Validated Construction of
Congruence Closures

Aaron Stump

Computer Science and Engineering
Washington University
St. Louis, Missouri, USA

Disproving ‘05

Aaron Stump Validated Construction of CCs Disproving '05

Congruence Closure Algorithms

@ Input: set E of equalities between ground terms

@ Output: (finite representation of) least congruence relation
extending E

e Eg.
IfE ={a=Db,a=c,f(a)=d},
then congruence should include (f(f(c)),f(d)).
@ Key ingredient in testing satisfiability of g.f. EUF formulas.

@ EUF heavily used in verification.

Aaron Stump Validated Construction of CCs Disproving '05

Congruence Closure as Ground Completion

@ Congruence closure can be viewed as ground completion
[Bachmair Tiwari 2000, Kapur 1997]
@ Input: set E of equalities between ground terms
@ Output: convergent rewrite system R such that =g
conservatively extends =g
e Eg.
E={a=b,a=c,f(a)=d}
R={a—b,b—c,f(c)—d}
and then f(f(c)) |r f(d)
@ To test satisfiability of conjunction of literals

» Build congruence closure of equations.
» Test each disequation by putting Ihs and rhs in normal form.

Aaron Stump Validated Construction of CCs Disproving '05

Validated Results from Congruence Closure

@ CC algorithms (usually!) proved correct on paper.
@ Bugs still possible in implementation.

@ Raise confidence in results by emitting evidence:

» For unsatisfiability, return a proof.
» For satisfiability, return a model.

@ Take the convergent rewrite systems as models.

Aaron Stump Validated Construction of CCs Disproving '05

Evidence-Producing = Partially Verified

Research Agenda

Move towards verified software by statically checking that
evidence produced will always be well-formed.

@ Type checking for evidence-manipulating code.
@ Evidence from ok run will check.

@ Advertisement: proposed IJCAR/FLoC workshop PLPV '06,
“Programming Languages meets Program Verification”

Aaron Stump Validated Construction of CCs Disproving '05

Validated Congruence Closure Algorithms

@ Previous work: validated proof production from CC [Klapper
Stump 2004].

@ Guarantee: ok run = proof will check.

@ Code written in our RSP1 dependently typed programming
language [Westbrook Stump Wehrman 2005].

@ The current work: validated model generation from CC.

Aaron Stump Validated Construction of CCs Disproving '05

Validated Model Generation from CC

@ Emit convergent rewrite system R as model for equations E.
@ Statically verify:

» R will be convergent
» =g Will conservatively extend =g
» R will satisfy the disequations (if reported so)

@ The implementation manipulates proofs of these properties.
@ Actually: proofs of sufficient conditions.
@ Emitted proofs can be independently checked.

@ Shostak’s algorithm, in Abstract Congruence Closure
framework.

Aaron Stump Validated Construction of CCs Disproving '05

Rest of the Talk: Implementation in RSP1

© Quick intro to RSP1

© The CC data structure

@ Simplification phase (rewriting)

© Extension phase (introduction of new constants)
@ Other phases still future work!

Aaron Stump Validated Construction of CCs Disproving '05

Dependently Typed Programming in RSP1

@ Small functional language with dependent types.

@ Like in ML: user-declared datatypes, pattern matching,
recursion.

@ Unlike: datatypes can be term-indexed.

@ Programmer can declare a datatype of proofs indexed by
the formula proved.

@ Instead of pf we have pf f , where f is the formula proved.
@ Type checking ensures proofs well-formed.

Aaron Stump Validated Construction of CCs Disproving '05

Terms and Equations

i otype;;
injconst :: c:const => i;;
apply :: n : nat => func n => ilist n => ij;

0 : type;;
equals i => i => o

const : type for new consts, involves a trick.

func n : type for functions of arity n.
ilist n : type for lists of terms of length.

Aaron Stump Validated Construction of CCs

Disproving '05

Datatype for CCs

Three components for a CC problem (in abstract CC
framework):

@ Equations still to process
@ C-rules ¢ — d, where c,d new constants
@ D-rules f(C) — d, where C,d new consts

@ We will maintain the invariant: no overlaps at all.

cc_t : type;;
mkcc :: olist => l:crlist => drlist | => cc_t;;

Aaron Stump Validated Construction of CCs

Disproving '05

Lists of C-Rules

crlist :: type;;

crn :: crlist;;

crc . c2:.const =>
cl.const =>
gtc c2 cl1 =>
l:crlist =>
const_apart c2 |
const_apart cl |
crlist;;

111
VvV Vv

gtc ¢c2 cl :c2 isbiggerthancl.
const_apart c2 | : c2 isnotonthe lhsof any rulein| .

Aaron Stump Validated Construction of CCs Disproving '05

Lists of D-Rules

f(c)—d
drlist :: crlist => type;;
drn :: lLcrlist => drlist I;;
drc :: n:nat =>
f:func n =>
cs:clist n =>
d:const =>
l:crlist =>
L:drlist | =>

A:const_apart d | =>
T:term_apart n f cs | L =>
As:const_list_apart n ¢cs | =>
drlist I;;

clist n : type for lists of consts of length n.

term_apart n f cs | L : type for proofs that f(cs) is not
on the lhs of L’s rules.

Aaron Stump Validated Construction of CCs Disproving '05

Note: the Intrinsic Style

@ To build lists of C-rules and lists of D-rules, proofs required.
@ Cannot build a CC which is not convergent.
@ Extrinsic style would keep proofs separate from data.

Aaron Stump Validated Construction of CCs Disproving '05

Simplification and Extension

@ Simplification rewrites terms using C- and D-rules.
@ Extension introduces new consts for non-const subterms.

@ How to guarantee freshness of consts?

» Associate numbers with consts.
» Keep numeric bounds on all rules.
» Code must manipulate proofs of boundedness.

Aaron Stump Validated Construction of CCs Disproving '05

Simplification

rec
simplify :: lcrlist =c>
e:olist =c>
L:drlist | =c>
bl:nat =c>

bound_crlist b1 | =c>

bound_drlist b1 | L =c>

g:{x:i, B:bound_term bl x} =c>

{yii,

D:provese (mkcc e | L) (equals g.x vy),
C:canonical y | L,

B:bound_term bl y} = ...

provese cc f :cc proves formulaf.
canonical y | L :y isin canoncial form.

Aaron Stump Validated Construction of CCs Disproving '05

Extension

rec

extend ::

l:crlist =c>

e:olist =c>

L:drlist | =c>

bl:nat =c>

bound_crlist bl | =c>

bound_drlist b1 | L =c>

g:{x : i, C:canonical x | L, D: bound_term bl x} =c>
{c:const,

z:nat,

aa:assoc_num z c,

b:nat,

gligte b bil,

g2:gt b z,

L2:drlist |,

B1:bound_crlist b I,

B2:bound_drlist b | L2,

dl:provescc (mkcc e | L) (mkcc e | L2),
d2:provescc (mkcc e | L2) (mkcc e | L),
d3:provese (mkcc e | L2) (equals g.x (injconst c)),
Al:const_apart c |,

A2:const_apart2 ¢ | L2} = ..

Aaron Stump Validated Construction of CCs

Disproving '05

Conservativity

Trick: make constants logically transparent:

const :: type;;

mkcanon :: i => nat => const;;
peSpecial :: ccicc_t => ti => nipat =>
provese cc

(equals t (injconst (mkcanon t n)));;

Aaron Stump Validated Construction of CCs Disproving '05

Conclusion

@ Work in progress validating model generation from CC.
@ Models are convergent rewrite systems.

@ Code builds proofs showing convergence, conservativity.
@ Type checking in RSP1 guarantees those properties.

@ Main future work: finish implementation.

Aaron Stump Validated Construction of CCs Disproving '05

