Typed Lambda Calculus
and the Semantics of Programs

Aaron Stump

Dept. of Computer Science
The University of lowa
lowa City, lowa, USA

..,
Programming Languages Forever

o Hundreds of programming languages invented.

Haskell, Java, C, C++, OCaml, LISP, Scheme, Basic, Pascal, ...
@ More born all the time (and few die...).

o Why?
o Aren’t Turing machines enough?

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 2/22

..,
Language Variety

o Languages are centered around different organizing ideas.
» Object-oriented programming (Java, C++, Ruby, Scala)

List 1 = new LinkedList ();
l.add(4); l.add(3); l.add(2); l.add(1l);
Collections.reverse (1l);

» Functional programming (LISP, OCaml, Haskell)
List.rev [4; 3 ; 2 ; 1 1]
» More: imperative programming, logic programming.
o Tailored to different domains (web, database, scientific, etc.).
o Provide different mechanisms for abstraction...
o ...often through typing.

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 3/22

S
Typing Example: List.rev in OCaml

List.rev: ’alist ->’alist

o This type says that List . rev is a function where for any type ’a:

» the argument should be a list of ’a things.

» the result (if any) will be a list of 'a things.
o Can operate on list with any element type:

» List.rev [3;2;1]

» List.rev ["hi";"bye"; "why"]

» efc.

0 List.rev's type abstracts all the rest of its behavior.

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 4/22

e,
How Types Abstract

o Many different functions have type ’a list -> ’a list:

» List.rev.

» List.tl whichmaps [4;3;2;1]1t0 [3;2;1].

» id, the identity function.

» loop, the function which runs forever.

» myfunc wWithmyfunc [a;b;...] = [b;a;...]
» etc.

o Type denotes set of all functions with the specified behavior.
o Informally:

[T] = {f | f has behavior described by T}

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 5/22

L
Lambda Calculus

o Proposed by Alonzo Church as basis for logic.
[“The Calculi of Lambda Conversion,” 1941]

o Widely adopted as a language for describing functions:

» in Linguistics: for semantics.
» in Logic: for higher-order logic, proof theory.
» in Computer Science: for functional programming languages.

o Comes in untyped and typed varieties.
o Appeal is its simplicity and power.

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 6/22

e,
Untyped Lambda Calculus

Syntax:
termst = x|tt |Ax.t

Reduction Semantics:

t ~t
(M.t~ [t/x]t Ax.t ~ Ax. t

t o~ th ~)
(th) ~ (1] &) (h) ~ (4)

[t'/x]t denotes result of substituting ¢ for x in ¢.
Example:

(((Ax.Ay.Az.x) 3)4) 5) ~ (((A\y.A2.3)4)5) ~ ((Az.3)5) ~ 3

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 7122

L
The Power of Lambda Calculus

Looping computation:

(Ax.(x x)) (Ax.(x x)) ~ [Mx.(x x)/x](x x)
= (Ax.(x x)) (Ax.(x x))
~ (AX(x X)) (Ax.(x x))
Iterating computation f:
(Ax.(f (x x))) (Ax(F(x X))~ F((x(F (x X)) (Ax.(F (x X))))
v P (AX(F (x X)) (A (x x))))
~ F(F(F (Ox.(F (x x))) (Ax.(f (x x)))))

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 8/22

L
Lambda-Encoded Data

o Can represent numbers, lists, etc. as lambda terms.
o Church encoding:

0 := As)\z.z
1 = AS.\Z.sZ
2 = As.\z.s(s2z2)

o Taking the successor of a Church-encoded number:
Succ := An.(As.\z.s (n s z))

Succ1 ~» AsAzs(1sz) ~* Asdzs(sz) = 2
o Addition for Church encoding:

plus := An.A\m.n Succ m

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 9/22

L
Typed Lambda Calculi

o Practical languages have primitive data, operations.
o Types used to enforce safe usage:

12 : int
+ . int— int— int
“hi” . string

o Typed lambda calculi are theoretical basis.
o Many different type systems proposed.
o Goal: prove type system sound:

“Well typed programs do not go wrong.” [Milner]

ANtw~st = t':T (eg9.,3+3:inf A 3+3~6)

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 10/22

e,
Example: Simply Typed Lambda Calculus

Syntax of Types:
base types b
simple types T == b| T = T,
Semantics:
[6]- = o(b)

[Ty = To], = {teterms|Vt €[Ti],. (tt) e [T2]s}
Assume o(b) inversion-reduction closed (for all b):

t st teo(b)
t e o(b)

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 11/22

Example of Using the Semantics

)\X.)\y.X S I[b1 — by — b‘l]]o'

Proof.
Assume arbitrary t; € [b1], = o(b1).
Show (Ax.\y.x) t; € [bo — bi]o-

Assume arbitrary b € [bo], = o(b2).
Show (()\X.)\y.X) t1) b e IIb1]]g = 0(b1).

Holds because ((Ax.\y.x) t;) tb ~* t; € o(by)

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 12/22

e,
Typing Semantics

F(x):T F,x:T1I—t:T2 I'I—t1:T2—>T1 I'I—t2:T2
MrM=x:T Fl—)\x.t:T1—>T2 H—t1t2:T1

o Logically less complex notion of typing.
o Basis for actual type-checking algorithms.
o Can be proved sound:

Theorem (Soundness)
IfT=t:T,then~t € [T],, where

v(x) € [T (x)]s for all x € dom(c).

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 13/22

..,
The Curry-Howard Isomorphism

F(x):T r,X:T1|_tZT2 Fl—t1:T2—>T1 rl—tgiTg
MrM=x:T FI—)\x.t:T1—>T2 Fl—t1t2:T1

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 14/22

..,
The Curry-Howard Isomorphism

F(x):T r,X:T1|_tZT2 Fl—t1:T2—>T1 rl—tgiTg
MrM=x:T FI—)\x.t:T1—>T2 Fl—t1t2:T1

F(x):T r,XZT1|—tZT2 Fl—t1:T2—>T1 rl—tngg
M=x:T FI—/\x.t:T1—>T2 Fl—t1t2:T1

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 14/22

..,
The Curry-Howard Isomorphism

F(x):T r,X:T1|_tZT2 Fl—t1:T2—>T1 rl—tgiTg
MrM=x:T FI—)\x.t:T1—>T2 Fl—t1t2:T1

F(x):T r,XZT1|—tZT2 Fl—t1:T2—>T1 rl—tngg
M=x:T FI—/\x.t:T1—>T2 Fl—t1t2:T1

I T F, T1 F T2 [+ Tg*) T1 M+ Tg
[+ T TF T1—)T2 [+ T1

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 14/22

..,
The Curry-Howard Isomorphism

F(x):T r,X:T1|_tZT2 Fl—t1:T2—>T1 rl—tgiTg
MrM=x:T FI—)\x.t:T1—>T2 Fl—t1t2:T1

F(x):T r,XZT1|—tZT2 Fl—t1:T2—>T1 Fl—t2:T2
M=x:T FI—/\x.t:T1—>T2 H—t1t2:T1

I T F, T1 F T2 [+ Tg*) T1 M+ Tg
[+ T TF T1—>T2 [+ T1

Terl F,T1|—T2 FI—T2—>T1 FI—T2
r=TmT I'I—T1—>T2 I'I—T1

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 14/22

e,
Proofs and Programs

o Simply typed lambda terms are notations for proofs.
@ The logic is minimal (constructive) propositional logic.

@ The semantics of types <—> Kripke semantics for minimal logic.
o Let Norm be set of normalizing lambda terms.
» te Normiff At .t ~* t/ .

@ Can prove:

Theorem
Suppose o(b) C Norm (for all b).

Then [T], € Norm.

Corollary
Simply typable terms are normalizing.

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 15/22

..,
The Tragedy of Programming

o Programs are full of bugs.

» 1-10 for every 1000 lines of code?
» Ok for web browser, not for flight control.

o State of the art: testing.
@ We are building cathedrals of glass with jack hammers.
o But a new hope dawns...

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 16/22

..,
Programming with Proofs

o Lambda calculus: bridge between programming, proving.
o Simply typed lambda calc. <—> min. prop. logic.

o Fancier type systems <—> more powerful logics.
@ New generation of research languages:
» Coq (INRIA), Agda (Chalmers), Qmega (Portland), Guru (lowa).

o Write programs, prove theorems about them.
Vil lista. rev(revl) =1

o Write programs with rich types expressing properties.
rev:listan — listan

o | believe this is a true revolution in programming.

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 17/22

..
Case Study: versat

o We wrote a verified logic solver in Guru.
» Duckki Oe, Tianyi Liang, Corey Oliver, Kevin Clancy.
» Guru is our verified-programming language.

@ Modern solvers can solve huge logic problems.

» 100s of thousands of propositional variables.
» formulas with millions of logical operators.
» sophisticated heuristics and optimizations.

@ We proved (in Guru):

» if the solver says the formula is unsatisfiable, then
» one can derive a contradiction from it.

@ 10k lines of code, proofs.
@ Correct in theory, and in practice (compared to MiniSat).

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 18/22

..,
Richer Type Systems: Levelized

superkinds : kind

kinds : type
type — type

types : int
int — int
VX type X — X,
AX :type X — X

terms : 35,
AX.X + X,

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 19/22

=111 ...,k
Richer Type Systems: Collapsed
@ With levelized systems, each expression is in just one level.
@ So cannot reuse that code across levels.
@ Can view level structure this way:
typeg : typey : type, @ ---

@ An exciting idea:
type : type

@ Collapses all levels; cannot distinguish terms, types.
o Great reuse: multi-level data structures.

list : type — type type : type
list type : type

o But: compositional semantics is quite challenging.

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 20/22

L
Types As Abstractions

o Goal: define “simple” semantics for type:type.
o |dea: view every term as a description of a set of terms.
» [int] ={0,1,2,---}

> [0] = {0.((Ax.x) 0),---}
> [type] = {type,int,---}

o Levelize the semantics: []%.
o Crucial defining clause:

tye [\ b = Vit e M)t ty € [[tg]]’;rxgﬂtb]m

o Can interpret this argument t, at a lower level k.
o Handle case when 1, is a type or a term uniformly.

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 21/22

L
Conclusion

@ Semantics is essential for programming language design.

» reduction semantics for terms: (Ax.t) t' ~ [t'/x]t
» compositional semantics of types: [T],
» typing semantics: I'+t: T

o Use semantics to prove type system sound.

o Typed lambda calculus for programs, proofs.

o Prove code is correct!

o Collapse language levels with type:type.

o Can “types as abstractions” yield compositional semantics?

http://queuead.wordpress.com

Thanks!

Aaron Stump: Typed Lambda Calculus Linguistics Colloquim, 2012 22/22

http://queuea9.wordpress.com

