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Congruence Closure Algorithms

Input: set E of equalities between ground terms

Output: (finite representation of) least congruence relation
extending E

E.g.
If E = {a = b, a = c, f (a) = d},
then congruence should include 〈f (f (c)), f (d)〉.

Key ingredient in testing satisfiability of q.f. EUF formulas.

EUF heavily used in verification.
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Congruence Closure as Ground Completion

Congruence closure can be viewed as ground completion
[Bachmair Tiwari 2000, Kapur 1997]

Input: set E of equalities between ground terms

Output: convergent rewrite system R such that =R

conservatively extends =E

E.g.
E = {a = b, a = c, f (a) = d}
R = {a → b, b → c, f (c) → d}
and then f (f (c)) ↓R f (d)

To test satisfiability of conjunction of literals
I Build congruence closure of equations.
I Test each disequation by putting lhs and rhs in normal form.
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Validated Results from Congruence Closure

CC algorithms (usually!) proved correct on paper.

Bugs still possible in implementation.
Raise confidence in results by emitting evidence:

I For unsatisfiability, return a proof.
I For satisfiability, return a model.

Take the convergent rewrite systems as models.
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Evidence-Producing ⇒ Partially Verified

Research Agenda
Move towards verified software by statically checking that
evidence produced will always be well-formed.

Type checking for evidence-manipulating code.

Evidence from ok run will check.

Advertisement: proposed IJCAR/FLoC workshop PLPV ’06,
“Programming Languages meets Program Verification”
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Validated Congruence Closure Algorithms

Previous work: validated proof production from CC [Klapper
Stump 2004].

Guarantee: ok run ⇒ proof will check.

Code written in our RSP1 dependently typed programming
language [Westbrook Stump Wehrman 2005].

The current work: validated model generation from CC.
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Validated Model Generation from CC

Emit convergent rewrite system R as model for equations E .
Statically verify:

I R will be convergent
I =R will conservatively extend =E
I R will satisfy the disequations (if reported so)

The implementation manipulates proofs of these properties.

Actually: proofs of sufficient conditions.

Emitted proofs can be independently checked.

Shostak’s algorithm, in Abstract Congruence Closure
framework.
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Rest of the Talk: Implementation in RSP1

1 Quick intro to RSP1
2 The CC data structure
3 Simplification phase (rewriting)
4 Extension phase (introduction of new constants)
5 Other phases still future work!
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Dependently Typed Programming in RSP1

Small functional language with dependent types.

Like in ML: user-declared datatypes, pattern matching,
recursion.

Unlike: datatypes can be term-indexed.

Programmer can declare a datatype of proofs indexed by
the formula proved.

Instead of pf we have pf f , where f is the formula proved.

Type checking ensures proofs well-formed.
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Terms and Equations

i :: type;;
injconst :: c:const => i;;
apply :: n : nat => func n => ilist n => i;;

o :: type;;
equals :: i => i => o;;

const : type for new consts, involves a trick.
func n : type for functions of arity n.
ilist n : type for lists of terms of length.
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Datatype for CCs

Three components for a CC problem (in abstract CC
framework):

Equations still to process

C-rules c → d , where c, d new constants

D-rules f (c̄) → d , where c̄, d new consts

We will maintain the invariant: no overlaps at all.

cc_t :: type;;
mkcc :: olist => l:crlist => drlist l => cc_t;;
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Lists of C-Rules

crlist :: type;;
crn :: crlist;;
crc :: c2:const =>

c1:const =>
gtc c2 c1 =>
l:crlist =>
const_apart c2 l =>
const_apart c1 l =>
crlist;;

gtc c2 c1 : c2 is bigger than c1 .
const_apart c2 l : c2 is not on the lhs of any rule in l .
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Lists of D-Rules
f (c̄) → d

drlist :: crlist => type;;
drn :: l:crlist => drlist l;;
drc :: n:nat =>

f:func n =>
cs:clist n =>
d:const =>
l:crlist =>
L:drlist l =>
A:const_apart d l =>
T:term_apart n f cs l L =>
As:const_list_apart n cs l =>
drlist l;;

clist n : type for lists of consts of length n.
term_apart n f cs l L : type for proofs that f(cs) is not
on the lhs of L’s rules.
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Note: the Intrinsic Style

To build lists of C-rules and lists of D-rules, proofs required.

Cannot build a CC which is not convergent.

Extrinsic style would keep proofs separate from data.
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Simplification and Extension

Simplification rewrites terms using C- and D-rules.

Extension introduces new consts for non-const subterms.
How to guarantee freshness of consts?

I Associate numbers with consts.
I Keep numeric bounds on all rules.
I Code must manipulate proofs of boundedness.
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Simplification

rec
simplify :: l:crlist =c>

e:olist =c>
L:drlist l =c>
b1:nat =c>
bound_crlist b1 l =c>
bound_drlist b1 l L =c>
q:{x:i, B:bound_term b1 x} =c>
{y:i,

D:provese (mkcc e l L) (equals q.x y),
C:canonical y l L,
B:bound_term b1 y} = ...

provese cc f : cc proves formula f .
canonical y l L : y is in canoncial form.
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Extension
rec
extend :: l:crlist =c>

e:olist =c>
L:drlist l =c>
b1:nat =c>
bound_crlist b1 l =c>
bound_drlist b1 l L =c>
q:{x : i, C:canonical x l L, D: bound_term b1 x} =c>
{c:const,

z:nat,
aa:assoc_num z c,
b:nat,
g1:gte b b1,
g2:gt b z,
L2:drlist l,
B1:bound_crlist b l,
B2:bound_drlist b l L2,
d1:provescc (mkcc e l L) (mkcc e l L2),
d2:provescc (mkcc e l L2) (mkcc e l L),
d3:provese (mkcc e l L2) (equals q.x (injconst c)),
A1:const_apart c l,
A2:const_apart2 c l L2} = ...
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Conservativity

Trick: make constants logically transparent:

const :: type;;
mkcanon :: i => nat => const;;
peSpecial :: cc:cc_t => t:i => n:nat =>

provese cc
(equals t (injconst (mkcanon t n)));;
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Conclusion

Work in progress validating model generation from CC.

Models are convergent rewrite systems.

Code builds proofs showing convergence, conservativity.

Type checking in RSP1 guarantees those properties.

Main future work: finish implementation.
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