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The GURU Approach

Industrial code Math. functionsGURU

General recursion
Unaliased mutable state
Aliased mutable state [new!]
No concurrency



GURU at a High-Level

Pure functional language + logical theory.
Terms : Types.
Proofs : Formulas.
Declare types, write code:

(append [] l’) = l’
(append x::l l’) = x::(append l l’)

Prove theorems:
Forall(A:type)(l l’:<list A>).
{(length (append l l’)) = (plus (length l) (length l’))}

Define rich types:
I <vec A N> – the type for vectors of As of length N.
I So [’a’ ’b’ ’c’] : <vec char 3>.



Functional Modeling for Imperative Abstractions

I/O, mutable arrays, cyclic structures, etc.
Do not fit well into pure FP.
Approach: functional modeling.

I Define a pure functional model (e.g., vectors for arrays).
I Model is faithful, but slow.
I Use during reasoning.
I Replace with imperative code during compilation.
I Use linear (aka unique) types to keep in synch.



Example: Word-Indexed Mutable Arrays

Types: <warray A N L>.
I A is type of elements.
I N is length of array.
I L is list of initialized locations.

(new_array A N) : <warray A N []>.
Writing to index i:

I requires proof: i < N.
I functional model: consume old array, produce updated one.
I imperative implementation: just do the assignment.
I array’s type changes: <warray A N i::L>.

Reading from index i:
I does not consume array.
I requires proof: i ∈ L.



Example: FIFO Queues

Mutable singly-linked list, with direct pointer to end.
Aliasing!
GURU approach: heaplets.

I functionally model part of heap.
I functional model: heaplet is list of aliased values.
I implementation: no explicit heaplet.
I functional model: aliases are indices into list.
I implementation: aliases are reference-counted pointers.
I caveat: not suitable for cyclic structures.



Run-times

Linearity => memory deallocated explicitly.
Typing ensures memory safety.
GURU: no garbage collection!
Leads to good performance (cf. [Xian, Srisa-an, Jiang 08]).

Benchmark: push all words in “War and Peace” through 2 queues.

Language Wallclock time (s)
HASKELL (DATA.QUEUE) 29.8
HASKELL (DATA.SEQUENCE) 5.6
OCAML 1.3
GURU 1.0



Conclusion

GURU combines FP, proofs, rich types.
Linear types + dependent types => verified imperative
abstractions.
Mutable arrays, FIFO queues.
More examples to come.
Version 1.0 is close to release:

www.guru-lang.org

www.guru-lang.org

