
Validated Construction of
Congruence Closures

Aaron Stump

Computer Science and Engineering
Washington University

St. Louis, Missouri, USA

Disproving ’05

Aaron Stump Validated Construction of CCs Disproving ’05



Congruence Closure Algorithms

Input: set E of equalities between ground terms

Output: (finite representation of) least congruence relation
extending E

E.g.
If E = {a = b, a = c, f (a) = d},
then congruence should include 〈f (f (c)), f (d)〉.

Key ingredient in testing satisfiability of q.f. EUF formulas.

EUF heavily used in verification.

Aaron Stump Validated Construction of CCs Disproving ’05



Congruence Closure as Ground Completion

Congruence closure can be viewed as ground completion
[Bachmair Tiwari 2000, Kapur 1997]

Input: set E of equalities between ground terms

Output: convergent rewrite system R such that =R

conservatively extends =E

E.g.
E = {a = b, a = c, f (a) = d}
R = {a → b, b → c, f (c) → d}
and then f (f (c)) ↓R f (d)

To test satisfiability of conjunction of literals
I Build congruence closure of equations.
I Test each disequation by putting lhs and rhs in normal form.

Aaron Stump Validated Construction of CCs Disproving ’05



Validated Results from Congruence Closure

CC algorithms (usually!) proved correct on paper.

Bugs still possible in implementation.
Raise confidence in results by emitting evidence:

I For unsatisfiability, return a proof.
I For satisfiability, return a model.

Take the convergent rewrite systems as models.

Aaron Stump Validated Construction of CCs Disproving ’05



Evidence-Producing ⇒ Partially Verified

Research Agenda
Move towards verified software by statically checking that
evidence produced will always be well-formed.

Type checking for evidence-manipulating code.

Evidence from ok run will check.

Advertisement: proposed IJCAR/FLoC workshop PLPV ’06,
“Programming Languages meets Program Verification”

Aaron Stump Validated Construction of CCs Disproving ’05



Validated Congruence Closure Algorithms

Previous work: validated proof production from CC [Klapper
Stump 2004].

Guarantee: ok run ⇒ proof will check.

Code written in our RSP1 dependently typed programming
language [Westbrook Stump Wehrman 2005].

The current work: validated model generation from CC.

Aaron Stump Validated Construction of CCs Disproving ’05



Validated Model Generation from CC

Emit convergent rewrite system R as model for equations E .
Statically verify:

I R will be convergent
I =R will conservatively extend =E
I R will satisfy the disequations (if reported so)

The implementation manipulates proofs of these properties.

Actually: proofs of sufficient conditions.

Emitted proofs can be independently checked.

Shostak’s algorithm, in Abstract Congruence Closure
framework.

Aaron Stump Validated Construction of CCs Disproving ’05



Rest of the Talk: Implementation in RSP1

1 Quick intro to RSP1
2 The CC data structure
3 Simplification phase (rewriting)
4 Extension phase (introduction of new constants)
5 Other phases still future work!

Aaron Stump Validated Construction of CCs Disproving ’05



Dependently Typed Programming in RSP1

Small functional language with dependent types.

Like in ML: user-declared datatypes, pattern matching,
recursion.

Unlike: datatypes can be term-indexed.

Programmer can declare a datatype of proofs indexed by
the formula proved.

Instead of pf we have pf f , where f is the formula proved.

Type checking ensures proofs well-formed.

Aaron Stump Validated Construction of CCs Disproving ’05



Terms and Equations

i :: type;;
injconst :: c:const => i;;
apply :: n : nat => func n => ilist n => i;;

o :: type;;
equals :: i => i => o;;

const : type for new consts, involves a trick.
func n : type for functions of arity n.
ilist n : type for lists of terms of length.

Aaron Stump Validated Construction of CCs Disproving ’05



Datatype for CCs

Three components for a CC problem (in abstract CC
framework):

Equations still to process

C-rules c → d , where c, d new constants

D-rules f (c̄) → d , where c̄, d new consts

We will maintain the invariant: no overlaps at all.

cc_t :: type;;
mkcc :: olist => l:crlist => drlist l => cc_t;;

Aaron Stump Validated Construction of CCs Disproving ’05



Lists of C-Rules

crlist :: type;;
crn :: crlist;;
crc :: c2:const =>

c1:const =>
gtc c2 c1 =>
l:crlist =>
const_apart c2 l =>
const_apart c1 l =>
crlist;;

gtc c2 c1 : c2 is bigger than c1 .
const_apart c2 l : c2 is not on the lhs of any rule in l .

Aaron Stump Validated Construction of CCs Disproving ’05



Lists of D-Rules
f (c̄) → d

drlist :: crlist => type;;
drn :: l:crlist => drlist l;;
drc :: n:nat =>

f:func n =>
cs:clist n =>
d:const =>
l:crlist =>
L:drlist l =>
A:const_apart d l =>
T:term_apart n f cs l L =>
As:const_list_apart n cs l =>
drlist l;;

clist n : type for lists of consts of length n.
term_apart n f cs l L : type for proofs that f(cs) is not
on the lhs of L’s rules.

Aaron Stump Validated Construction of CCs Disproving ’05



Note: the Intrinsic Style

To build lists of C-rules and lists of D-rules, proofs required.

Cannot build a CC which is not convergent.

Extrinsic style would keep proofs separate from data.

Aaron Stump Validated Construction of CCs Disproving ’05



Simplification and Extension

Simplification rewrites terms using C- and D-rules.

Extension introduces new consts for non-const subterms.
How to guarantee freshness of consts?

I Associate numbers with consts.
I Keep numeric bounds on all rules.
I Code must manipulate proofs of boundedness.

Aaron Stump Validated Construction of CCs Disproving ’05



Simplification

rec
simplify :: l:crlist =c>

e:olist =c>
L:drlist l =c>
b1:nat =c>
bound_crlist b1 l =c>
bound_drlist b1 l L =c>
q:{x:i, B:bound_term b1 x} =c>
{y:i,

D:provese (mkcc e l L) (equals q.x y),
C:canonical y l L,
B:bound_term b1 y} = ...

provese cc f : cc proves formula f .
canonical y l L : y is in canoncial form.

Aaron Stump Validated Construction of CCs Disproving ’05



Extension
rec
extend :: l:crlist =c>

e:olist =c>
L:drlist l =c>
b1:nat =c>
bound_crlist b1 l =c>
bound_drlist b1 l L =c>
q:{x : i, C:canonical x l L, D: bound_term b1 x} =c>
{c:const,

z:nat,
aa:assoc_num z c,
b:nat,
g1:gte b b1,
g2:gt b z,
L2:drlist l,
B1:bound_crlist b l,
B2:bound_drlist b l L2,
d1:provescc (mkcc e l L) (mkcc e l L2),
d2:provescc (mkcc e l L2) (mkcc e l L),
d3:provese (mkcc e l L2) (equals q.x (injconst c)),
A1:const_apart c l,
A2:const_apart2 c l L2} = ...

Aaron Stump Validated Construction of CCs Disproving ’05



Conservativity

Trick: make constants logically transparent:

const :: type;;
mkcanon :: i => nat => const;;
peSpecial :: cc:cc_t => t:i => n:nat =>

provese cc
(equals t (injconst (mkcanon t n)));;

Aaron Stump Validated Construction of CCs Disproving ’05



Conclusion

Work in progress validating model generation from CC.

Models are convergent rewrite systems.

Code builds proofs showing convergence, conservativity.

Type checking in RSP1 guarantees those properties.

Main future work: finish implementation.

Aaron Stump Validated Construction of CCs Disproving ’05


