Typed Lambda Calculus and the Semantics of Programs

Aaron Stump

Dept. of Computer Science The University of Iowa Iowa City, Iowa, USA

Programming Languages Forever

Hundreds of programming languages invented.

Haskell, Java, C, C++, OCaml, LISP, Scheme, Basic, Pascal, ...

- More born all the time (and few die...).
- Why?
- Aren't Turing machines enough?

Language Variety

- Languages are centered around different organizing ideas.
 - ► Object-oriented programming (Java, C++, Ruby, Scala)

```
List 1 = new LinkedList();
1.add(4); 1.add(3); 1.add(2); 1.add(1);
Collections.reverse(1);
```

► Functional programming (LISP, OCaml, Haskell)

```
List.rev [ 4; 3; 2; 1 ]
```

- More: imperative programming, logic programming.
- Tailored to different domains (web, database, scientific, etc.).
- Provide different mechanisms for abstraction...
- ...often through typing.

Typing Example: List.rev in OCaml

```
List.rev: 'a list -> 'a list
```

- This type says that List.rev is a function where for any type 'a:
 - ► the argument should be a list of 'a things.
 - ► the result (if any) will be a list of 'a things.
- Can operate on list with any element type:
 - ► List.rev [3;2;1]
 - ► List.rev ["hi"; "bve"; "whv"]
 - etc.
- List.rev's type abstracts all the rest of its behavior.

How Types Abstract

- Many different functions have type 'a list -> 'a list:
 - ▶ List.rev.
 - ► List.tl which maps [4;3;2;1] to [3;2;1].
 - ▶ id, the identity function.
 - ▶ loop, the function which runs forever.
 - ► myfunc with myfunc [a;b;...] = [b;a;...]
 - etc.
- Type denotes set of all functions with the specified behavior.
- Informally:

```
[\![T]\!] = \{f \mid f \text{ has behavior described by } T\}
```

Lambda Calculus

- Proposed by Alonzo Church as basis for logic.
 - ["The Calculi of Lambda Conversion," 1941]
- Widely adopted as a language for describing functions:
 - ▶ in Linguistics: for semantics.
 - ▶ in Logic: for higher-order logic, proof theory.
 - ▶ in Computer Science: for functional programming languages.
- Comes in untyped and typed varieties.
- Appeal is its simplicity and power.

Untyped Lambda Calculus

Syntax:

terms
$$t ::= x \mid t t' \mid \lambda x. t$$

Reduction Semantics:

$$\frac{t \leftrightarrow t'}{(\lambda x. t) t' \leftrightarrow [t'/x]t} \frac{t \leftrightarrow t'}{\lambda x. t \leftrightarrow \lambda x. t'}$$

$$\frac{t_1 \leftrightarrow t'_1}{(t_1 t_2) \leftrightarrow (t'_1 t_2)} \frac{t_2 \leftrightarrow t'_2}{(t_1 t_2) \leftrightarrow (t_1 t'_2)}$$

[t'/x]t denotes result of substituting t' for x in t.

Example:

$$((((\lambda x.\lambda y.\lambda z.x)3)4)5) \rightsquigarrow (((\lambda y.\lambda z.3)4)5) \rightsquigarrow ((\lambda z.3)5) \rightsquigarrow 3$$

The Power of Lambda Calculus

Looping computation:

```
(\lambda x.(x \ x)) \ (\lambda x.(x \ x)) \implies [\lambda x.(x \ x)/x](x \ x)
= \ (\lambda x.(x \ x)) \ (\lambda x.(x \ x))
\implies (\lambda x.(x \ x)) \ (\lambda x.(x \ x))
\implies \cdots
```

Iterating computation *f*:

```
(\lambda x.(f(x x))) (\lambda x.(f(x x))) \rightarrow f((\lambda x.(f(x x))) (\lambda x.(f(x x)))) \\ \rightarrow f(f(\lambda x.(f(x x))) (\lambda x.(f(x x)))) \\ \rightarrow f(f(f(\lambda x.(f(x x))) (\lambda x.(f(x x)))))
```

Lambda-Encoded Data

- Can represent numbers, lists, etc. as lambda terms.
- Church encoding:

$$0 := \lambda s.\lambda z.z
1 := \lambda s.\lambda z.s z
2 := \lambda s.\lambda z.s (s z)
...$$

Taking the successor of a Church-encoded number:

$$Succ := \lambda n.(\lambda s. \lambda z. s (n s z))$$

Succ 1
$$\rightsquigarrow \lambda s.\lambda z.s$$
 (1 s z) $\rightsquigarrow^* \lambda s.\lambda z.s$ (s z) = 2

Addition for Church encoding:

$$plus := \lambda n. \lambda m. n$$
 Succ m

Typed Lambda Calculi

- Practical languages have primitive data, operations.
- Types used to enforce safe usage:

```
\begin{array}{cccc} 12 & : & \textit{int} \\ + & : & \textit{int} \rightarrow \textit{int} \rightarrow \textit{int} \\ \text{"hi"} & : & \textit{string} \end{array}
```

- Typed lambda calculi are theoretical basis.
- Many different type systems proposed.
- Goal: prove type system sound:

"Well typed programs do not go wrong." [Milner]

```
► t: T \implies t \ Ok

► t: T \land t \leadsto t' \implies t': T (e.g., 3+3: int \land 3+3 \leadsto 6)
```

Example: Simply Typed Lambda Calculus

Syntax of Types:

base types
$$b$$
 simple types T ::= $b \mid T_1 \rightarrow T_2$

Semantics:

$$\llbracket b \rrbracket_{\sigma} = \sigma(b)$$

$$\llbracket T_1 \to T_2 \rrbracket_{\sigma} = \{ t \in \textit{terms} \mid \forall t' \in \llbracket T_1 \rrbracket_{\sigma}. \ (t \ t') \in \llbracket T_2 \rrbracket_{\sigma} \}$$

Assume $\sigma(b)$ inversion-reduction closed (for all b):

$$\frac{t' \rightsquigarrow t \qquad t \in \sigma(b)}{t' \in \sigma(b)}$$

Example of Using the Semantics

$$\lambda x.\lambda y.x \in \llbracket b_1 \rightarrow b_2 \rightarrow b_1 \rrbracket_{\sigma}$$

Proof.

Assume arbitrary $t_1 \in \llbracket b_1 \rrbracket_{\sigma} = \sigma(b_1)$. Show $(\lambda x. \lambda y. x)$ $t_1 \in \llbracket b_2 \to b_1 \rrbracket_{\sigma}$.

Assume arbitrary $t_2 \in [\![b_2]\!]_{\sigma} = \sigma(b_2)$.

Show $((\lambda x.\lambda y.x) \ t_1) \ t_2 \in \llbracket b_1 \rrbracket_{\sigma} = \sigma(b_1).$

Holds because $((\lambda x.\lambda y.x) t_1) t_2 \rightsquigarrow^* t_1 \in \sigma(b_1)$

Typing Semantics

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \rightarrow T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \rightarrow T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

- Logically less complex notion of typing.
- Basis for actual type-checking algorithms.
- Can be proved sound:

Theorem (Soundness)

If
$$\Gamma \vdash t : T$$
, then $\gamma t \in [\![T]\!]_{\sigma}$, where

$$\gamma(x) \in \llbracket \Gamma(x) \rrbracket_{\sigma} \text{ for all } x \in dom(\sigma).$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \rightarrow T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \rightarrow T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \to T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \to T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \to T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \to T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \to T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \to T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \to T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \to T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

$$\frac{\Gamma}{\Gamma \vdash T} \quad \frac{T}{\Gamma \vdash T_1 \to T_2} \quad \frac{\Gamma \vdash T_2 \to T_1 \quad \Gamma \vdash T_2}{\Gamma \vdash T_1 \to T_2}$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \to T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \to T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \frac{\Gamma, x : T_1 \vdash t : T_2}{\Gamma \vdash \lambda x . t : T_1 \to T_2} \quad \frac{\Gamma \vdash t_1 : T_2 \to T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T_1}$$

$$\frac{\Gamma}{\Gamma \vdash T} \quad \frac{T}{\Gamma \vdash T_1 \to T_2} \quad \frac{\Gamma \vdash T_2 \to T_1 \quad \Gamma \vdash T_2}{\Gamma \vdash T_1 \to T_2}$$

$$\frac{T \vdash \Gamma}{\Gamma \vdash T} \quad \frac{\Gamma, T_1 \vdash T_2}{\Gamma \vdash T_1 \to T_2} \quad \frac{\Gamma \vdash T_2 \to T_1 \quad \Gamma \vdash T_2}{\Gamma \vdash T_1}$$

Proofs and Programs

- Simply typed lambda terms are notations for proofs.
- The logic is minimal (constructive) propositional logic.
- The semantics of types <-> Kripke semantics for minimal logic.
- Let Norm be set of normalizing lambda terms.
 - ▶ $t \in Norm \text{ iff } \exists t'.t \rightsquigarrow^* t' \not \rightsquigarrow$.
- Can prove:

Theorem

Suppose $\sigma(b) \subseteq Norm$ (for all b).

Then $[\![T]\!]_{\sigma} \subseteq Norm$.

Corollary

Simply typable terms are normalizing.

The Tragedy of Programming

- Programs are full of bugs.
 - ▶ 1-10 for every 1000 lines of code?
 - Ok for web browser, not for flight control.
- State of the art: testing.
- We are building cathedrals of glass with jack hammers.
- But a new hope dawns...

Programming with Proofs

- Lambda calculus: bridge between programming, proving.
- Simply typed lambda calc. <-> min. prop. logic.
- Fancier type systems <-> more powerful logics.
- New generation of research languages:
 - ► Coq (INRIA), Agda (Chalmers), Ωmega (Portland), Guru (Iowa).
- Write programs, prove theorems about them.

$$\forall I$$
: list a. rev (rev I) = I

Write programs with rich types expressing properties.

rev : list a
$$n \rightarrow list a n$$

I believe this is a true revolution in programming.

Case Study: versat

- We wrote a verified logic solver in Guru.
 - Duckki Oe, Tianyi Liang, Corey Oliver, Kevin Clancy.
 - Guru is our verified-programming language.
- Modern solvers can solve huge logic problems.
 - ▶ 100s of thousands of propositional variables.
 - formulas with millions of logical operators.
 - sophisticated heuristics and optimizations.
- We proved (in Guru):
 - ▶ if the solver says the formula is unsatisfiable, then
 - one can derive a contradiction from it.
- 10k lines of code, proofs.
- Correct in theory, and in practice (compared to MiniSat).

Richer Type Systems: Levelized

	• • •
superkinds :	kind
	• • •
kinds :	type
	$ extit{type} ightarrow extit{type}$
	• • •
types:	int
	$ extit{int} ightarrow extit{int}$
	$\forall X : type.X \rightarrow X,$
	λX : $type.X o X$
terms :	35,
	$\lambda x.x + x$,
	• • •

Richer Type Systems: Collapsed

- With levelized systems, each expression is in just one level.
- So cannot reuse that code across levels.
- Can view level structure this way:

$$type_0 : type_1 : type_2 : \cdots$$

An exciting idea:

- Collapses all levels; cannot distinguish terms, types.
- Great reuse: multi-level data structures.

$$\frac{\textit{list}: \textit{type} \rightarrow \textit{type} \quad \textit{type}: \textit{type}}{\textit{list type}: \textit{type}}$$

But: compositional semantics is quite challenging.

Types As Abstractions

- Goal: define "simple" semantics for type:type.
- Idea: view every term as a description of a set of terms.
 - ► $[int] = \{0, 1, 2, \dots\}$ ► $[0] = \{0, ((\lambda x.x) \ 0), \dots\}$
 - ► **|** type || = { type, int, · · · }
- Levelize the semantics: $[t]_{\sigma}^{k}$.
- Crucial defining clause:

$$t_a \in \llbracket \lambda x : t_1.t_2 \rrbracket_{\sigma}^{k+1} \Longrightarrow \forall t_b \in \llbracket t_1 \rrbracket_{\sigma}^{k+1}.t_a \ t_b \in \llbracket t_2 \rrbracket_{\sigma[x \mapsto \llbracket t_b \rrbracket_{\sigma}^k]}^{k+1}$$

- Can interpret this argument *t_b* at a lower level *k*.
- Handle case when t_b is a type or a term uniformly.

Conclusion

- Semantics is essential for programming language design.
 - ▶ reduction semantics for terms: $(\lambda x.t)$ $t' \rightsquigarrow [t'/x]t$
 - compositional semantics of types: [[T]]_σ
 - typing semantics: Γ ⊢ t : T
- Use semantics to prove type system sound.
- Typed lambda calculus for programs, proofs.
- Prove code is correct!
- Collapse language levels with type:type.
- Can "types as abstractions" yield compositional semantics?

http://queuea9.wordpress.com

Thanks!