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Proofs and SMT Solvers
SMT solvers large (50-100kloc), complex.
To increase trust, have solvers emit proofs.
Check proofs with much simpler checker (2-4kloc).
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Large, complex formulas => large proofs.
Proofs easily 100s MBs or GBs.
Proof-checking speed important!
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The LFSC Proof Format

“Logical Framework with Side Conditions”.
Goal: a standard proof format for SMT.
Developed over past 4 years:

I Comparing Proof Systems for LRA with LFSC. SMT ’10
I Fast and Flexible Proof Checking for SMT. SMT ’09
I Towards an SMT Proof Format. SMT ’08
I Proof Checking Technology for SMT. LFMTP ’08
I A Signature Compiler for the Edinburgh LF. LFMTP ’07

LFSC is a meta-language.
I Describe abstract syntax, proof rules in a signature.
I LFSC then compiles that signature.
I Supports many logics (not just SMT).
I Result: fast custom proof checker.
I Benefits: speed and flexibility.
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LFSC Proofs and SMT Solvers
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Benefits of LFSC

Trustworthiness:
I Declarative specification of proof checker.
I Trusted: signature + generic LFSC compiler.
I More trustworthy than hand-implemented checker.
I More human-understandable (cf. CVC3’s C++ rules).

Flexibility:
I SMT solvers have hundreds of rules.
I No consensus on single “right” proof system.
I Easily change signature.
I Auto-generate C++ code for proof production (in progress).

Performance:
I Compilation removes overhead of using meta-language.
I New optimizations implemented once in LFSC.
I All proof systems can take advantage.
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Logical Framework with Side Conditions

Based on Edinburgh Logical Framework (LF) [Harper et al., ’93]
View proof-checking as type-checking.
Adds support for computational side conditions [Stump, Oe ’09].
For example, resolution:

` C1 ` C2

` C3
resolve(C1, C2, v) = C3

LFSC supports continuum of proof systems:

Purely
Computational

Purely
DeclarativePractical
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LFSC Signatures by Example
Mathematical version:

formula f ::= true | false | p | (and f1 f2) | . . .

` f1 ` f2
` (and f1 f2)

and-intro

LFSC version:

(declare formula type)
(declare true formula)
(declare false formula)
(declare and (! f1 formula (! f2 formula formula)))

(declare holds (! x formula type))
(declare andi (! f1 formula

(! f2 formula
(! u1 (holds f1)
(! u2 (holds f2)
(holds (and f1 f2)))))))
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A Sample Proof
Mathematical version:

` p
` q ` q

` (and q q)

` (and p (and q q))

LFSC version:

(% p formula
(% q formula
(% u1 (holds p)
(% u2 (holds q)

(andi _ _ u1 (andi _ _ u2 u2))))))

LFSC assumptions introduce with %.
_ for the formulas proved by subproofs.
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LFSC Proof-Checking Optimizations

1 Compile declarative part of signature [Zeller,Stump,Deters ’07].
I Basic checker: bool check(sig *s, pf *p)
I Partially evaluate this w.r.t. sig *s.
I Custom checker: bool check-s(pf *p)

2 Compile side-condition code [Oe,Reynolds,Stump ’09].
3 Incremental checking [Stump ’08].

I Traditionally: parse to AST, then check proof.
I Optimized: parse and check together.
I Avoid building AST for proof in memory.

5x speedup for SMT benchmarks with each of these.
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Next Steps
Experiment with trade-off between declarative, computational.

I Comparing Proof Systems for Linear Real Arithmetic with LFSC.
Reynolds, Haderean, Tinelli, Ge, Stump, Barrett. SMT ’10

New implementation of LFSC compiler (for fall ’10).
I Currently: 6kloc C++, complex.
I Currently only implement 2 of the optimizations.
I Wanted: more trustworthy, more flexible, all optimizations.
I Reimplement in OCaml.

New input syntax (Tianyi Liang):
I BNF for abstract syntax, textual versions of rules:

formula f ::= true | false | (and f1 f2)

(holds f1) (holds f2)
-------------------------
(holds (and f1 f2)

Public release, tool paper.
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