
Verifying Imperative Abstractions with Dependent
and Linear Types

Aaron Stump1 Evan Austin2

1The University of Iowa

2The University of Kansas

Funding from NSF CAREER.



The GURU Approach

Industrial code Math. functionsGURU

General recursion
Unaliased mutable state
Aliased mutable state [new!]
No concurrency



GURU at a High-Level

Pure functional language + logical theory.
Terms : Types.
Proofs : Formulas.
Declare types, write code:

(append [] l’) = l’
(append x::l l’) = x::(append l l’)

Prove theorems:
Forall(A:type)(l l’:<list A>).
{(length (append l l’)) = (plus (length l) (length l’))}

Define rich types:
I <vec A N> – the type for vectors of As of length N.
I So [’a’ ’b’ ’c’] : <vec char 3>.



Functional Modeling for Imperative Abstractions

I/O, mutable arrays, cyclic structures, etc.
Do not fit well into pure FP.
Approach: functional modeling.

I Define a pure functional model (e.g., vectors for arrays).
I Model is faithful, but slow.
I Use during reasoning.
I Replace with imperative code during compilation.
I Use linear (aka unique) types to keep in synch.



Example: Word-Indexed Mutable Arrays

Types: <warray A N L>.
I A is type of elements.
I N is length of array.
I L is list of initialized locations.

(new_array A N) : <warray A N []>.
Writing to index i:

I requires proof: i < N.
I functional model: consume old array, produce updated one.
I imperative implementation: just do the assignment.
I array’s type changes: <warray A N i::L>.

Reading from index i:
I does not consume array.
I requires proof: i ∈ L.



Example: FIFO Queues

Mutable singly-linked list, with direct pointer to end.
Aliasing!
GURU approach: heaplets.

I functionally model part of heap.
I functional model: heaplet is list of aliased values.
I implementation: no explicit heaplet.
I functional model: aliases are indices into list.
I implementation: aliases are reference-counted pointers.
I caveat: not suitable for cyclic structures.



Run-times

Linearity => memory deallocated explicitly.
Typing ensures memory safety.
GURU: no garbage collection!
Leads to good performance (cf. [Xian, Srisa-an, Jiang 08]).

Benchmark: push all words in “War and Peace” through 2 queues.

Language Wallclock time (s)
HASKELL (DATA.QUEUE) 29.8
HASKELL (DATA.SEQUENCE) 5.6
OCAML 1.3
GURU 1.0



Conclusion

GURU combines FP, proofs, rich types.
Linear types + dependent types => verified imperative
abstractions.
Mutable arrays, FIFO queues.
More examples to come.
Version 1.0 is close to release:

www.guru-lang.org

www.guru-lang.org

