StarExec

A Web Service for Evaluating
Logic Solvers

Aaron Stump
Geoff Sutcliffe
Cesare Tinelli

x*

Acknowledgments

Support
— The
— The University of lowa

Development team (past and present)

’

— Todd Elvers, Clifton Palmerm Vivek
Sardeshmukh, Skylar Stark, Ruoyu Zhang

— JJ Urich, Hugh Brown (sys admin)

* Background

* Many logic-solving subcommunities

— ASP, Confluence, CSP, MC, QBF, SAT, SMT,
Termination, TP,...

* Background

* Many logic-solving subcommunities

* They all benefit from infrastructure
— problem libraries
SATLib, SMT-LIB, TPTP, ...
— recurring competitions
CASC, HMC, SAT Race, SMT-COMP, ...

— execution services
SMT-EXEC, SystemOnTPTP, termexec, ...

— standards and utilities
DIMACS, EIGER, SMT-LIB, TPTP, ...

* Background

* Many logic-solving subcommunities
* They all benefit from infrastructure

that infrastructure
in each case can be

* Challenges

For solver users:

e What are the available solvers?

* Which solvers work best for my problem?

* Where can | run my experimental
evaluations

* Challenges

For solver implementers:

* How can | compare my solver with the
state of the art?

* How can | conveniently test my solver on
benchmark problems?

* Challenges

For community leaders:

 Where can | store my library of
benchmark problems?

* How can | run a periodic solver
competition?

* StarExec: Cross-Community
Service and Infrastructure

Main Idea: create single shared
infrastructure
across communities
for new communities
resources

for solver users

* StarkExec: Cross-Community
Service and Infrastructure

NSF funded project

* 5 NSF programs involved

e Fall 2011 to fall 2015

e $1.95M total funding

e Pls: Stump, Tinelli (lowa); Sutcliffe (Miami)
 Hardware hosted at lowa

* StarkExec: Cross-Community
Service and Infrastructure

Planned functionality
e ~200 processors, web service frontend

* Registered users can upload solvers,
benchmarks; run jobs; dowload results

* Community leaders control community
registration, run competitions, host
benchmark libraries

Current Status

formed
Daniel Le Berre (University of Artois)
Nikolaj Bjorner (Microsoft Research)
Ewen Denney (NASA Ames)
Aarti Gupta (NEC Labs)
lan Horrocks (Oxford University)
Giovambattista lanni (University of Calabria)
Johannes Waldmann (Leipzig University)

* Current Status

First Round of

e 32 dual processor quad-core compute nodes
* 3 head nodes for web service requests

e 5 software development nodes

e 2 mirrored network storage units (22TB)

e Offsite back up facility

* Primitives

e Benchmarks
e Solvers
* Jobs

e Users

Spaces

* Contain primitives and other spaces

* Communities

 Communities are special instances of
spaces

* All other spaces are descendants of
some community

* New community members
automatically get a private space

* Permissions

 Add and Remove
* For Spaces and Primitives

e Space Leaders may edit the
permissions of a space

* Community Leadership

* Approve new community members

* Provide benchmark validators and job
post processors

e Set community defaults on job
settings such as CPU time and post
Processors

x*

Benchmarks

Uploaded via a compressed archive

Can create a space structure mirroring the
directory structure

Benchmarks validated on upload by a
community benchmark processor

Benchmark processor can also provide
benchmarks with attributes, a series of
key value pairs

Solvers

* Each Solver must be submitted with at
least one configuration script

* Configurations tell StarExec how to run
the solver

—e.g.

* Running a Job

* Jobs are initiated from within spaces

* Users may change various settings
such as the post processor and the
CPU timeout value

* Users may then select the solver/
configuration pairs from their space

* Running a Job

* Currently, 3 main methods to select
the benchmarks you wish to run on

—Run on all benchmarks in the space
nierarchy rooted at your current space

—Run on all benchmarks in the space

—Run on selected benchmarks in the
space

* Running a Job

e Each job pair can be run through one of
the communities’ post processor to store
attributes in the database

 The entire job’s output can be
downloaded in a compressed archive

e A table of results can be viewed within the
web application

x*

System Design

StarExec runs on a Linux cluster with
RedHat 5.8

Head nodes to send off jobs
Worker nodes to execute jobs

22TB NetApp for general storage
Node disks for caching

x*

Software Technologies

Front end implemented with Java Server
Pages and Javascript/jQuery

Backend with Java and MYSQL database

Apache Tomcat as web server and servlet
container

Oracle Grid Engine to manage the
scheduling and the queues

* Communities on board

* TPTP

* SMT

* Termination
* ASP

* SAT

* Hardware — Control Nodes

e 3 DL380 Gen8 Admin Nodes
configured with:

— 2 Intel E5-2609 2.4 GHZ 4C Processors
— 128GB RAM

—2 HP 600GB 6G SAS 10K 2.5in SC ENT
HDD

* Hardware — Execution Nodes

e 32 HP SL230 Gen8 nodes each with:
— 2 Intel E5-2609 2.4GHz 4C Processors
— 128 GB RAM

—1 HP 1TB 6G SATA 7.2k 2.5in SC MDL
HDD

