Programming and Proving with Dependently Typed Lambda Encodings

Aaron Stump Computer Science The University of Iowa Iowa City, Iowa

Type theory based on lambda encodings

- Streamline the type theory
 - All data are lambda-encoded
 - No primitive constructors, pattern-matching
 - Simpler meta-theory for the type theory
- Expand its range with higher-order encodings
 - Inductive datatypes require (strict) positivity in Coq/Agda
 - With lambda-encodings, can go negative!

- May enable simpler meta-theory for object languages
- New range of tools to apply

Calculus of Dependent Lambda Eliminations (CDLE)

- Like Calculus of Constructions plus
 - functions with erased arguments (specificational, type is $\forall x : T.T'$)
 - constructor-constrained recursive types $\nu X : \kappa | \Theta$. T
 - lifting operator $\uparrow_L t$
- Semantics for types, consistency proof
- Realizability-inspired type assignment rules

$$\frac{\Gamma \vdash t: T \quad \Gamma \vdash t: [t/x]T'}{\Gamma \vdash t: \iota x: T. T'}$$

$$\frac{\Gamma \vdash t': T \quad t =_{\beta} t'}{\Gamma \vdash t: T}$$

Problem: how to implement?

From CDLE to Cedille

First attempt: evidential typing Γ ⊢ e :: t : T Unworkably painful!

- Insight: problematic rules used mainly for kinding ν-types
- Special-case treatment of those
- Dependent intersection types $\iota x : T.T'$ completely hidden
- Cedille implementation
 - New (wrote over winter break)
 - Around 2800 lines of Agda
 - 180-line grammar
 - around 300 lines of elisp

Datatypes in Cedille

Can always use definitions as in System F_ω

 $\mathsf{CNat} \ \Leftarrow \ \star \ = \ \forall \ \mathsf{X} \ : \ \star \ . \ (\mathsf{X} \ \to \ \mathsf{X}) \ \to \ \mathsf{X} \ \to \ \mathsf{X} \ .$

- For these you get lifting
- But no dependent eliminations/induction
- Can be negative
- Church-encoding only

Can declare top-level recursive types

```
rec Nat | S : Nat \rightarrow Nat , Z : Nat =

\forall P : Nat \rightarrow \star.

(\Pi n : Nat . P n \rightarrow P (S n)) \rightarrow P Z \rightarrow P self

with

S = \lambda n . \Lambda P . \lambda s . \lambda z . s n (n \cdot P s z) ,

Z = \Lambda P . \lambda s . \lambda z . z.
```

- Lifting, dependent eliminations
- Must be positive-recursive
- All encodings supported (Church, Parigot, others)

Recursive types in Cedille

```
rec Nat | S : Nat \rightarrow Nat , Z : Nat =

\forall P : Nat \rightarrow \star.

(\Pi n : Nat . P n \rightarrow P (S n)) \rightarrow P Z \rightarrow P self

with

S = \lambda n . \Lambda P . \lambda s . \lambda z . s n (n · P s z) ,

Z = \Lambda P . \lambda s . \lambda z . z.
```

- self is implicitly *i*-bound
- First declare constructors
- Then define them
- For definition x = t, type-check t under assumption x = t
- Afterwards, *i*-type instantiated immediately on use

Rule induction

Not all inductions are dependent eliminations(!)

- Dependent elimination with x proves P x
- If P does not depend on x, this is overkill
- PL meta-theory mostly uses rule induction

Theorem (Type Preservation)

If $\Gamma \vdash t : T$ and $t \rightsquigarrow t'$ then $\Gamma \vdash t' : T$.

- Can Church-encode the derivations
- But if you need inversion, should use Parigot

Emacs mode

- Cedille has an emacs mode for editing Cedille files
- Based on a generic structured-editing mode by Carl Olson

- A span is [label, start-pos, end-pos, attributes]
- Spans communicated in JSON
- Cedille sends <u>all</u> type information, in span attributes
- Monadic style for writing the backend (type checker)

Type checking

• Terms are annotated

- $\Lambda x : \kappa . t$ for type abstraction
- t · T for type instantiation
- $\Lambda x : T.t$ for erased-term abstraction
- t t' for erased-term application
- Use local type inference
 - Checking $t \leftarrow T$
 - Synthesizing $t \Rightarrow T$
 - Can drop some annotations $(\lambda x.t \text{ instead of } \lambda x : T.t)$
- Conversion relation
 - Check if types are β -equivalent
 - All annotations erased from terms

Equality types

- $t \simeq t'$ means t is β -equivalent to t'
- Term constructs for equational reasoning
 - For ϵ $t \leftarrow t_1 \simeq t_2$, head-normalize t_1 and t_2 and check against t
 - For ϵ *t* \Rightarrow , synthesize $t_1 \simeq t_2$ from *t* and head-normalize the sides
 - For ρ t − t' ⇐ T, synthesize t₁ ≃ t₂ from t and rewrite t₁ to t₂ in T before checking t'
 - For $\rho t t' \Rightarrow$, synthesize $t_1 \simeq t_2$ from t and T from t', then rewrite t_1 to t_2 in T
 - <u>ه</u> ...
 - $\delta t \leftarrow T$ succeeds if t synthesizes an obviously impossible equation
- Head normalization seems helpful for controlling reduction

A couple higher-order examples

Closedness preservation

- O Define untyped λ-terms with free variables
- **2** Define β -reduction
- Prove that reduction cannot introduce a free variable
- Output State of the state of
 - Define annotated terms, reduction
 - 2 Define typing algorithm
 - O Prove preservation

Cedille in action

Conclusion

- Cedille implementation of Calc. of Dep. Lambda Eliminations
 - Top-level datatype definitions with ctor-constrained rec. types
 - Emacs mode with structured editing
 - Equality types and rewriting
- Next direction: exploring higher-order encodings
 - Cedille is first dependent type theory supporting these
 - Could greatly simplify meta-programming/-proving
 - Uncharted territory...
 - ★ Non-dependent encodings (F_{ω})
 - **★** Dependent ones $(\nu X : \kappa | \Theta. T)$
 - ★ Computing types from terms
 - ★ Algorithmic definitions

Conclusion

- Cedille implementation of Calc. of Dep. Lambda Eliminations
 - Top-level datatype definitions with ctor-constrained rec. types
 - Emacs mode with structured editing
 - Equality types and rewriting
- Next direction: exploring higher-order encodings
 - Cedille is first dependent type theory supporting these
 - Could greatly simplify meta-programming/-proving
 - Uncharted territory...
 - ★ Non-dependent encodings (F_{ω})
 - **★** Dependent ones $(\nu X : \kappa | \Theta. T)$
 - ★ Computing types from terms
 - ★ Algorithmic definitions

Thank you!