Implementing Reliable Linux Device Drivers in ATS

Rui Shi

Boston University

shearer@cs.bu.edu

Abstract

Contemporary software systems often provide mechanisms for ex-
tending functionalities, which imposes great safety concerns on the
well-being of critical infrastructures. ATS is a recently developed
language with its type system rooted in Applied Type System frame-
work (Xi 2004) which combines linear and dependent type theo-
ries for enforcing safe use of resources at low-level. In this paper,
we describe a framework for constructing reliable Linux device
drivers in ATS. Specifically, drivers are written and type checked
in ATS, then compiled and linked to kernel with safety guaran-
tee. Our preliminary experience shows that this approach can ef-
fectively enhance the reliability of device drivers and save the test-
ing/debugging time.

Categories and Subject Descriptors D.1.1 [PROGRAMMING
TECHNIQUES]: Applicative (Functional) Programming; D.4.5
[OPERATING SYSTEMS]: Reliability

General Terms Languages

Keywords Device Driver Programming, Applied Type System,
ATS

1. Introduction

Contemporary software systems such as operating systems and
web servers often provide mechanisms for extending functionali-
ties thus adapting the behavior of the systems. For instance, a de-
vice driver extends an operating system with capabilities of config-
uring and manipulating a particular hardware.

However, such extensions also introduce a large number of bugs
as well as security holes into the system. For instance, in Windows
XP, drivers account for 85% of recently reported failures. As shown
by Chou et al. (2001), device drivers have error rate up to three to
seven times higher than the rest of the kernel. Moreover, operating
system extensions are often loaded into the kernel. Any fault in
a kernel extension can corrupt the kernel data, causing the entire
system to crash. Also, it is well-known that traditional software
engineering approaches such as testing and debugging do not work
very well on extensions due to concurrency and nondeterminism in
the kernel.

In this paper, we focus on implementing more reliable device
drivers using type-based techniques. The primary goal is to ensure
the safe manipulation of various resources by extensions in the host

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLPV’07, October 5, 2007, Freiburg, Germany.

Copyright © 2007 ACM 978-1-59593-677-6/07/0010. . . $5.00

system. While our system is designed for device drivers, we believe
that our techniques can readily generalize to other kinds of exten-
sions. More specifically, we propose to implement device drivers
in ATS, and the type system of ATS is able to rule out a number
of safety violations (e.g. memory leak, buffer overflow, race con-
ditions, etc.) at compile time. Our approach is fundamentally dif-
ferent from previous systems that isolate drivers in a protection do-
main or extensively inserting run-time checks. In contrast, drivers
written in ATS is proved to be safe statically and neither hardware
support nor OS changes is needed. We design our system with the
following criterion:

¢ Fine-grained type-based resource manipulation: We use a
specification (proof) language to describe resources and enforce
resource usage protocols at compile time. For sophisticated re-
sources such as memory, our system is able to statically guar-
antee that no dangling pointers can ever be de-referenced, and
addresses out of an array’s bound will not be accessed at run-
time. Moreover, linear types can statically prevent leak of re-
sources (e.g. memory allocated by kmalloc), which is crucial
for the safety of critical infrastructures.

Graceful error handling: Kernel extensions deserve more
safety concerns than user-level applications especially on er-
ror handling. For instance, if a module exits silently without
properly releasing held resources upon some failure, the re-
sources will be leaked permanently, which may cause kernel
panic. In our system, driver developers are enforced to check
the return code of each kernel API and handle possible errors
according to different error code. This is precisely the style of
defensive programming.

Safe concurrency: Concurrency is ubiquitous in operating sys-
tems. For instance, different applications may access a hard-
ware concurrently through a device driver which maintains
some shared hardware specific data. Therefore, developing reli-
able extensions must take into account the potential safety vio-
lations caused by concurrency such as race conditions. Specifi-
cally, we use locks to protect shared data and the types assigned
to locks can reflect the resource they are protecting.

Low run-time overhead: Unlike implementing device drivers
in type safe languages like Java, which relies on garbage col-
lection, our system will translate programs written in ATS to C
source programs and use native C compiler to compile the ob-
tained C code. Therefore, we expect the performance be com-
parable to drivers directly written in C. On the other hand, as we
take a pure static approach, the drivers implemented in our sys-
tem are expected to outperform the dynamic approaches that
rely on run-time isolation of protection domains (Swift et al.
2003), where kernel/extensions boundary crossings are costly.

The rest of the paper is organized as follows. In Section 2 we
give an overview of the main techniques of our approach. We
then present a case study on implementing a Linux device driver

ATS V“g““d Kernel
SHiBilaH Source GCC Extension
i Code (obj)

Wrappers

=

Kernel address space

Figure 1. Architecture: Implementing Linux device drivers in ATS

in Section 3. Lastly, we discuss some closely related work then
conclude. Due to the space constraint, it is impractical to present
theoretical justifications of our approach. Rather, we will rely on
informal but intuitive explanations. No prior familiarity of ATS is
required.

2. Our Approach

Platform We build our own kernel using Linux source distribu-
tion 2.6.15 and implement the system upon this kernel. All experi-
ments are conducted using this kernel.

Linux Device Driver Model Device drivers play a special role in
the Linux kernel. They make a particular piece of hardware respond
to a well-defined internal programming interface. User activities
are performed by means of a set of standardized calls (e.g. fread)
that are independent of the specific driver. Mapping those calls to
device-specific operations that act on real hardware is the role of
the device driver. Drivers can be built separately from the rest of the
kernel and plugged in at run-time when needed. For instance, the
following C code is to configure a network interface device driver
named snull with specific operations:

dev->open = snull_open;
dev->stop = snull_release;

where dev is a pointer held by the kernel which points to the device
specific data. The right hand side is a set of functions that are
implemented by the driver writer. By assigning each field of dev
a specific function, the kernel is thus able to configure the way to
manipulate the snull device. For instance, the request to open the
device is handled by the function pointed by dev->open, thus, the
function snull_open is executed.

Architecture The architecture of our system is presented in Fig-
ure 1. The basic steps are sketched as follows:

1. Define the basic data structures of the device driver in C. These
definitions usually include some device specific parameters and
constants.

2. Implement driver functionalities in ATS. In particular, views (a
form of specification) (Zhu and Xi 2005) and types are used to
describe resources and specify safety policies through pre/post
conditions of functions so that the type system is able to check
that the implementation does respect the safety property.

3. Type-check and compile all ATS source programs to corre-
sponding C source programs using the ATS compiler. The ob-

tained C source programs are guaranteed free of type errors and
resource misuses.

4. Compile all C programs (existing + obtained from ATS) to yield
an object module using GCC.

5. Link the compiled module to the kernel. Linux provides mech-
anisms to load modules to the kernel at run-time. For instance,
insmod is used to load a module into the kernel while rmmod is
used to remove a module from the kernel.

Kernel API Wrappers Note that our system mainly focuses on
the reliability of extensions (i.e. drivers) and it is apparently im-
practical to verify the entire kernel in ATS. We thus choose to trust
the existing kernel and assume the correctness of kernel APIs. We
believe this assumption is reasonable because the majority of ker-
nel failures are due to extensions instead of the kernel itself. In
practice, kernel APIs can be ascribed ATS types that more pre-
cisely capture the invariants of C functions. For instance, in Linux,
copy_from_user is a function used to move data across the protec-
tion domain from the user space to the kernel space. In order for
copy_from_user to be used safely, programmer must follow cer-
tain safety requirements. However, C type system can perform little
static or dynamic checking on the use of copy_from_user. In ATS,
we can build a wrapper for this function and assign it the following

type':
Vi : addr ¥y : addr Nm : nat.¥n : nat.¥Ne: nat(n > ¢) D
('bytes(lx, n), bytes(l,, m) | ptr(lx), ptr(l.), int(c))
— 3¢’ : nat.(c’ <c) Aint(c))

There are a number of safety properties enforced by the above type.
Two views bytes(lx,n) and bytes(l,,, m) serve as the precondi-
tions, which denote that there are two byte arrays residing at the
addresses® I, and [,, with size n and m, respectively. The syntax !
used in the above type means that the view is preserved across the
function call (otherwise view changes need to be specified as post
conditions). Note that the third argument (of type int(c)) is the ex-
pected number of bytes to transfer and the guard (n > ¢) clearly
states that the size of the destination buffer must be greater than the
specified number. The function returns the actual number of bytes
transferred which is of type int(c’) for some ¢’, where the assertion
(¢’ < c) states that the returned number is less than the expected
one. The counterpart of copy from_user, copyto_user, which trans-
fers data from the kernel space to the user space can be assigned a
similar type in ATS.

Note that assigning a foreign function a type in a type safe lan-
guage is usually referred as Foreign Function Interface (FFI). For
instance, both Java and Ocaml support FFI for effectively interfac-
ing with an unsafe language (efficiency) and reusing legacy code
(extensibility). However, in Java and Ocaml, the types assigned to
foreign functions are usually not expressive enough to capture low-
level invariants as in ATS (e.g. each argument of an FFI is assigned
the type value_t in Ocaml). In contrast, ATS programs can di-
rectly interface with foreign functions such as copy from_user and
take advantage of the type checker to ensure the safe use of for-
eign functions. To our best knowledge, this design has never been
explored or applied to extensions of mainstream OS before.

3. A Case Study of Scull Device Driver

We have prototyped a Linux device driver called scull (simple
character utility for loading localities) in the current implementa-
tion of ATS. scull is a running example used as a template for writ-
ing real drivers for real devices in the book by Rubini et al. (2005).

!'The syntax | is used for separating views from types.

21t is also possible for our system to statically differentiate the kernel space
pointers from the user space pointers. We omit this for simplicity.

Scull_device

J Saull_gset Scull_gset
Data [Hext N&TJ l
Ly |W (endof i)

—I Data —
L J» Quantum Quantum
T Quantum T Quantum
Quantum . Quantum

Quantum Quantum

Figure 2. The memory layout of a scull device

struct scull_gset {
void **data; /* pointer to a quantum set */
struct scull_gset *next; /* pointer to the next node */

}

struct scull_dev {
struct scull_gset *data; /* pointer to gset list */

int quantum; /* current quantum size */
int gset; /* the current gset size */
unsigned long size; /* amount of data stored */
struct semaphore sem; /* semaphore */

Figure 3. Data structures of scull device defined in C

In this section, we are to conduct a case study on how to implement
this device driver in ATS, demonstrating some interesting aspects.

Device Layout In nature, scull is a character driver that acts on
a memory area as though it were a device. Hence, as far as scull
is concerned, the word device can be used interchangeably with
the memory area used by scull. We visualize the layout of a scull
device in Figure 2. Each scull device maintains a linked list, each
node of which points to an array of gset intermediate pointers.
And each intermediate pointer points to an area of quantum bytes.
Note that gset and quantum are two positive integers stored in the
device control structure. In the following, we refer arrays holding
raw data as quantum (the gray shadowed boxes in Figure 2) and
those containing pointers to quantum as quantum sets (the white
boxes separated by lines in Figure 2 and we use gset for short),
respectively.

We present two C structure definitions of the scull device in
Figure 3. The scull_gset structure simply defines a singly-linked
list and the scull_dev structure maintains the device specific pa-
rameters such as the size of each quantum, the size of each gset as
well as a pointer to the head of a scull_gset list. Apparently, C pro-
vides little safety guarantee on manipulating the scull device due
to its inaccurate (type) specification. For instance, the field data is
assigned the type void** which can not reflect the fact that data
should point to an array of length gset whose value is stored in
scull_dev. In the following, we will show step by step how a vari-
ety of program invariants can be accurately specified by our speci-
fication language and ensured by the type checker statically.

To characterize the memory layout as well as capture program
invariants, we immediately encounter the needs for representing the
concept of bytes by defining a subset sort as follows:

sortdef byte = {a: int | 0 <= a, a < 256}

which basically states that bytes are integers between 0 and 255.
We can then use the following concrete syntax:

dataview bytes (int, addr) =

stadef word_size: int = 4

dataview gset_seg_v (int, addr, addr, int, int) =
| {1: addr, gs: nat, qt: nat}
gset_seg_v_null (0, 1, 1, gs, gt)
| {n: nat, fst: addr, next: addr, lst: addr,
data: addr, gs: nat, qt: nat | fst > null}
gset_seg_v_some (n + 1, fst, 1lst, gs, qt) of
(ptr(data) @ fst, ptr(mext) @ (fst + word_size),
gset_opt_v (data, gs, qt),
gset_seg_v (n, next, 1lst, gs, qt))

viewdef gset_list_v (n: int, 1: addr, gs: int, qt: int)
= gset_seg_v (n, 1, null, gs, qt)

viewdef scull_dev_v (self: addr, n: int, gs: int, qt: int)
= ’([data: addr] ’(ptr(data) @ self,
gset_v_list(n, data, gs, qt)),
int(qt) @ (self + word_size),
int(qs) @ (self + 2 * word_size),
[size: nat] int(size) @ (self + 3 * word_size))

Figure 4. View definitions of scull data structures in ATS

| {1: addr} bytes_none (0, 1)
| {n: nat, 1: addr, b: byte | 1 > null}
bytes_some (n + 1, 1) of
(byte(b) @ 1, bytes (n, 1 + 1))

to declare a recursive view constructor bytes. Given an integer n of
sort int and an address [of sort addr, the view bytes(n,[) states
that there are n bytes consecutively stored in memory starting from
the memory address [.

The attempt to describe a gquantum using a bytes view simply
fails due to the observation that each pointer in a gser does not
necessarily point to a quantum that is dynamically allocated. We
then adopt a notion called optional view to tackle this problem.
For instance, the following dataview is introduced to reflect the
dynamic nature of a quantum:

dataview bytes_opt_v (int, addr) =
| {q: nat} bytes_opt_v_none (q, null)
| {1: addr, q: nat | 1 > null}
bytes_opt_v_some (q, 1) of bytes (q, 1)

Given a natural number ¢ and a memory address [, the view
bytes_opt_v(q, !) denotes that either there is no memory allocated
if [is null or there is an array of ¢ bytes located at the address [if
[is not null. The purpose of an optional view is to force program-
mers to perform necessary run-time checks (a style of defensive
programming).

With the optional view, we can associate with the gset structure
a view as follows:

dataview gset_v (int, addr, int) =
| {1: addr, quantum: nat} gset_v_none (0, 1, quantum)
| {n: nat, self: addr, data: addr, quantum: nat
| self > null, bptr >= null}
gset_v_some (n + 1, self, quantum) of
(ptr(data) @ self, bytes_opt_v (quantum, data),
gset_v (n, self + word_size, quantum))

where word_size is a configurable static integer which denotes the
the size of a word on the target machine. For instance, we set
word_size to 4 in order to accommodate low-level reasoning on 32-
bit platforms. As a gset is dynamically allocated as well, we can
introduce an optional view gset_opt_v which is defined in a similar
manner as bytes_opt_v.

In order to characterize the memory layout of scull device struc-
tures defined in Figure 3, we present some view definitions in Fig-
ure 4 and give brief explanations for each of them:

scull_trim Vn : nat.Vl : addr.Ngs : nat.¥qt : nat.

(I > null) D (sculldev_v(n,l,gs, qt) | ptr(l)) — (3gs’ : nat.3qt’ : nat.scull.dev_v(0,1,qs’, qt') | Int)

scull _read

Vdev : addr.N¥n : nat.Vouf : addr.Nm : nat.Npos : addr.¥ct : nat.

(ct < n) D ('bytes(n, buf),int(m)@pos | ptr(dev), semaphore(scull_dev_v0(dev)), ptr(buf), int(ct), ptr(pos))

— Jc : int.(count_v(c, m, pos) | int(c))

Figure 5. Types assigned to functions manipulating the scull device in ATS

e The gset segment view, gset_seg_v(n, fst,lst, gs, qt), models
linked gset segments, where n is the number of segments in
the list, fst is the starting pointer, st is the ending pointer, gs
and gt are sizes of inclusive gsets and quantum, respectively.
Also, gset_seg_v_null models an empty segment as indicated
by the length 0 while gset_set_v_some is used to model non-
empty segments. The latter one states that there is a pointer
stored at the address fst which may point to a gset and another
pointer (of type ptr(next)) is stored at the address fst +
word_size which points to the rest of the segments (of view
gset_seg_v(n, next, lst, gs, qt)).

The view gset_list_v(n, fst, gs, qt) is a special instance of gset
segment view, which is defined as

gset_seg_v(n, fst,null, gs, qt)

Namely, the ending pointer is always null for a gset list.

The definition of scull_dev_v faithfully describes the memory
layout of the corresponding C structure. It should be straight-
forward to relate the view definition with the C declarations in
Figure 3. Note that the only difference is the treatment of the
semaphore. In C, a semaphore is used for acquiring exclusive
access of the scull device. However, there is no counterpart in
the view definitions. Note that C has the flexibility to define
the semaphore as a part of the scull device then uses just one
pointer to access the semaphore as well as the device. Ideally, a
semaphore should be used to guard the access to the scull device
and the type system can guarantee that the semaphore has to be
acquired before any access to the device. We therefore imple-
ment semaphore separately. A value of type semaphore(V") for
some view V' is a semaphore protecting the view V. We omit
the formal study of semaphore due to the space constraint.

We now give two examples to show how views defined so far
can be used to enforce safety properties for the scull driver. The
actual code is omitted for brevity.

Exampe: Device initialization scull_trim is an initialization func-
tion, which, given a scull device, walks through the gset list, safely
frees all the allocated memory in it and resets parameters. In prac-
tice, scull_trim is called when an application opens or closes the
scull device. The type assigned to scull_trim is shown in Figure 5.
The pre-condition scull_dev_v(n, [, gs, qt) requires that there is a
scull_dev structure stored at the address ! which points to a gset list
of length n with parameters set to ¢s and qt, respectively. The post-
condition scull_dev_v(0,1,qs’, qt') asserts that a new scull_dev
structure is stored at the same address [which points to a gset list
of length 0, thus, an empty list. Note that the parameters are also
reset after initialization.

Example: Reading from the scull device One important opera-
tion of character device drivers is read operation, which is called
when an application call fread to read the scull device. We are
to demonstrate how the read operation can be implemented in our
system with high safety guarantee. We first define the following
shorthand:

viewdef scull_dev_v0O (dev: addr) =
[n: nat, gs: nat, qt: nat] scull_dev_v (dev, n, gs, qt)

The type assigned to scull_read is given in Figure 5. We provide
some explanations as follows:

e The view !bytes(n, buf) states that a byte array with length n is
located at the starting address bu f. Also, this view is preserved
across the function call as indicated by !. ct is the expected
number of bytes to read. The guard ct > n specifies that ¢t must
not exceed the length of the buffer. pos represents the address
where the current file position (maintained by the Linux kernel)
is stored. So the view int(m)@pos indicates that there is some
natural number of type int(m) stored at the address pos.

A pointer of type ptr(dev) points to the scull device and a
semaphore of type semaphore(scull_dev_v0(dev)) is used to
protect the access to the scull device. The view for the scull
device can only be extracted by acquiring the semaphore first.

e count_v is a dataview constructor defined as follows:

dataview count_v (int, int, addr) =
| {m: nat, c: nat, 1: addr | 1 > null, c >= 0}
count_v_norm (c, m, 1) of (int(m+c) @ 1)
| {m: nat, 1: addr, c: int | 1 > null, c < 0}
count_v_err (c, m, 1) of (int(m) @ 1)

Intuitively, count_v is used to reflect very interesting invariants
of the return value of scull_read. Namely, if no error occurs,
the return value is the number actually read from the device.
In addition, the value stored at pos should be increased by the
number of exact bytes read. Otherwise, if some error occurs,
the return value is negative and the file position should be kept
unchanged. Note that the similar techniques are used frequently
for properly handling errors in system programming.

4. Related Work and Conclusion

‘We have so far seen many successful applications of functional pro-
gramming to compiler construction. However, it is still rare to find
convincing uses of functional programming in building operating
systems. In a recent study, it is demonstrated that Haskell (Peyton
Jones et al. 1999) can be used to implement an experimental OS
called House (Hallgren et al. 2005). There are also various attempts
to apply language-based techniques for enhancing the reliability of
the operating systems. For instance, Singularity (Fahndrich et al.
2006) is a recently developed experimental OS which, with the
primary goal of dependability, heavily employs many research ad-
vances such as software isolation and contract-based message pass-
ing.

In contrast, with dependent types and linear types as well as
support for theorem proving, ATS offers an effective approach to
reasoning about resource usage in practical programming. In this
paper, we describe some ongoing work on applying ATS to error-
prone device driver programming. The key insight is that ATS can
effectively describe resources as well as enforce many program
invariants.

One impediment is the type (proof) annotations burden imposed
on programmers, which seems inevitable if formal reasoning of
nontrivial safety properties is desired. Recently, we have been in-
vestigating techniques for automatically inferring a large portion
of proofs to reduce the burden. We hope these techniques could

greatly facilitate the construction of more reliable OS components
as well in the future.

References

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and
Dawson R. Engler. An empirical study of operating system

errors. In Symposium on Operating Systems Principles, pages
73-88, 2001.

Manuel Fihndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen Hunt, James R. Larus, and Steven Levi. Language sup-
port for fast and reliable message-based communication in sin-
gularity os. In EuroSys '06: Proceedings of the 2006 EuroSys
conference, pages 177-190, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-322-0.

Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tol-
mach. A principled approach to operating system construction in
haskell. SIGPLAN Not., 40(9):116-128, 2005. ISSN 0362-1340.

Simon Peyton Jones et al. Haskell 98 — A non-strict, purely
functional language. Available at
http://wuw.haskell.org/onlinereport/, February 1999.

Alessandro Rubini, Jonathan Corbet, and Greg Kroah-Hartman.
Linux Device Drivers, Third Edition. Oreilly and Associates Inc,
2005. ISBN 978-0596-00590-0.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improv-
ing the reliability of commodity operating systems. In SOSP
’03: Proceedings of the nineteenth ACM symposium on Oper-
ating systems principles, pages 207-222, New York, NY, USA,
2003. ACM Press.

Hongwei Xi. Applied Type System (extended abstract). In
post-workshop Proceedings of TYPES 2003, pages 394-408.
Springer-Verlag LNCS 3085, 2004.

Dengping Zhu and Hongwei Xi. Safe Programming with Point-
ers through Stateful Views. In Proceedings of the 7th Inter-
national Symposium on Practical Aspects of Declarative Lan-
guages, Long Beach, CA, January 2005. Springer-Verlag LNCS,
3350.

