
Computational Logic and
Programming Languages
at The University of Iowa

Aaron Stump
Computer Science

The University of Iowa
Iowa City, Iowa



The Computational Logic Group at U. Iowa

Led by myself and Cesare Tinelli.

Alumni at Coverity, Kestrel, Georgia Regents U. (tenure-track), Two
Sigma, NASA Langley, and others.

Research interests: SMT, ATP, model checking, hybrid systems
(Cesare); type theory, rewriting, functional programming (Aaron).

Software and systems: Kind2, StarExec.

Main research target: verification.



Advertisement

Currently have four open postdoc positions:
▸ importing proofs produced by SMT solvers into Coq (Cesare)
▸ SMT-based model-checking with Kind2 (Cesare)
▸ programming languages for quantum computing (Aaron)
▸ type theory for lambda encodings (Aaron)

Also, tenure-track faculty position:
▸ PL/FM for security
▸ Cesare and I will have a lot of input in the hiring decision

Please talk to me if you are interested in any of these!



Introduction to dependently
typed FP in Agda.

Intended for undergrads
without FP or type theory
background; also an
extended Agda tutorial.

Booleans, natural numbers,
lists, Braun trees, binary
search trees, well-founded
recursion, type-level
computation, normalization
by evaluation.

Due out 2016 from ACM
Books.



Lambda Encodings Reborn

Aaron Stump
Computational Logic Center

Computer Science
The University of Iowa



Behold the Mighty Coq

A glorious confluence of logic
and engineering!

Rightly fêted, ardently
adopted!

Potently expressive!

And yet...



Its flight lacks a certain je ne sais quoi.



Its flight lacks a certain je ne sais quoi.



(Agda is no better off)



Coq, the funny bits

Type preservation does not hold with coinductive types
Large eliminations disallowed with impredicative inductive types
Datatypes must be not just positive, but strictly positive
Higher-order encodings are prohibited

▸ cannot have a constructor lam of type (trm -> trm) -> trm
▸ leads to cottage industry of representing variables
▸ many elegant idioms not allowed (cf. Twelf)

We have hobbled type theory by clipping its higher-order wings.



My dream: more elegant type theory with full support for
higher-order encodings.



My dream: more elegant type theory with full support for
higher-order encodings.



Starting point: lambda encodings
Encode all data (structures) as functions.

Example: Church encoding

Data are defined to be their own fold functions.

Numbers are defined to be iterators:

⌜n⌝ ∶= λs.λz. s⋯(s
²

n

z)

Accessors (like predecessor) are inefficient.

Kleene’s predecessor:

(x ,y) ↦ (suc x ,x)



The charges against lambda encodings in type theory

Asymptotically inefficient accessors [Parigot 1989]

Cannot prove disjoint-range property of constructors (0 ≠ 1)

Cannot derive induction principles [Geuvers 2001]

Large eliminations not possible

Case
closed!



Not so fast!

Parigot [1988] showed how to get efficient accessors.

Define data as recursors, not iterators.

⌜n⌝ ∶= λs.λz.s ⌜n − 1⌝ ⋯(s ⌜1⌝ (s ⌜0⌝ z))

For example, ⌜3⌝ is

λs.λz.s ⌜2⌝ (s ⌜1⌝ (s ⌜0⌝ z))

Predecessor takes constant time.

Typable in System F + positive-recursive types.

N ∶= µN. ∀X . (N→ X → X) → X → X

Exponential-space normal forms, but not with graph sharing.



New solutions

Induction:
New type construct for the limit of

N0 ∶= U
Nk+1 ∶= ιn ∶ Nk .∀P ∶ Nk → ⋆.

(∀n ∶ Nk .P n → P (S n)) → P Z → P n

N ∶= νNat ∶⋆ ∣S ∈ Nat→ Nat, Z ∈ Nat.ιn ∶Nat.
∀P ∶Nat→ ⋆. (∀n ∶Nat.P n → P (S n)) → P Z → P n

Large eliminations:
Construct to lift simply typed terms to the type level.

↑(☆→☆)→☆→☆ (λs.λz.s z) ≃ λS ∶ ⋆ → ⋆.λZ ∶ ⋆.S Z

Lattice-theoretic semantics, consistency proof.

Prototype tool called Cedille.



Why do this?

We can drop the datatype subsystem completely.

Inductive nat : Set := ...

Much simpler definition for the type theory.
No more rules like:

Crazy examples



Statically typed format, with local definitions

Augustsson [1998] proposed computing type of format s from s.

format "%s are %n - %n" : string → N → N → string

Let’s add local definitions to the format string(!)

We will use a higher-order datatype.

Just print bit strings.

format (fapp farg (flit tt)) ==>
λ x → x :: tt :: []

format (flet farg (λ i → fapp i (fapp (flit tt) i))) ==>
λ x → x :: tt :: x :: []



In Agda with -no-positivity-check

Format specifier is indexed by argument specifier of type

data formatti : Set where
iarg : formatti
inone : formatti
iapp : formatti → formatti → formatti

The datatype of format specifiers:

data formati : formatti → Set where
farg : formati iarg
fapp : {a b : formatti} → formati a → formati b →

formati (iapp a b)
flet : {a b : formatti} →

formati a → (formati inone → formati b) →
formati (iapp a b)

fbitstr : bitstr → formati inone

format : {i : formatti} → formati i → format-t i



In Cedille

The crucial datatype definition:

formati =
λ i : formatti .
∀ X : formatti → ⋆ .
(X iarg) →
(∀ a : formatti . ∀ b : formatti.

X a → X b → X (iapp a b)) →
(∀ a : formatti . ∀ b : formatti.

X a → (X inone → X b) → X (iapp a b)) →
(bitstr → X inone) →
X i

Can type format without disabling anything in the type theory!



Where next?

Current theory based on realizability, Curry-style typing.

Need to move to Church style for practical use.

Vast new unexplored terrain: higher-order encodings in type theory.

Implementation: runtime code generation instead of closures?

Thanks!


