Purifying Natural Deduction Using Sequent Calculus

Aaron Stump

Computational Logic Center CS, The University of Iowa

Funding from NSF CAREER.

Verified Programming

Thesis

The ability to state and prove properties of code is the crucial missing technology in the evolution of software.

- Stronger guarantees => less monitoring => higher performance.
- Ability to trust software opens up new applications.
- Confirmed quality helps open source, app stores, etc.
- Verification is a tool we don't have.

The GURU Verified Programming Language

Functional language
Dependently typed programs
General recursion
Notation for theorems, proofs about programs
Unaliased mutable state
Resource management layer
Type/Proof-checker, compiler to C
No concurrency
Aliasing for mutable state in progress

www.guru-lang.org

Practical Proof Theory

- How to prove your logic is consistent?
- Basic strategy:
 - Identify subset of proofs which obviously are ok.
 - 2 Define rewrite rules to transform any proof to one in the ok form.
 - Prove rules are (strongly or weakly) normalizing.
- By Curry-Howard isomorphism:
 - Proofs are λ-terms.
 - ▶ Proof normalization is β -reduction.
- Reducibility proofs (logical relations) are powerful, elegant.
- Do not work well with disjunctions, existentials.

Reducibility for Conjunction

Proof terms $p := (p_1, p_2) | p.1 | p.2$

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2} \land \mathsf{I}$$

$$\frac{\Gamma \vdash p : \phi_1 \land \phi_2 \quad i \in \{1, 2\}}{\Gamma \vdash p.i : \phi_i} \land \mathsf{E}$$

Reducibility is "hereditary normalization", defined by eliminations.

- Red_{ϕ} is set of reducible terms of type ϕ .
- $p \in Red_b \Leftrightarrow SN(p)$, for base types b.
- $p \in Red_{\phi_1 \land \phi_2} \Leftrightarrow p.1 \in Red_{\phi_1}$ and $p.2 \in Red_{\phi_2}$.
- $\bullet \ \ p \in Red_{\phi_1 \to \phi_2} \ \Leftrightarrow \ \text{forall} \ \ p' \in Red_{\phi_1}, (p \ p') \in Red_{\phi_2}$

What Goes Wrong with Disjunction

Proof terms
$$p := \langle 1, p \rangle \mid \langle 2, p \rangle \mid case(p)(x.p_1, x.p_2)$$

$$\frac{\Gamma \vdash p : \phi_i \quad i \in \{1,2\}}{\Gamma \vdash \langle i,p \rangle : \phi_1 \land \phi_2} \ \lor \mathsf{I}$$

$$\frac{\Gamma \vdash p : \phi_1 \lor \phi_2 \quad \Gamma, x : \phi_1 \vdash p_1 : \psi \quad \Gamma, x : \phi_2 \vdash p_2 : \psi}{\Gamma \vdash \textit{case}(p)(x.p_1, x.p_2) : \psi} \ \lor \mathsf{E}$$

Attempt to define reducibility fails:

$$p \in Red_{\phi_1 \lor \phi_2} \Leftrightarrow \text{ forall } \psi, \ p_1, p_2 \in Red_{\psi}, case(p)(x.p_1, x.p_2) \in Red_{\psi}$$

Not legal to appeal to Red_{ψ} .

A Way Forward

- Problem with VE:
 - ▶ to use $p : \phi$, need $p' : \psi$, where ψ unrelated to ϕ .
 - breaks definition of reducibility.
- But compare sequent calculus rules:

$$\frac{\Gamma, \phi_1 \vdash \psi \quad \Gamma, \phi_2 \vdash \psi}{\Gamma, \phi_1 \lor \phi_2 \vdash \psi} \ \mathsf{L} \lor \quad \frac{\Gamma, \phi_1, \phi_2 \vdash \psi}{\Gamma, \phi_1 \land \phi_2 \vdash \psi} \ \mathsf{L} \land$$

Term assignment for sequent calculus is strange.

$$\frac{\Gamma, y : \phi_1, z : \phi_2 \vdash p : \psi}{\Gamma, x : \phi_1 \land \phi_2 \vdash [x.1/y, x.2/z]p : \psi} \ \mathsf{L} \land$$

Limited by old view of "natural" deduction.

A Direct Term Assignment

- Left rules correspond to eliminations.
- Why insist that the context Γ holds just variables?
- Proposal:
 - Assign terms to sequent calculus directly.
 - Devise new terms for ∨E, ∃E.
 - Allow Γ to hold terms.

Elimination Rules

$$\frac{\Gamma, p.1 : \phi_{1}, p.2 : \phi_{2} \vdash p' : \psi}{\Gamma, p : \phi_{1} \land \phi_{2} \vdash p' : \psi} \text{ L} \land \frac{\Gamma, p.(1) : \phi_{1} \vdash p_{1} : \psi}{\Gamma, p.(2) : \phi_{2} \vdash p_{2} : \psi} \text{ L} \lor \frac{\Gamma, p.(2) : \phi_{2} \vdash p_{2} : \psi}{\Gamma, p : \phi_{1} \land \phi_{2} \vdash p' : \psi} \text{ L} \lor \frac{\Gamma, p.(2) : \phi_{2} \vdash p_{1} || p_{2} : \psi}{\Gamma, p : \phi_{1} \lor \phi_{2} \vdash p_{1} || p_{2} : \psi} \text{ L} \lor \frac{\Gamma, p! x : \phi \vdash p' : \psi \quad x \not\in FV(\Gamma, \psi)}{\Gamma, p : \exists x. \phi \vdash \nu x. p' : \psi} \text{ L} \exists$$

$$\frac{\Gamma, p! x : \phi \vdash p' : \psi}{\Gamma, p : \phi \vdash p : \psi} \text{ Ax} \qquad \frac{\Gamma, p! x : \phi \vdash p' : \psi}{\Gamma, p : \phi \vdash p' : \psi} \text{ L} \to \frac{\Gamma, p! x : \phi \vdash p' : \psi}{\Gamma, p : \phi \vdash p' : \psi} \text{ LC}$$

Reduction

- We have separated logical terms $(p_{\cdot}(i))$ from structural $(p_1 || p_2)$.
- Logical terms have β -reductions:

$$(p_1, p_2).i \rightsquigarrow p_i$$

 $\langle i, p \rangle.(i) \rightsquigarrow t$
 $\langle i, p \rangle.(3-i) \rightsquigarrow abort$

Structural terms have commuting conversions:

$$(p_1 || p_2).i \rightsquigarrow (p_1.i) || (p_2.i)$$

abort $|| p \rightsquigarrow p$

Simple unsound typing rules suffice for reducibility.

$$\frac{\Gamma \vdash p : \phi_1 \lor \phi_2}{\Gamma \vdash p.i : \phi_i} \lor \mathsf{E}$$

Towards Pure Natural Deduction

Define natural deduction rules.

$$S ::= \Gamma \vdash \Delta \mid S \mid S$$

 $\Delta ::= t_1 : \phi_1, \dots, t_n : \phi_n$

• Example derivation:

$$\begin{array}{c|cccc}
u : \phi_1 \lor \phi_2 \\
\hline
u.(1) : \phi_1 & || & u.(2) : \phi_2 \\
\vdots & & \vdots \\
\hline
p_1 : \psi & || & p_2 : \psi \\
\hline
p_1 || p_2 : \psi
\end{array}$$

- Completeness proved (open derivations $S \triangleright S'$).
- Goal: Pure Natural Deduction.
 - ► All rules are either direct logical rules or structural.
 - Consistency proved by reducibility.
 - Decidable equational theory, including commuting conversions.