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Duality in Logic

Basic duality in logic between truth and falsehood
Some propositional connectives are duals

I > and ⊥
I T ∧ T ′ and T ∨ T ′

Duality clear in sequent calculus:

Γ ` >,∆ Γ,⊥` ∆

Γ ` T ,∆ Γ ` T ′,∆
Γ ` T ∧ T ′,∆

Γ,T ` ∆ Γ,T ′ ` ∆

Γ,T ∨ T ′ ` ∆

Γ,Ti ` ∆ i ∈ {1,2}
Γ,T1 ∧ T2 ` ∆

Γ ` Ti ,∆ i ∈ {1,2}
Γ ` T1 ∨ T2 ` ∆

These dualities hold in intuitionistic, classical logic
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Duality in programming/type theory

Basic duality between input (+) and output (−)
But the duality is very poorly explored

I Input variables
I Not really output variables, except maybe continuations
I Positive term constructs like pairs, but
I No negative term constructs

Computational classical type theories
I λµ-calculus, λ∆-calculus, λ̄µµ̃-calculus, Dual Calculus
I Duality is central
I Control operators (µx .p • n)
I But due to control operator, no canonicity:

µx .(in2 λy .µx ′.(in1y) • x) • x : A ∨ ¬A

Goal: import constructive duality from logic to programming/type theory
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But first: constructive duality!

What is the constructive dual of implication?
Constructive implication is modal; so is its dual
Known as “subtraction” (“exclusion”, “pseudo-difference”)
A modest line of work starting with Rauszer (1970s)
Tricky:

I Crolard (TCS 2001) gives proof system
I Sound and complete, cut elimination conjectured
I Counterexamples found later (Pinto and Uustalu 2009)
I Correct cut-free systems (Pinto and Uustalu 2009, Goré et al. 2007)
I But no type theories yet
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Dualized Intuitionistic Logic (DIL)

Incorporate duality into the syntax

polarities p ::= + | −
formulas T ::= A | 〈p〉 | T ∧p T ′ | T →p T ′

I 〈+〉 is >
I 〈−〉 is ⊥
I A ∧+ B is A ∧ B
I A ∧− B is A ∨ B
I A→+ B is A→ B
I A→− B is B − A
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Semantics of formulas

Kripke models (W ,4,V )
I W is a non-empty set of worlds
I 4 is a reflexive, transitive relation on W
I V (w) is set of atoms A true in world w
I Require: w 4 w ′ =⇒ V (w) ⊆ V (w ′).

Semantics:

JAKw ⇔ A ∈ V (w)
J〈+〉Kw ⇔ true
J〈−〉Kw ⇔ false
JT ∧+ T ′Kw ⇔ JT Kw ∧ JT ′Kw
JT ∧− T ′Kw ⇔ JT Kw ∨ JT ′Kw
JT →+ T ′Kw ⇔ ∀w ′.w 4 w ′ ⇒ JT Kw ′ ⇒ JT ′Kw ′

JT →− T ′Kw ⇔ ∃w ′.w < w ′ ∧ ¬JT Kw ′ ∧ JT ′Kw ′

Key fact: ¬JT →− T ′Kw ⇔ ∀w ′.w < w ′ ⇒ ¬JT Kw ′ ⇒ ¬JT ′Kw ′

Monotonicity Theorem: w 4 w ′ and JT Kw implies JT Kw ′
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Kripke models, classically

Define ∼T := T →− 〈+〉

JT ∧− ∼T Kw = true

“Either T is true now, or there is an earlier world where it is false”

J∼∼T →+ T Kw = true

“For any future world w, if there is an earlier world (w’) where it is not the case that T is
false in a previous world, then T is true in w”

w
w ′...

Can lose canonicity with opposite polarity modality (→p̄)
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Devising a Proof System

Start with labeled sequent calculus of Pinto, Uustalu, TABLEAUX 2009.

world names (labels) n
contexts Γ ::= · | Γ,p T @n

Treat Γ as a set
Finite graphs G on world names
Pinto, Uustalu’s judgments: Γ `G ∆ (unsigned Γ, ∆)
We use instead G; Γ `p

n T
Intended semantics:

I For any Kripke model K
I whose graph structure satisfies G
I and where p T @n′ ∈ Γ implies that in world corresponding to n′, pT holds
I then in the world w corresponding to n,
I p JT Kw holds
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Proof rules

G ` n 4p∗ n′

G; Γ, p T @n `p
n′ T

AX
G; Γ `p

n 〈p〉
UNIT

n′ 6∈ |G|
(G, n 4p n′); Γ, p T1@n′ `p

n′ T2

G; Γ `p
n T1 →p T2

IMP

G ` n 4p̄∗ n′

G; Γ `p̄
n′ T1 G; Γ `p

n′ T2

G; Γ `p
n T1 →p̄ T2

IMPBAR

G; Γ `p
n T1 G; Γ `p

n T2

G; Γ `p
n T1 ∧p T2

AND
G; Γ `p

n T1

G; Γ `p
n T1 ∧p̄ T2

ANDBAR1

G; Γ `p
n T2

G; Γ `p
n T1 ∧p̄ T2

ANDBAR2

G; Γ, p̄ T @n `p
n′ T ′ G; Γ, p̄ T @n `p̄

n′ T ′

G; Γ `p
n T

CUT
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Desired Metatheory

Soundness and completeness w.r.t. Pinto-Uustala 2009.
I To simulate sequents Γ `G ∆, need:

p T ′@n′ ∈ Γ G; Γ, p̄ T @n `p̄
n′ T ′

G; Γ `p
n T

AXCUT

p̄ T ′@n′ ∈ Γ G; Γ, p̄ T @n `p
n′ T ′

G; Γ `p
n T

AXCUTBAR

I Relate DIL without cut but with axCut rules

Cut elimination (with axCut rules)
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Towards a Dualized Type Theory

Term syntax

i ∈ {1,2}
t ::= x | (t , t ′) | ini t | λx .t | 〈t , t ′〉 | νx .t • t ′

Type assignment rules based on DIL
Reduction rules based on cut elimination.

νx .(t1, t2) • ini t  νx .ti • t
νx .(λy .t) • 〈t1, t2〉  νx .t1 • νy .t • t2
νx .(νy .t1 • t2) • t〉  νx .[t/y ](t1 • t2)

· · ·

Also terminating recursion, recursive types µpX .T
Desired: normalization, type preservation, p-canonicity without→p̄
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Benefits of constructive duality
Control with canonicity

Can implement control constructs like delimited continuations

New insights into coinduction
Negative well-founded data => observations

I A list of A’s has positive type µ+X .〈+〉 ∧− (A ∧+ X )
I A colist has positive type µ−X .〈+〉 ∧− (A ∧+ X ), because
I An observation of a colist has negative type µ−X .〈+〉 ∧− (A ∧+ X )

Terminating recursion at polarity p with µp

Define coinductive data by negative recursion on observations

First-class patterns
Negative data = observations = pattern match

Data can support different sets of observations (views)

Support cons/snoc with pattern matching!

Stump, Eades, McCleeary Towards Dualized Type Theory COS 2013



Conclusion

Goal: import constructive duality from logic to programming
Dualized Intuitionistic Logic (DIL)

I Dualized syntax A | 〈p〉 | T ∧p T ′ | T →p T ′
I Proof rules for G; Γ `p

n T

Next: metatheory, type theory
Programming with negative data

Let’s open up the other half of the universe!
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