
Fast and Flexible Proof-Checking with LFSC

Tianyi Liang Andy Reynolds Aaron Stump Cesare Tinelli

Dept. of Computer Science
The University of Iowa
Iowa City, Iowa, USA

Funding from NSF.

Proofs and SMT Solvers
SMT solvers large (50-100kloc), complex.
To increase trust, have solvers emit proofs.
Check proofs with much simpler checker (2-4kloc).

Φ

SMT Solver

Pf

Proof Checker

Pf Ok Pf Bad

Large, complex formulas => large proofs.
Proofs easily 100s MBs or GBs.
Proof-checking speed important!

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

The LFSC Proof Format

“Logical Framework with Side Conditions”.
Goal: a standard proof format for SMT.
Developed over past 4 years:

I Comparing Proof Systems for LRA with LFSC. SMT ’10
I Fast and Flexible Proof Checking for SMT. SMT ’09
I Towards an SMT Proof Format. SMT ’08
I Proof Checking Technology for SMT. LFMTP ’08
I A Signature Compiler for the Edinburgh LF. LFMTP ’07

LFSC is a meta-language.
I Describe abstract syntax, proof rules in a signature.
I LFSC then compiles that signature.
I Supports many logics (not just SMT).
I Result: fast custom proof checker.
I Benefits: speed and flexibility.

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

LFSC Proofs and SMT Solvers

Φ

SMT Solver

Pf

Proof Checker

Pf Ok Pf Bad

LFSC

Signature

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

Benefits of LFSC

Trustworthiness:
I Declarative specification of proof checker.
I Trusted: signature + generic LFSC compiler.
I More trustworthy than hand-implemented checker.
I More human-understandable (cf. CVC3’s C++ rules).

Flexibility:
I SMT solvers have hundreds of rules.
I No consensus on single “right” proof system.
I Easily change signature.
I Auto-generate C++ code for proof production (in progress).

Performance:
I Compilation removes overhead of using meta-language.
I New optimizations implemented once in LFSC.
I All proof systems can take advantage.

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

Logical Framework with Side Conditions

Based on Edinburgh Logical Framework (LF) [Harper et al., ’93]
View proof-checking as type-checking.
Adds support for computational side conditions [Stump, Oe ’09].
For example, resolution:

` C1 ` C2

` C3
resolve(C1, C2, v) = C3

LFSC supports continuum of proof systems:

Purely
Computational

Purely
DeclarativePractical

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

LFSC Signatures by Example
Mathematical version:

formula f ::= true | false | p | (and f1 f2) | . . .

` f1 ` f2
` (and f1 f2)

and-intro

LFSC version:

(declare formula type)
(declare true formula)
(declare false formula)
(declare and (! f1 formula (! f2 formula formula)))

(declare holds (! x formula type))
(declare andi (! f1 formula

(! f2 formula
(! u1 (holds f1)
(! u2 (holds f2)
(holds (and f1 f2)))))))

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

A Sample Proof
Mathematical version:

` p
` q ` q

` (and q q)

` (and p (and q q))

LFSC version:

(% p formula
(% q formula
(% u1 (holds p)
(% u2 (holds q)

(andi _ _ u1 (andi _ _ u2 u2))))))

LFSC assumptions introduce with %.
_ for the formulas proved by subproofs.

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

LFSC Proof-Checking Optimizations

1 Compile declarative part of signature [Zeller,Stump,Deters ’07].
I Basic checker: bool check(sig *s, pf *p)
I Partially evaluate this w.r.t. sig *s.
I Custom checker: bool check-s(pf *p)

2 Compile side-condition code [Oe,Reynolds,Stump ’09].
3 Incremental checking [Stump ’08].

I Traditionally: parse to AST, then check proof.
I Optimized: parse and check together.
I Avoid building AST for proof in memory.

5x speedup for SMT benchmarks with each of these.

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

Next Steps
Experiment with trade-off between declarative, computational.

I Comparing Proof Systems for Linear Real Arithmetic with LFSC.
Reynolds, Haderean, Tinelli, Ge, Stump, Barrett. SMT ’10

New implementation of LFSC compiler (for fall ’10).
I Currently: 6kloc C++, complex.
I Currently only implement 2 of the optimizations.
I Wanted: more trustworthy, more flexible, all optimizations.
I Reimplement in OCaml.

New input syntax (Tianyi Liang):
I BNF for abstract syntax, textual versions of rules:

formula f ::= true | false | (and f1 f2)

(holds f1) (holds f2)

(holds (and f1 f2)

Public release, tool paper.

Liang, Reynolds, Stump, Tinelli Proof-Checking with LFSC Rockwell Collins, August 2010

