Validating Constructive Meta-Theory
with Rogue*!!

Aaron Stump
Assistant Professor
Dept. of Computer Science and Engineering
Washington University in St. Louis
St. Louis, Missouri, USA
http://cl.cse.wustl.edu



Overview

deductive systems LF

l l

constructive meta-theory RSP

type-preserving compilers
proof-producing decision procedures
meta-theory of higher-order logic



Deductive Systems

* Derive judgments like:
+“P is a valid formula of classical f.o.l.”
*“M has type A under typing assumptions I’
*Begin by identifying deductive systems with
finite axiomatizations in minimal first-order
logic.
+ 3 kinds of judgments:
* atomic: atomic formula.
* hypothetical: implication
* parametric: universal quantification



Example

dn : p.Valid(Implies(Not(Not(p)),p)
k : p. q.Valid(Implies(p,Implies(q,p)))
S . p. q. T.
Valid (Implies(Implies(p,Implies(q,r)),
Implies(Implies(p,q), Implies(p,r))))
mp : Pp. q.
Valid(Implies(p,q)) Valid(p) Valid(q)



Term Calculus for Proofs

A term calculus is used for proofs in the meta-logic:
* Proofs of universal and hypothetical judgments
are represented as lambda terms.
* Proofs using (meta-logic) modus ponens and
instantiation are represented as applications.

Proof by k of Implies(p,Implies(Implies(q,q),p)) is:

k @ p @ Implies(q,q)



Refining the Meta-Language

The meta-logic remains first-order, but:

* Unify meta-logical and . Write “u:p @
(or “p q” if u not free in q). This is useful for
restricting the types of parameters.

*Unify proof terms and first-order terms. So,
Implies(p,q) becomes Implies @ p @ q. This
requires Implies to be viewed as a parametric
first-order term. Abbreviate p @ q to p(q).

*Use hypothetical first-order terms to represent
binding constructs (higher-order abstract syntax).

7



Edinburgh Logical Framework (LF)

This is our refined meta-logic, due to Harper,
Honsell, and Plotkin [HHP93]. It is essentially

O :

Implies:o0 o0 o0

False : o

Valid : o

Dn: (p:o Valid(Implies @ Not(Not(p)) @ p))

MP:(p:0o q:o
Valid(Implies @ p @ q) Valid(p)
Valid(q))



Theory and Meta-Theory

Deductive systems ~ LF signatures
Judgments ~ LF types
Terms, derivations  LF terms
Meta-theoretic - 77?7

proofs



Example

Deduction Theorem: If hypothetical judgment
Valid(p) Valid(q) is provable, so is atomic
judgment Valid(Implies @ p @ q).

Proof: By induction on structure of the derivation d
of the hypothetical judgment, with case analysis:

Case d is x:Valid(p).d, where d is an instance of
an axiom (proving formula q):
Valid(Implies @ p @ q) is proved by:

MP@ (K@q@p) @d




Example

Case d is x:Valid(p).x:
Valid(Implies @ p @ p) is proved like this:

(MP@ (MP @ (S @ p @ (Implies @ p @ p) @ p)
@ (K@ p @ (Implies @ p @ p)))
@ (K@p@p)))

Casedis x:Valid(p).MP@r @ q @ dl @ d2:

Valid(Implies @ p @ q) is proved by:
MP@(MP@(S@p@r@q) @dl) @d2
where d1' and d2' exist by I.H.



Meta-Theoretic Proofs as Programs

d : Valid(p) Valid(q)

|

Proof of
Deduction Theorem

d': Valid(Implies @ p @ q)



Meta-Theoretic Proofs as Programs

induction >~ recursion

case analysis - pattern matching



Implementing Meta-Theory

Tactics in ML

LP in Twelf

Delphin

Theorem datatype guarantees proofs
are built only using the logic's proof
rules. But proofs might not check.

LF types are viewed as higher-order
Horn  clauses. Type-checking
guarantees all proofs built will check.

LF terms are manipulated by pure
functional programs. Type-checking
guarantees proofs check. Coverage
checking is supported.



Rogue!! (RSP)

* Combines LF and the Rho Calculus (Rogue).
* Separates representation and computation.

* Features new approaches to dependently typed
pattern abstractions and dependent pairs.

* Type checking guarantees proofs will check.

*Enables  imperative  programming  using
expression attributes.

* Prototype type checker and compiler to untyped
Rogue are implemented.

+ Several projects underway based on RSP.



Pattern Abstractions

In P°TS, pattern abstractions look like:
P:. .M

The typing rule is:

Comment: it seems rules with different patterns
cannot be uniformly combined with “,” (or “|”).



Pattern Abstractions in RSP

RSP's pattern abstractions are of the form:
x=P: .M
The typing rule is:

, FHP:A , ,X=PF :  xX:A.B:s
= x=P: .M: *XA.B

So types do not depend on the form of the pattern.
Conversion uses equation x=P.



Recursive Functions in RSP

*Implemented via recursive equations.

*These can be implemented just using expression
attributes.
*a.b attribute read
* Set(a.b, ¢) attribute write

* We set a.b to be some abstraction mentioning a.b.
*RSP's type system keeps attribute expressions out
of types. Otherwise, type preservation would fail:

consider reflexivity of conversion on
(c @ Set(a.b,a.b+1)).



Representational Abstractions

*HOAS represents binding constructs from the
object language as meta-language functions.

*This is fine in LF, since LF functions are
computationally very weak.

* Arbitrary recursive functions are too expressive.

* RSP supports representational abstractions
X:A B, in addition to pattern abstractions.



Evaluation Order for RSP

Leftmost innermost order is used for evaluating
RSP expressions, with two exceptions:

*no evaluation is performed in the body of a
pattern abstraction (standard for programming
languages).

*evaluation is performed in the bodies of
representational abstractions. This appears to
be needed to enable programming with higher-
order abstract syntax.



a.b
Set(a.b, ¢)

Constructs of RSP

application

pattern abstraction (computational)
pure abstraction (representational)
computational function space

representational function space

for match failure, uninitialized attribute
deterministic choice (computational)
the basic kind

attribute read (computational)
attribute write (computational)



Proof of Deduction Theorem in RSP

base : *
rvc : base
dedthm : (base

A:O0O B:0 _(valid(A) Valid(B))
Valid (Implies @ A @ B))

C

dedthm h: (base . (u:O Valid(u))
A:O0O B:0 _Valid(B)
Valid (Implies @ A @ B))

C

Set(rvc.dedthm,
A:O B:O\null D:(Valid(A) Valid(B)) \ null
(bridge : (u1:O  Valid(u))
rvc.dedthm h @ bridge @ A @ B @ (D @ bridge(A))) @
Null(u:O Valid(u)))



Proof of Deduction Theorem in RSP

Set(rvc.dedthm h,
bridge : (u:O Valid(u)) A:O
(B\NA\null F\bridge @ B \ null
MP @ (MP @ (S @A @ (Implies @ B @ B) @ B)
@ (K @ A @ (Implies @ B @ B))
@K@A@B) |

B:O \ null
(F\MP @P@B @dl @ d2
\ (P: 0, dl : Valid(Implies @ P @ B), d2 : Valid(P))
MP@(MP@ (S@A@P @B)
@ (rvc.dedthm h @ bridge @ A
@ (Implies @ P @ B) @ d1)))
@ (rvc.dedthm h @ bridge @ A@ P @ d2) |

D:Valid(B)\null MP@ (K@B @A) @ D))



Applications

proof-producing decision procedures
type-preserving compilers
meta-theory of higher-order logic



Proof-Producing Decision Procedures

*Decision procedures (DPs) for first-order theories
are increasingly important in automated reasoning
and verification.

*To incorporate their results, applications like proof-
carrying code require explicit proofs to be
produced.

*Proofs can catch soundness bugs (rather rare).

*Many bugs caught in proof production code!

*For long runs, proofs are huge and slow to check.



Proof-Producing DPs in RSP

*Type preservation for RSP ensures that LF proof
objects produced by the DP would always check.

*Nulls can creep into proofs due to run-time errors.

*In the absence of Nulls, any RSP proof object
represents a well-formed proof.

*Hence, proofs produced by succesful runs of the DP
do not need to be checked or even produced.

*Under some restrictions, we can slice out all the
proof producing code except for a little residue to
propagate Nulls.



Proof-Producing Saturating DPs

formula F, P{(F)

Voo

new formula G, Pf(G)

Pairs are essential to this approach.



Dependent Pairs in LF

Adding dependent pairs to LF breaks unicity of
types, and thus bottom-up type checking. One

repair is to require ascriptions at every pair [Sarnat
2003, Yale TR].

Suppose U(x,y) is of type Pf(Equals @ x @ y), and
consider:

(v, Ux,y)) : z:I. Pf(Equals @ x @ z)

VS.

(v, Ux,y)) : z:1. Pf(Equals @ x @ )



Dependent Pairs in RSP

Sometimes casts can be avoided, if we take pairs to
be of the form:

(x=M,N)
The typing rule is:

= A , Xx=MF  xA.B:~*
—Hx=M,N): x:A.B

For bottom-up checking, we use conversion just
when checking ascriptions and applications.



Example

Suppose U(x,y) is of type Pf(Equals @ x @ y), and
consider:
Computed type:

(z=y, Ux,z)) z:1. Pf(Equals @ x @ z)
VS.
(z=y, U(x,y)) z:1. Pf(Equals @ x @ V)

In practice, it seems ascriptions are still frequently
needed.



Union-Find

*Equational reasoning often relies on union-find.

*Equivalence classes are maintained as disjoint
trees.

*The root of the tree is the canonical representative
for the equivalence class.

*Each member of the class has a pointer (“findp”)
towards the root.

*Path compression bashes pointers to the root.

-z /?'Z
y

Yy o
X X



Proof-Producing Union-Find in RSP

*Use an attribute for findp.
*For individual x, x.findp stores a pair:
* the first element is the individual y that x's find
pointer points to.
*the second element is a proof that x equals y.
* Path compression connects proofs using transitivity
of equality.

findp:1i .(y:1, Pf(Equals @ x @ y))



RSP Code for Find

rank : (I . Int)

findp: (x:I  (y:I, Pi(Equals @ x @ y)))
find : (base _x:I _(y:I, Pf(Equals @ x @ y)))
union : (base _.x:I _y:I _Pf(Equals@x@y) _Int)
Set(uf.find, x : I \ null ->

Let(fx, x.findp,

[te(fx,

Let(ffx, uf.find @ fx.1,
Set(x.findp, (y \ ffx.1,

Eqtrans @ x @ fx.1 @ y @ {x.2 @ {fx.2))),
Drop1(Set(x.rank, 0),

(v \ x, Eqrefl @ x : Pf(Equals @ x @ y)))))))



Type-Preserving Compilers

*Proposed by Morrisett and others both for
improved compiler quality and to certify resulting
code to code consumers.

*“From System F to Typed Assembly Language”
shows how to compile a polymorphic pure
functional language to assembly.

*The compiler is proved — on paper — to preserve
types correctly.

*Implementing in RSP allows us to prove type
preservation of an actual implementation.



Alvin Compiler

“type t, Pf(P:t) P, Ftype t, Pf(P:t)

" type checker
p F /‘ P' , type t', Pf(P':t)




Meta-Theory of Classical H.O.L.

Peter Andrews's logic Q, is a classical higher-order

logic based on simply typed lambda abstractions and
equality.

It has inference rules like Rule R, “if X=Y is a
theorem and C is a theorem, then so is D, where D is
C with a single (non-binding) occurrence of X
replaced by Y”.

This rule allows variable capture.



Q, in RSP

*The natural shallow embedding is not faithful.
*A deep embedding quickly becomes extremely
tedious to use:
»substitution  (albeit not capture-avoiding
substitution) must be defined.
*for replacement in proofs from hypotheses,
eigenvariable restrictions must be enforced by
hand.
* logical rules like replacement now require proofs
of syntactic judgments.
*We are implementing (validated) tactics to help
alleviate this burden.



Current Prototype System

RSP (600 lines Rogue)

Rogue (50 lines MicroRogue)
+ standard library (70 lines Rogue)

MicroRogue (2000 lines C+ +)




