Programming and Proving with Dependently Typed Lambda Encodings

Aaron Stump
Computer Science
The University of Iowa
Iowa City, Iowa
Type theory based on lambda encodings

- **Streamline** the type theory
 - All data are lambda-encoded
 - No primitive constructors, pattern-matching
 - Simpler meta-theory for the type theory

- **Expand** its range with higher-order encodings
 - Inductive datatypes require (strict) positivity in Coq/Agda
 - With lambda-encodings, can go negative!

Where $\text{trm} t \equiv x \mid t \mid \lambda x.t$

Encoded as

\[
\text{trm} = \forall X : \ast. (X \rightarrow X \rightarrow X) \rightarrow ((X \rightarrow X) \rightarrow X) \rightarrow X
\]

- May enable simpler meta-theory for object languages
- New range of tools to apply
Calculus of Dependent Lambda Eliminations (CDLE)

- Like Calculus of Constructions plus
 - functions with erased arguments (specificational, type is $\forall x : T. T'$)
 - constructor-constrained recursive types $\nu X : \kappa | \Theta. T$
 - lifting operator $\uparrow_L t$

- Semantics for types, consistency proof

- Realizability-inspired type assignment rules

\[
\Gamma \vdash t : T \quad \Gamma \vdash t : [t/x]T' \\
\Gamma \vdash t : \nu X : T. T'
\]

\[
\Gamma \vdash t' : T \quad t =_{\beta} t' \\
\Gamma \vdash t : T
\]

- Problem: how to implement?
First attempt: evidential typing \(\Gamma \vdash e :: t : T \)

Unworkably painful!

Insight: problematic rules used mainly for kinding \(\nu \)-types

Special-case treatment of those

Dependent intersection types \(\nu x : T. T' \) completely hidden

Cedille implementation

 ▶ New (wrote over winter break)
 ▶ Around 2800 lines of Agda
 ▶ 180-line grammar
 ▶ around 300 lines of elisp
Datatypes in Cedille

- Can always use definitions as in System F_ω

 $$\text{CNat} \iff \star = \forall \; X : \star . \; (X \to X) \to X \to X .$$

 - For these you get lifting
 - But no dependent eliminations/induction
 - Can be negative
 - Church-encoding only

- Can declare top-level recursive types

 $$\text{rec Nat} \mid S : \text{Nat} \to \text{Nat} , \; Z : \text{Nat} = \forall \; P : \text{Nat} \to \star . \;
 \left(\prod n : \text{Nat} . \; P n \to P (S n) \right) \to P Z \to P \text{ self}$$

 with

 $$S = \lambda n . \; \Lambda \; P . \; \lambda s . \; \lambda z . \; s n (n \cdot P s z) , \;
 Z = \Lambda \; P . \; \lambda s . \; \lambda z . \; z.$$

 - Lifting, dependent eliminations
 - Must be positive-recursive
 - All encodings supported (Church, Parigot, others)
Recursive types in Cedille

\[
\text{rec Nat | } S : \text{Nat} \to \text{Nat} , \ Z : \text{Nat} = \ \\
\forall P : \text{Nat} \to * . \ \\
(\Pi n : \text{Nat} . \ P n \to P (S n)) \to P Z \to P \text{self} \ \\
\text{with} \ \\
S = \lambda n . \ \Lambda P . \ \lambda s . \ \lambda z . \ s n (n \cdot P s z) , \ \\
Z = \Lambda P . \ \lambda s . \ \lambda z . \ z .
\]

- \text{self is implicitly } \iota\text{-bound}
- First declare constructors
- Then define them
- For definition \(x = t \), type-check \(t \) under assumption \(x = t \)
- Afterwards, \(\iota \)-type instantiated immediately on use
Rule induction

- Not all inductions are dependent eliminations(!)
 - Dependent elimination with x proves $P \ x$
 - If P does not depend on x, this is overkill
- PL meta-theory mostly uses rule induction

Theorem (Type Preservation)

If $\Gamma \vdash t : T$ and $t \leadsto t'$ then $\Gamma \vdash t' : T$.

- Can Church-encode the derivations
- But if you need inversion, should use Parigot
Emacs mode

- Cedille has an emacs mode for editing Cedille files
- Based on a generic structured-editing mode by Carl Olson

A span is \([\text{label}, \text{start-pos}, \text{end-pos}, \text{attributes}]\)
- Spans communicated in JSON
- Cedille sends all type information, in span attributes
- Monadic style for writing the backend (type checker)
Type checking

- Terms are annotated
 - $\Lambda x : \kappa . t$ for type abstraction
 - $t \cdot T$ for type instantiation
 - $\Lambda x : T . t$ for erased-term abstraction
 - $t - t'$ for erased-term application

- Use local type inference
 - Checking $t \leftarrow T$
 - Synthesizing $t \rightarrow T$
 - Can drop some annotations ($\lambda x . t$ instead of $\lambda x : T . t$)

- Conversion relation
 - Check if types are β-equivalent
 - All annotations erased from terms
Equality types

- $t \simeq t'$ means t is β-equivalent to t'
- Term constructs for equational reasoning
 - For $\epsilon \ t \leftarrow t_1 \simeq t_2$, head-normalize t_1 and t_2 and check against t
 - For $\epsilon \ t \Rightarrow$, synthesize $t_1 \simeq t_2$ from t and head-normalize the sides
 - For $\rho \ t \leftarrow t' \leftarrow T$, synthesize $t_1 \simeq t_2$ from t and rewrite t_1 to t_2 in T before checking t'
 - For $\rho \ t \leftarrow t' \Rightarrow$, synthesize $t_1 \simeq t_2$ from t and T from t', then rewrite t_1 to t_2 in T
 - ...
 - $\delta \ t \leftarrow T$ succeeds if t synthesizes an obviously impossible equation
- Head normalization seems helpful for controlling reduction
A couple higher-order examples

1. Closedness preservation
 1. Define untyped λ-terms with free variables
 2. Define β-reduction
 3. Prove that reduction cannot introduce a free variable

2. Type preservation for STLC
 1. Define annotated terms, reduction
 2. Define typing algorithm
 3. Prove preservation
Cedille in action
Conclusion

- Cedille implementation of Calc. of Dep. Lambda Eliminations
 - Top-level datatype definitions with ctor-constrained rec. types
 - Emacs mode with structured editing
 - Equality types and rewriting

- Next direction: exploring higher-order encodings
 - Cedille is first dependent type theory supporting these
 - Could greatly simplify meta-programming/-proving
 - Uncharted territory...
 - Non-dependent encodings (F_ω)
 - Dependent ones ($\nu X : \kappa | \Theta. T$)
 - Computing types from terms
 - Algorithmic definitions
Conclusion

- Cedille implementation of Calc. of Dep. Lambda Eliminations
 - Top-level datatype definitions with ctor-constrained rec. types
 - Emacs mode with structured editing
 - Equality types and rewriting

- Next direction: exploring higher-order encodings
 - Cedille is first dependent type theory supporting these
 - Could greatly simplify meta-programming/-proving
 - Uncharted territory...
 - Non-dependent encodings (F_ω)
 - Dependent ones ($\nu X : \kappa | \Theta. T$)
 - Computing types from terms
 - Algorithmic definitions

Thank you!