
Programming and Proving with Dependently
Typed Lambda Encodings

Aaron Stump
Computer Science

The University of Iowa
Iowa City, Iowa



Type theory based on lambda encodings

Streamline the type theory
▸ All data are lambda-encoded
▸ No primitive constructors, pattern-matching
▸ Simpler meta-theory for the type theory

Expand its range with higher-order encodings
▸ Inductive datatypes require (strict) positivity in Coq/Agda
▸ With lambda-encodings, can go negative!

trm t ∶∶= x ∣ t t ′ ∣ λx .t

encoded as

trm = ∀X ∶ ⋆. (X → X → X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

app

→ ((X → X) → X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

lam

→ X

▸ May enable simpler meta-theory for object languages
▸ New range of tools to apply



Calculus of Dependent Lambda Eliminations (CDLE)

Like Calculus of Constructions plus
▸ functions with erased arguments (specificational, type is ∀x ∶ T .T ′)
▸ constructor-constrained recursive types νX ∶ κ ∣Θ. T
▸ lifting operator ↑L t

Semantics for types, consistency proof
Realizability-inspired type assignment rules

Γ ⊢ t ∶ T Γ ⊢ t ∶ [t/x]T ′

Γ ⊢ t ∶ ιx ∶T .T ′

Γ ⊢ t ′ ∶ T t =β t ′

Γ ⊢ t ∶ T

Problem: how to implement?



From CDLE to Cedille

First attempt: evidential typing Γ ⊢ e ∶∶ t ∶ T
Unworkably painful!

Insight: problematic rules used mainly for kinding ν-types
Special-case treatment of those
Dependent intersection types ιx ∶ T .T ′ completely hidden
Cedille implementation

▸ New (wrote over winter break)
▸ Around 2800 lines of Agda
▸ 180-line grammar
▸ around 300 lines of elisp



Datatypes in Cedille
Can always use definitions as in System Fω

CNat ⇐ ⋆ = ∀ X : ⋆ . (X → X) → X → X .

▸ For these you get lifting
▸ But no dependent eliminations/induction
▸ Can be negative
▸ Church-encoding only

Can declare top-level recursive types

rec Nat | S : Nat → Nat , Z : Nat =
∀ P : Nat → ⋆ .

(Π n : Nat . P n → P (S n)) → P Z → P self
with

S = λ n . Λ P . λ s . λ z . s n (n · P s z) ,
Z = Λ P . λ s . λ z . z.

▸ Lifting, dependent eliminations
▸ Must be positive-recursive
▸ All encodings supported (Church, Parigot, others)



Recursive types in Cedille

rec Nat | S : Nat → Nat , Z : Nat =
∀ P : Nat → ⋆ .
(Π n : Nat . P n → P (S n)) → P Z → P self

with
S = λ n . Λ P . λ s . λ z . s n (n · P s z) ,
Z = Λ P . λ s . λ z . z.

self is implicitly ι-bound
First declare constructors
Then define them
For definition x = t , type-check t under assumption x = t
Afterwards, ι-type instantiated immediately on use



Rule induction

Not all inductions are dependent eliminations(!)
▸ Dependent elimination with x proves P x
▸ If P does not depend on x , this is overkill

PL meta-theory mostly uses rule induction

Theorem (Type Preservation)
If Γ ⊢ t ∶ T and t ; t ′ then Γ ⊢ t ′ ∶ T .

Can Church-encode the derivations
But if you need inversion, should use Parigot



Emacs mode

Cedille has an emacs mode for editing Cedille files
Based on a generic structured-editing mode by Carl Olson

Emacs mode Backend

nat.ced

spans

A span is [label,start-pos,end-pos,attributes]
Spans communicated in JSON
Cedille sends all type information, in span attributes
Monadic style for writing the backend (type checker)



Type checking

Terms are annotated
▸ Λx ∶ κ.t for type abstraction
▸ t ⋅ T for type instantiation
▸ Λx ∶ T .t for erased-term abstraction
▸ t − t ′ for erased-term application

Use local type inference
▸ Checking t ⇐ T
▸ Synthesizing t ⇒ T
▸ Can drop some annotations (λx .t instead of λx ∶ T .t)

Conversion relation
▸ Check if types are β-equivalent
▸ All annotations erased from terms



Equality types

t ≃ t ′ means t is β-equivalent to t ′

Term constructs for equational reasoning
▸ For ε t ⇐ t1 ≃ t2, head-normalize t1 and t2 and check against t
▸ For ε t ⇒, synthesize t1 ≃ t2 from t and head-normalize the sides
▸ For ρ t − t ′ ⇐ T , synthesize t1 ≃ t2 from t and rewrite t1 to t2 in T

before checking t ′
▸ For ρ t − t ′ ⇒, synthesize t1 ≃ t2 from t and T from t ′, then rewrite

t1 to t2 in T
▸ ⋯
▸ δ t ⇐ T succeeds if t synthesizes an obviously impossible equation

Head normalization seems helpful for controlling reduction



A couple higher-order examples

1 Closedness preservation
1 Define untyped λ-terms with free variables
2 Define β-reduction
3 Prove that reduction cannot introduce a free variable

2 Type preservation for STLC
1 Define annotated terms, reduction
2 Define typing algorithm
3 Prove preservation



Cedille in action



Conclusion

Cedille implementation of Calc. of Dep. Lambda Eliminations
▸ Top-level datatype definitions with ctor-constrained rec. types
▸ Emacs mode with structured editing
▸ Equality types and rewriting

Next direction: exploring higher-order encodings
▸ Cedille is first dependent type theory supporting these
▸ Could greatly simplify meta-programming/-proving
▸ Uncharted territory...

☀ Non-dependent encodings (Fω)
☀ Dependent ones (νX ∶ κ ∣Θ.T )
☀ Computing types from terms
☀ Algorithmic definitions

Thank you!



Conclusion

Cedille implementation of Calc. of Dep. Lambda Eliminations
▸ Top-level datatype definitions with ctor-constrained rec. types
▸ Emacs mode with structured editing
▸ Equality types and rewriting

Next direction: exploring higher-order encodings
▸ Cedille is first dependent type theory supporting these
▸ Could greatly simplify meta-programming/-proving
▸ Uncharted territory...

☀ Non-dependent encodings (Fω)
☀ Dependent ones (νX ∶ κ ∣Θ.T )
☀ Computing types from terms
☀ Algorithmic definitions

Thank you!


