StarExec
A Web Service for Evaluating Logic Solvers

Aaron Stump and Cesare Tinelli
Computer Science
The University of Iowa
The StarExec Project

• $1.85 million NSF project.
 ▶ $1.7 million at U. Iowa.
 ▶ $150k at U. Miami (Prof. Geoff Sutcliffe).
 ▶ Started September 2011.
 ▶ Based on 1-year planning grant 2010-2011.

• Goal: build a web service for evaluating logic solvers.
High-Performance Logic Solvers

- Software tools for testing logical validity.

\[\phi \]

Logic Solver

- Example formulas \(\phi \):
 - \(a = b \land b = c \rightarrow a = c \)
 - \(x > 0 \land x + y < z \rightarrow y < z \)
 - much more

- Why are these useful?
 - Logic is a universal language.
 - Solve problems by translating to logic.
 - Modern solvers can handle large formulas.
Large formulas (50 megabytes or more).
Large formulas (50 megabytes or more).
Many Applications

• Industrial design: view design correctness as a logic problem.
 ▶ Avionics software.
 ▶ Integrated circuits (computer chips, controllers).
 ▶ Subway and train control systems.

• Academic uses.
 ▶ Many researchers using solvers in past 5 years.
 ▶ Software verification, program analysis, combinatorics, and more.
Different Logics, Different Subcommunities

• Logic problems are, in general, unsolvable.
 ▶ This can be proven mathematically.
 ▶ Intuitively: cannot put mathematicians out of work.

• But: many special cases can be solved in practice.
 ▶ **SAT.** Just boolean reasoning: \(p \land (p \rightarrow q) \rightarrow q \).
 ▶ **SMT.** Satisfiability Modulo Theories: \(a = b \land b = c \rightarrow a = c \).
 ▶ **First-order.** “If all men are mortal and Socrates is a man, then ...”
 ▶ Many more: **QBF, CSP, ASP, Termination, Confluence.**

• Different subcommunities (separate workshops, conferences).
Challenges

• For users of solvers:
 ▶ What are the available solvers?
 ▶ Which solvers work best for my problem?

• For solver implementors:
 ▶ How can I compare my solver with the state of the art?
 ▶ How can I conveniently test my solver on benchmark formulas?

• For community leaders:
 ▶ Where can I store my library of benchmark formulas?
 ▶ How can I run an annual solver competition?
 ▶ How can I build infrastructure for my community?
Solution: StarExec

- **Goal:** design a single piece of infrastructure for logic solving.
 - Different communities, but similar needs.
 - Invest more resources in better infrastructure.
 - Create a single destination for solver users.

- **Concretely, StarExec will be:**
 - A public web service.
 - Backed by a medium-sized compute cluster (150 nodes).
 - Serving many different communities.

- **Funding for significant hardware resources, software development.**
Current Status

- **Advisory committee** formed:
 - Ian Horrocks (Oxford)
 - Jürgen Giesl (RWTH Aachen)
 - Ewen Denney (NASA Ames)
 - Giovambattista Ianni (University of Calabria)
 - Nikolaj Björner (Microsoft Research)
 - Daniel Le Berre (University of Artois)
 - Aarti Gupta (NEC Labs)

- **First-round hardware purchase** in progress now.
 - 30 dual-processor multicore compute nodes.
 - 3 head nodes to accept incoming web requests.
 - 23TB NetApp network-attached storage device.

- **Software development** proceeding Fall 2012 to present.
 - Graduate and undergraduate student programmers (currently Todd Elvers, Tyler Jensen, Vivek Sardeshmukh, Ruoyu Zhang).
 - Professional staff person (Ben McCune).

- **Goal**: run SMT competition this summer.
Some Questions

- Can StarExec be self-supporting after the grant (August, 2015)?
 - Can we charge for non-academic use of the service?
 - Can we license the software itself for non-academic use?
 - Other models?
- How do we prepare for this now?
- Other intellectual property issues we should consider?

www.starexec.org