StarExec
A Web Service for Evaluating Logic Solvers

Aaron Stump
Geoff Sutcliffe
Cesare Tinelli
Acknowledgments

Support

– The National Science Foundation
– The University of Iowa

Development team (past and present)

– Benton McCune, Tyler Jensen
– Todd Elvers, Clifton Palmerm Vivek Sardeshmukh, Skylar Stark, Ruoyu Zhang
– JJ Urich, Hugh Brown (sys admin)
Background

- Many logic-solving subcommunities
 - ASP, Confluence, CSP, MC, QBF, SAT, SMT, Termination, TP,...
Background

• Many logic-solving subcommunities
• They all benefit from infrastructure
 – problem libraries
 SATLib, SMT-LIB, TPTP, ...
 – recurring competitions
 CASC, HMC, SAT Race, SMT-COMP, ...
 – execution services
 SMT-EXEC, SystemOnTPTP, termexec, ...
 – standards and utilities
 DIMACS, EIGER, SMT-LIB, TPTP, ...
Background

- Many logic-solving subcommunities
- They all benefit from infrastructure
- Implementing that infrastructure independently in each case can be wasteful
Challenges

For solver users:

- What are the available solvers?
- Which solvers work best for my problem?
- Where can I run my experimental evaluations?
Challenges

For solver implementers:

• How can I compare my solver with the state of the art?

• How can I conveniently test my solver on benchmark problems?
Challenges

For *community leaders*:

- Where can I store my library of benchmark problems?
- How can I run a periodic solver competition?
- How can I build infrastructure for my community?
Main Idea: create single shared infrastructure

- Avoid duplicated effort across communities
- Reduce start-up costs for new communities
- Invest more resources in shared infrastructure
- Create a single destination for solver users
StarExec: Cross-Community Service and Infrastructure

NSF funded project

- 5 NSF programs involved
- Fall 2011 to fall 2015
- $1.95M total funding
- PIs: Stump, Tinelli (Iowa); Sutcliffe (Miami)
- Hardware hosted at Iowa
StarExec: Cross-Community Service and Infrastructure

Planned functionality

• ~200 processors, web service frontend
• Registered users can upload solvers, benchmarks; run jobs; download results
• Community leaders control community registration, run competitions, host benchmark libraries
Current Status

Advisor Committee formed

• Daniel Le Berre (University of Artois)
• Nikolaj Björner (Microsoft Research)
• Ewen Denney (NASA Ames)
• Aarti Gupta (NEC Labs)
• Ian Horrocks (Oxford University)
• Giovambattista Ianni (University of Calabria)
• Johannes Waldmann (Leipzig University)
Current Status

First Round of **hardware acquisition**

- 32 dual processor quad-core compute nodes
- 3 head nodes for web service requests
- 5 software development nodes
- 2 mirrored network storage units (22TB)
- Offsite back up facility
Primitives

• Benchmarks
• Solvers
• Jobs
• Users
Spaces

• Contain primitives and other spaces
Communities

- Communities are special instances of spaces.
- All other spaces are descendants of some community.
- New community members automatically get a private space.
Permissions

- Add and Remove
- For Spaces and Primitives
- *Space Leaders* may edit the permissions of a space
Community Leadership

- Approve new community members
- Provide benchmark validators and job post processors
- Set community defaults on job settings such as CPU time and post processors
Benchmarks

- Uploaded via a compressed archive
- Can create a space structure mirroring the directory structure
- Benchmarks validated on upload by a community benchmark processor
- Benchmark processor can also provide benchmarks with attributes, a series of key value pairs
Solvers

• Each Solver must be submitted with at least one configuration script
• Configurations tell StarExec how to run the solver
 – e.g.

```bash
#!/bin/bash
./z3 -smt2 $1
```
Running a Job

- Jobs are initiated from within spaces
- Users may change various settings such as the post processor and the CPU timeout value
- Users may then select the solver/configuration pairs from their space
Running a Job

• Currently, 3 main methods to select the benchmarks you wish to run on
 – Run on all benchmarks in the space hierarchy rooted at your current space
 – Run on all benchmarks in the space
 – Run on selected benchmarks in the space
Running a Job

- Each job pair can be run through one of the communities’ post processor to store attributes in the database
- The entire job’s output can be downloaded in a compressed archive
- A table of results can be viewed within the web application
System Design

- StarExec runs on a Linux cluster with RedHat 5.8
- Head nodes to send off jobs
- Worker nodes to execute jobs
- 22TB NetApp for general storage
- Node disks for caching
Software Technologies

• Front end implemented with Java Server Pages and Javascript/jQuery
• Backend with Java and MYSQL database
• Apache Tomcat as web server and servlet container
• Oracle Grid Engine to manage the scheduling and the queues
Communities on board

- TPTP
- SMT
- Termination
- ASP
- SAT
- ...

- Your community can join too!
Hardware – Control Nodes

• 3 DL380 Gen8 Admin Nodes configured with:
 – 2 Intel E5-2609 2.4 GHZ 4C Processors
 – 128GB RAM
 – 2 HP 600GB 6G SAS 10K 2.5in SC ENT HDD
Hardware – Execution Nodes

- 32 HP SL230 Gen8 nodes each with:
 - 2 Intel E5-2609 2.4GHz 4C Processors
 - 128 GB RAM
 - 1 HP 1TB 6G SATA 7.2k 2.5in SC MDL HDD