Validating Constructive Meta-Theory with Rogue $^{\Sigma\Pi}$

Aaron Stump

Assistant Professor

Dept. of Computer Science and Engineering
Washington University in St. Louis
St. Louis, Missouri, USA

http://cl.cse.wustl.edu

Overview

type-preserving compilers proof-producing decision procedures meta-theory of higher-order logic

Deductive Systems

- Derive judgments like:
 - "P is a valid formula of classical f.o.l."
 - "M has type A under typing assumptions Γ"
- Begin by identifying deductive systems with finite axiomatizations in minimal first-order logic.
- 3 kinds of judgments:
 - * atomic: atomic formula.
 - hypothetical: implication
 - parametric: universal quantification

Example

Term Calculus for Proofs

A term calculus is used for proofs in the meta-logic:

- Proofs of universal and hypothetical judgments are represented as lambda terms.
- Proofs using (meta-logic) modus ponens and instantiation are represented as applications.

Proof by k of Implies(p,Implies(Implies(q,q),p)) is:

k@p@Implies(q,q)

Refining the Meta-Language

The meta-logic remains first-order, but:

- Unify meta-logical and . Write "u : p q" (or "p q" if u not free in q). This is useful for restricting the types of parameters.
- Unify proof terms and first-order terms. So, Implies(p,q) becomes Implies @ p @ q. This requires Implies to be viewed as a parametric first-order term. Abbreviate p @ q to p(q).
- * Use hypothetical first-order terms to represent binding constructs (higher-order abstract syntax).

Edinburgh Logical Framework (LF)

This is our refined meta-logic, due to Harper, Honsell, and Plotkin [HHP93]. It is essentially .

```
o: *
Implies: o o o
False: o
Valid: o *
Dn: (p:o Valid(Implies @ Not(Not(p)) @ p))
MP:(p:o q:o
     Valid(Implies @ p @ q)
                             Valid(p)
     Valid(q))
```

• • •

Theory and Meta-Theory

Deductive systems
LF signatures

Judgments — LF types

Terms, derivations → LF terms

Meta-theoretic → ???
proofs

Example

Deduction Theorem: If hypothetical judgment Valid(p) Valid(q) is provable, so is atomic judgment Valid(Implies @ p @ q).

Proof: By induction on structure of the derivation d of the hypothetical judgment, with case analysis:

Case d is _x:Valid(p).d, where d is an instance of an axiom (proving formula q):
Valid(Implies @ p @ q) is proved by:
MP @ (K @ q @ p) @ d

Example

```
Case d is _x:Valid(p).MP @ r @ q @ d1 @ d2:
Valid(Implies @ p @ q) is proved by:
    MP @ (MP @ (S @ p @ r @ q) @ d1') @ d2'
where d1' and d2' exist by I.H.
```

Meta-Theoretic Proofs as Programs

d: Valid(p) Valid(q) Proof of **Deduction Theorem**

d': Valid(Implies @ p @ q)

Meta-Theoretic Proofs as Programs

induction recursion

case analysis pattern matching

Implementing Meta-Theory

Tactics in ML

Theorem datatype guarantees proofs are built only using the logic's proof rules. But proofs might not check.

LP in Twelf

LF types are viewed as higher-order Horn clauses. Type-checking guarantees all proofs built will check.

Delphin

LF terms are manipulated by pure functional programs. Type-checking guarantees proofs check. Coverage checking is supported.

Rogue $^{\Sigma\Pi}$ (RSP)

- Combines LF and the Rho Calculus (Rogue).
- Separates representation and computation.
- Features new approaches to dependently typed pattern abstractions and dependent pairs.
- Type checking guarantees proofs will check.
- Enables imperative programming using expression attributes.
- Prototype type checker and compiler to untyped Rogue are implemented.
- Several projects underway based on RSP.

Pattern Abstractions

In P²TS, pattern abstractions look like:

The typing rule is:

Comment: it seems rules with different patterns cannot be uniformly combined with "," (or "|").

Pattern Abstractions in RSP

RSP's pattern abstractions are of the form:

$$x=P: . M$$

The typing rule is:

,
$$\vdash P : A$$
 , $x = P \vdash : \vdash cx : A \cdot B : s$

$$\vdash x = P : \cdot M : cx : A \cdot B$$

So types do not depend on the form of the pattern. Conversion uses equation x=P.

Recursive Functions in RSP

- Implemented via recursive equations.
- *These can be implemented just using expression attributes.
 - → a.b attribute read
 - Set(a.b, c) attribute write
- We set a.b to be some abstraction mentioning a.b.
- *RSP's type system keeps attribute expressions out of types. Otherwise, type preservation would fail: consider reflexivity of conversion on (c @ Set(a.b,a.b+1)).

Representational Abstractions

- *HOAS represents binding constructs from the object language as meta-language functions.
- →This is fine in LF, since LF functions are computationally very weak.
- *Arbitrary recursive functions are too expressive.
- *RSP supports representational abstractions
 - **x:A B**, in addition to pattern abstractions.

Evaluation Order for RSP

Leftmost innermost order is used for evaluating RSP expressions, with two exceptions:

- no evaluation is performed in the body of a pattern abstraction (standard for programming languages).
- evaluation **is** performed in the bodies of representational abstractions. This appears to be needed to enable programming with higher-order abstract syntax.

Constructs of RSP

```
M @ N
                      application
                     pattern abstraction (computational)
x \setminus P \setminus D
            M
                     pure abstraction (representational)
x : A M
x:A 	 B
                      computational function space
                     representational function space
x : A
Null(A)
                     for match failure, uninitialized attribute
M \mid N
                      deterministic choice (computational)
                      the basic kind
a.b
                      attribute read (computational)
Set(a.b, c)
                      attribute write (computational)
(x:A,B)
                      dependent sum type
(x = M,N)
                      dependent pair
                      projections (for i in \{1,2\})
M.i
M:A
                      ascription
```

Proof of Deduction Theorem in RSP

```
base: *
rvc: base
dedthm: (base
        A:O B:O (Valid(A) Valid(B))
        Valid(Implies @ A @ B))
dedthm h: (base c (u:O Valid(u))
          A:O B:O Valid(B)
          Valid(Implies @ A @ B))
Set(rvc.dedthm,
  A:O B:O \ null D:(Valid(A) Valid(B)) \ null
  (bridge : (u:O Valid(u))
    rvc.dedthm h @ bridge @ A @ B @ (D @ bridge(A))) @
  Null(u:O Valid(u)))
```

Proof of Deduction Theorem in RSP

```
Set(rvc.dedthm h,
 bridge: (u:O Valid(u)) A:O
   (B \setminus A \setminus null \quad F \setminus bridge @ B \setminus null
     MP @ (MP @ (S @ A @ (Implies @ B @ B) @ B)
                 @ (K @ A @ (Implies @ B @ B))
         @ (K @ A @ B)
   B:O \ null
      (F \ MP @ P @ B @ d1 @ d2
        \setminus (P: O, d1: Valid(Implies @ P @ B), d2: Valid(P))
        MP @ (MP @ (S @ A @ P @ B)
                    @ (rvc.dedthm h @ bridge @ A
                                       @ (Implies @ P @ B) @ d1)))
             @ (rvc.dedthm h @ bridge @ A @ P @ d2) |
       D: Valid(B) \setminus null \qquad MP @ (K @ B @ A) @ D))
```

Applications

proof-producing decision procedures type-preserving compilers meta-theory of higher-order logic

Proof-Producing Decision Procedures

- Decision procedures (DPs) for first-order theories are increasingly important in automated reasoning and verification.
- *To incorporate their results, applications like proofcarrying code require explicit proofs to be produced.
- *Proofs can catch soundness bugs (rather rare).
- Many bugs caught in proof production code!
- For long runs, proofs are huge and slow to check.

Proof-Producing DPs in RSP

- Type preservation for RSP ensures that LF proof objects produced by the DP would always check.
- Nulls can creep into proofs due to run-time errors.
- In the absence of Nulls, any RSP proof object represents a well-formed proof.
- Hence, proofs produced by successful runs of the DP do not need to be checked or even produced.
- Under some restrictions, we can slice out all the proof producing code except for a little residue to propagate Nulls.

Proof-Producing Saturating DPs

formula F, Pf(F) DP new formula G, Pf(G)

Pairs are essential to this approach.

Dependent Pairs in LF

Adding dependent pairs to LF breaks unicity of types, and thus bottom-up type checking. One repair is to require ascriptions at every pair [Sarnat 2003, Yale TR].

Suppose U(x,y) is of type Pf(Equals @ x @ y), and consider:

(y, U(x,y)): z:I. Pf(Equals @ x @ z)

VS.

(y, U(x,y)): z:I. Pf(Equals @ x @ y)

Dependent Pairs in RSP

Sometimes casts can be avoided, if we take pairs to be of the form:

$$(x=M,N)$$

The typing rule is:

$$\vdash : A , x=M \vdash : \vdash x:A. B:*$$

$$\vdash (x=M,N) : x:A. B$$

For bottom-up checking, we use conversion just when checking ascriptions and applications.

Example

Suppose U(x,y) is of type Pf(Equals @ x @ y), and consider:

$$(z=y, U(x,z))$$

z:I. Pf(Equals @ x @ z)

VS.

$$(z=y, U(x,y))$$

z:I. Pf(Equals @ x @ y)

In practice, it seems ascriptions are still frequently needed.

Union-Find

- *Equational reasoning often relies on union-find.
- *Equivalence classes are maintained as disjoint trees.
- The root of the tree is the canonical representative for the equivalence class.
- *Each member of the class has a pointer ("findp") towards the root.
- Path compression bashes pointers to the root.

Proof-Producing Union-Find in RSP

- Use an attribute for findp.
- For individual x, x.findp stores a pair:
 - the first element is the individual y that x's find pointer points to.
 - the second element is a proof that x equals y.
- Path compression connects proofs using transitivity of equality.

findp: i (y:i, Pf(Equals @ x @ y))

RSP Code for Find

```
rank: (I c Int)
findp: (x : I \quad (y:I, Pf(Equals @ x @ y)))
find: (base _{c} x : I _{c} (y:I, Pf(Equals @ x @ y)))
union: (base x : I \quad y : I \quad Pf(Equals @ x @ y) \quad Int)
Set(uf.find, x : I \setminus null \rightarrow
  Let(fx, x.findp,
  Ite(fx,
     Let(ffx, uf.find @ fx.1,
        Set(x.findp, (y \setminus ffx.1,
                  Eqtrans @ x @ fx.1 @ y @ fx.2 @ ffx.2))),
     Drop1(Set(x.rank, 0),
         (y \setminus x, Eqrefl @ x : Pf(Equals @ x @ y)))))))
```

Type-Preserving Compilers

- Proposed by Morrisett and others both for improved compiler quality and to certify resulting code to code consumers.
- *"From System F to Typed Assembly Language" shows how to compile a polymorphic pure functional language to assembly.
- ◆The compiler is proved on paper to preserve types correctly.
- Implementing in RSP allows us to prove type preservation of an actual implementation.

Alvin Compiler

Meta-Theory of Classical H.O.L.

Peter Andrews's logic Q_0 is a classical higher-order logic based on simply typed lambda abstractions and equality.

It has inference rules like Rule R, "if X=Y is a theorem and C is a theorem, then so is D, where D is C with a single (non-binding) occurrence of X replaced by Y".

This rule allows variable capture.

Q₀ in RSP

- The natural shallow embedding is not faithful.
- *A deep embedding quickly becomes extremely tedious to use:
 - substitution (albeit not capture-avoiding substitution) must be defined.
 - for replacement in proofs from hypotheses, eigenvariable restrictions must be enforced by hand.
 - logical rules like replacement now require proofs of syntactic judgments.
- We are implementing (validated) tactics to help alleviate this burden.

Current Prototype System

RSP (600 lines Rogue)

Rogue (50 lines MicroRogue)
+ standard library (70 lines Rogue)

MicroRogue (2000 lines C++)