe, PhD 2012 (Advisor: Stump)

Started postdoc at MIT August 2012.

What are your career plans after MIT?

“I’d certainly want to research and apply formal verification methods. My first choice
would be a faculty position (preferably in Korea).

How do you feel about your time at Iowa CS?

“I feel very grateful that I had a very supportive advisor (mentally and financially) and
other professors who are respected in my field. [...] Studying and raising children at
the same time wasn’t easy. But, it was easier at Iowa because of child-friendly
environment, low child care expenses and subsidy from the school.”
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Thanks for listening!
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