Refined Typechecking with Stardust

Joshua Dunfield

Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

We present Stardust, an implementation of a type system for a
subset of ML with type refinements, intersection types, amdnu
types, enabling programmers to legibly specify certaiss#a of
program invariants that are verified at compile time. Thishis
first implementation of unrestricted intersection and anigpes
in a mainstream functional programming setting, as welltes t
first implementation of a system with both datasort and ingex
finements. The system—with the assistance of external rconist
solvers—supports integer, Boolean and dimensional indére-
ments; we apply botlvalue refinementgto check red-black tree
invariants) andnvaluable refinement&o check dimensional con-
sistency). While typechecking with intersection and urtigpes is
intrinsically complex, our experience so far suggests ithan be
practical in many instances.

Categories and Subject Descriptors  D.1.1 [Programming Techniqugs
Applicative (Functional) Programming; D.2.4&¢ftware Engi-
neering: Software/Program Verification

General Terms  languages, verification

1. Introduction

Compile-time typechecking in statically typed languageshsas

ML, Haskell, and Java catches many mistakes: “well typed pro
grams cannot ‘go wrong™L(Milner_1978). However, many pro-
grams have bugs (do not behave as intended) yet do not gctuall
“go wrong” in the operational semantics. Adding two floatpaint
values, where one represents a length and another a mass-is n
sensical yet permitted, as is building a red-black tree ifcivia

red node has a red child. While one can often change data repre
sentation to allow verification of such invariants in cortemal

type systems—hby wrapping the floating point value with a “elim
sion tag”, splitting the red-black tree datatype into tweiamts,
adding a “phantom” type argument, and so on—programs become
less efficient or, more importantly, less readable. Heavyhteap-
proaches based on theorem proving may avoid those defetts, b
are not worth the effort for many programming tasks. In tlzipqr,

we follow a different approach, in which we leave the progsam
and their underlying data structures alone, enriching tmytype
expressions with specifications based on
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¢ datasort refinement&lso called refinement types) (Davies and
Pfenning_2000;_Daviks 2005) aimbex refinementéso-called
limited dependent types) (Xi and Pfenning 1/999; Xi 1998) for
atomic properties of data structures;

e intersection typesind union typeshat combine properties by
conjunction and disjunction, respectively (Davies anchRieg
2000; Dunfield and Pfenning 2004).

Datasort and index refinements express properties of agebr
datatypes: in red-black trees, datasort refinements céinglissh
empty from non-empty trees, and red nodes from black nodes; i
teger index refinements encode tilack heightof trees, a natural
number. We also apply index refinements to base types: irtege
are indexed by themselves (a singleton type); floats arexéuty
the associated dimensional unit (e.g. meters squared).

Our setting is a subset of core Standard ML with datasortiand i
dex refinements, intersection types, union types, and tgaland
existential index quantification. The type system is clpdrsed
on previous workl(Dunfield and Pfennihg 2D03, 2004), though w
incorporate a further developmengt-normal typecheckingde-
scribed only briefly here, which makes the earlier work’shean-
atic union-elimination rule practical. This paper focusaghe type
system from a user’s perspective only; on the structureefythe-
checker; and on examples with datasort refinements, integex
refinements, and dimension index refinements.

Intersection types have rarely been exposed to users, gth t
significant exception of datasort refinement systems (Faeeand
Pfenning_1991; Davies and Pfenning 2000; Dunfield and Pfenni
2003,2004). True union types (that igtaggedunion types) are
rarer still; we draw heavily on our previous work as well as oo~
published worki(Dunfield 2007, Ch. 5) on let-normal typedieg.

Dimension (units of measure) checking is not a new idea, but
its encoding as an index domain is elegant and goes beyond the
old line of index refinement researchers that your index eefient
typechecker comes with any domain you want, as long as it’s
integers. It also provides a nice example of what weioafiluable
refinementswhich are not based on values.

The typechecker delegates much of the work of constraimt sol
ing in the index domains; the system presently has intesface
ICS and CVC Lite. As the power and range of such tools grows,
the typechecker’s power can grow with relatively littleoetf

Section[® describes our subset of Standard ML, called Star-
dustML. SectiofB3 explains our property type system. Sesfib
and[® formulate the central index domains: integers and mime
sions, presenting example programs in each. Selction hestthe
design of the typechecking system and Sedflon 8 discusspsrit
formance. Finally, we discuss related work and conclude.

2. The StardustML language

Except at the type level, StardustML is a subset of core (eadu
free) Standard MLL(Milner et &l. 1997). A StardustML program



sort:=id| ( sort) | sort(x sorp*
| {id : sort | proposition}
proposition:= index-exp| propositionand proposition
index-exp:=id| index-exp(+ | — | - --) index-exp| index-aexp
index-aexp:= # integer-literal ( index-exp) | integer-literal
| Cindex-exp(, index-exp™ )
texp::=id [( index-exp( , index-exp* )] | ( texp)
| texp— texp| texp* texp
| texp& texp| texpV texp
| { proposition} texp| [ proposition] texp
| -allid (, id)* : sort texp
| -existsid (, id)* : sort texp

Figure 1. Concrete syntax of index sorts, propositions, index ex-
pressions, and types in StardustML

consists of SML datatype declarations followed by a seqeierfic
blocks A block is a sequence of mutually recursive declarations
(eitherfun...and...and..., or just a singlefun or val bind-
ing). Each block may be preceded by a type annotation of the
form (x[ 1*). This annotation form appears as a comment
(*...*) to Standard ML compilers, allowing programs in the sub-
set language to be compiled normally (but see Seffidn 7.5).
StardustML does not include parametric polymorphism, mod-

ules, ref, user exception declarations, records, and a number of

forms of syntactic sugar such as clausal function defirstibfow-
ever, it does support all the interesting SML pattern forthalso
supports exceptions, though an exception datatype is gfieed
and cannot be changed by the user program.

We give the grammar for types and related constructs in Eigur
[@. The notationg...] and(...)* respectively denote zero-or-one
and zero-or-more repetitions. Nonterminals are writtemterm
Terminals with several lexemes, such as identifidrsappear in
bold italic, while keywords appear ibold.

3. The Stardust property type system

In addition to a subset of SML types, Stardust supports theét
of property types frond_Dunfield and Pfendirig (2004), as wsll a
guarded and asserting types (inspired_kiyl Xi (2004)).

3.1 Tridirectional typechecking

Stardust is based on tridirectional typechecking (Dunfiefd
Pfenning 2004), which is a form didirectional typecheckingrhe
type of an expression is varioustynthesizedr checked In this
particular formulation of bidirectionality, introducticforms such
asfn and tuples are classified elsecking formswhile elimination
forms such as; (ey) are classified asynthesizing formsType
annotations are needed precisely where a checking fornetsins
a synthesizing positionFor example, in the function application
ei (e2), the functione; is in a synthesizing position, while,

is in a checking position. Hence, the expressiimx = x)y
needs an annotation around the subexpression. In contrast,
map (fn x = x + 1) needs no annotation because thes in a
checking position. In practice, annotations seem to beaacept
for function declarations, where they are mandatory.

3.2 Atomic refinements

The basic level of properties is provided dgtasortandindexre-
finements. The former, also known as refinement types, aiitasim
to Refinement MLI(Davies 2005): an ML-style (that is, algébra
and inductive) datatype iefinedby a set of datasorts organized
into an inclusion hierarchy: for example, odd- and everyibfists,

or inductively defined bitstrings (1) with no leading zer¢std), or
(2) with no leading zeroes and also not the empty bitstrprg)(
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Our second variety of atomic refinement, the index refinepisnt
very similar to DML (X [1998). It is a markedly limited form of
dependent type, over a decidable constraint domain. A®egjuns
have types, indices haviedex sorts Following DML, the type
t with index i is written t(i); so, indexing lists by their length,
[5, 61 has typelist(2). In addition to ML datatypes, primitive
types such as integers and reals can be refined. As in DML, we
index integers by their values, sbhas typeint(3); the index
refinement serves as a singleton type. On the other hand,dsg in
the ML floating-point typeeal by adimensionThus,real (M ™ 2)
is the type of areas expressed in square meters.

Datasort and index refinements can be combined, as in the red-
black tree examples below.

3.3 Combining properties

Stardust provides several means of combining propertigesged
through atomic refinements. Intersection tygesxpress conjunc-
tion:v : A & B says thatv : A andv : B. Likewise, union
typesV express disjunctionv : C V D says thatv : C or
v : D (or possibly both). The typesall id (, id)* : sort texp
and-existsid (, id)* : sort texpquantify over indices. Several of
these are combined in the following ‘increment’ function loit
strings. Its type annotation says thaic is a function that, for all
natural numberden andvalue, takes bitstrings in standard form
(no leading zeroes) of lengthen and valuevalue and returns a
positive (in standard form, and nonzero) bitstring of thedength
and valueralue+ 1, the input value, or else/) a positive bitstring
of lengthlen + 1 and valuevalue + 1. Moreover, it also hask)
a similar property when given a bitstring in a possibly-riandard
form (bits).
(x[ val inc :
-all len, value : nat-
std(len, value) — (pos(len, value+1)
V pos(len+1l, value+l))
& Dbits(len, value)— (bits(len, value+1)
V bits(len+l, value+l)) 1%*)

fun inc n = casen of

E = 0One E

| Zero n = One n
| One n = Zero (inc n)

In defining the type of the built-in function, we useassertingand
guardedtypes. The asserting tydé] A is like A but affirms that
the index-level propositio? holds. Theguarded type{P} A is
equivalent toA provided thaf? holds, and useless otherwise (as a
“top” type would be). Thus, we can express thiaboth arguments
to * are nonnegative, the result is as well:

primitive val * :
(-all a,b:int- int(a) * int(b) — int(a * b))
& (-all a,b:int- {a >= 0 and b >= 0} int(a) * int(b)
— -exists ¢ : int- [c >= 0] int(c))
& (-all d1,d2:dim- real(dl) * real(d2) — real(dix*d2))

When the type is index-refined but the index expression is-omi
ted, as wherlist, int or real appears alone, the type is interpreted
in one of two ways. For most types, suchlas andint, an exis-
tential quantifier is addednt becomes-exists a : int- int(a).
However, this does not work well foreal: quantities of type
-exists d : dim- real(d) are quite useless since they cannot be
added, subtracted, or converted to a quantity of known déean
Therefore, forreal we define adefault index the special “no di-
mension” indeXYODIM. Data in existing code is thus interpreted as
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Figure 2. Subsort relation used in Figurk 3

dimensionless. In our investigations so fes! is the only type for
which a default index has seemed appropriate.
Precedence is as follows, from lowest to highest:

all {---} & vV

Thus,-all a : int- A — list(a) & B — list(a+1) is equivalent
to-all a:int- (A — list(a)) & (B — list(a + 1))).

—  exists [---] *

A program begins with datatype declarations, each of which
can begin with a bracketed refinement declaration comprised

of datacon declarations and an index sort specification, e.g.
datatype dict with nat. Datasorts are specified by a “kernel”
of the subsort relation—a set of pairs—of which the systekaga
the reflexive-transitive closure. For an example of bothhefse,
discussed in Sectidn 4.2, see Figldes 2[dAnd 3.

4. The integer index domain

The type system underlying Stardust s, like that of DIMLI(XD8),
parametric in the index domain. Stardust supports two mag@Ex
domains: integers and dimensions. The integer domainyitiesc
in this section, was implemented in DML; applying index refin
ments to dimension types, discussed in Sefjon 6, is novel.

We write int for the index sort of integers. The constants are
...,~1,0,1,.... The functions are, -, and*. The predicates are
<, <=, =, <>, >=, >, Nonlinear expressions such as* b are not
allowed, making the resulting constraints decidable.

The integer sort refines the base type This is a mismatch,
sinceint is afinite type of integers. However, SML integer arith-
metic operations must raise an exception on overflow, scethdts
of such operations will have the values their integer inslickaim
they do; ifx = 5 thenx + 1 = 6 as claimed, while ik = maxInt
thenx + 1 raises an exception—no harm done.

4.1 Natural numbers
The natural numbers are defined bgubset sort

indexsort nat = {a:int | a >= 0}

Stardust replaces subset sorts by guarded and assertiag: typ
-all a : nat-int(a) — -existsb : nat- int(b) becomesall a : int-
{a > 0} int(a) — -existsb : int- [b > 0] int(b). Other subset
sorts, such as strictly positive numbers, can be definedasipi

4.2 Example: Red-black tree insertion

Red-black trees are a good example of datasort and indexerefin
ments in combination. In this example, we fix the key type to be
int, and we have no associated record component, so that a
represents a set of integers rather than a map from integyecste
other type. Since our refinements will be concerned withrsthac-
ture of the trees rather than the integers contained—we willryot t
to guarantee an order invariant, for exampkhaving a set rather
than a map does not detract from the example.

L1n theory, one could guarantee order by indexing with theimmim and
maximum keys; in practice, this requires splitting disjiimes, which we
have not implemented. For a discussion,|see Duhiield (20076)C
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(x Based on an example of Rowan Davies and Frank Pfent)ing
(x[ datatype dict with nat
datasort dict :
badLeft < dict; badRoot < dict; badRight < dict;
rbt < badLeft; rbt < badRoot; rbt < badRight;

red < rbt; black < rbt
datacon Empty : black(0)
datacon Black : -all h : nat-

int * dict(h) * dict(h) — dict(h+1)
& int * rbt(h) * rbt(h) — black(h+1)
& int * badRoot(h) * rbt(h) — badLeft (h+1)
& int * rbt(h) * badRoot(h) — badRight (h+1)

datacon Red : -all h : nat-

int * dict(h) * dict(h) — dict(h)
& int * black(h) * black(h) — red(h)
& int * rbt(h) * black(h) — badRoot(h)

*

& int * black(h) * rbt(h) — badRoot(h) 1%)

datatype dict = Empty
| Black of int * dict * dict
| Red of int * dict * dict ;

(x restore_right (Black(e,l,r)= dict
where (1) Black(e,l,r) is ordered,
(2) Black(e,l,r) has black height h,
(3) color invariant may be violated at the root of r:
one of its children might be red.
and dict is a re-balanced red/black tree (satisfying all invariants)
and same black height k)
(x[ val restore_right :
-all h : nat- badRight(h) — rbt(h)
fun restore_right arg = casearg of
Black(e, Red 1lt, Red (rt as (_,Red _,.))) =
Red(e, Black 1lt, Black rt) (x re—colorx)
| Black(e, Red 1t, Red (rt as (_,_,Red _.))) =
Red(e, Black 1lt, Black rt) (x re—colorx)
| Black(e, 1, Red(re, Red(rle,rll,rlr), rr)) =
Black(rle, Red(e, 1, rll), Red(re,rlr,rr))
| Black(e, 1, Red(re, rl, rr asRed _)) =
Black(re, Red(e, 1, rl), rr)
| dict = dict

1%)

Figure 3. redblack-full.rml

datatype dict = Empty
| Black of int * dict * dict
| Red of int * dict * dict

Red-black trees must satisfy three invariants: (1) Foryewen-
empty node containing a kéy, every key in its left child is less
thank and every key in its right child is greater th&n (2) The
children of a red node are black (color invariant); (3) Evpath
from the root to a leaf has the same number of black nodegdcall
the black height of the tree. Any tree satisfying these iiaves is
balanced: the height of a tree containinghonEmpty nodes is at
most2log, (n + 1) (Cormen et &ll 1990, p. 264). Invariant 2 is
concerned with color, and the colors of a datasort form a lsmal
finite set, so it is a suitable candidate for a datasort refamm
Invariant 3 involves node color, but also black height, vahis a
natural number and therefore suitable for index refinement.

We begin with a datasorbt of “proper” red-blacktrees, which
satisfy invariants 2 and 3ed andblack are subsorts ofbt, rep-
resenting proper red-black trees with a root node of theifipdc
color.

But it is not quite enough to distinguish trees that sati$ifyhe
invariants ¢bt) from those that might not satisfy the color invariant
(dict); if we know something is alict we know nothing about
wherethe color violation occurs. So we add datasdrigRoot,
badLeft andbadRight for possible color violations at the root (the
root is red and some child is red), at the left child (the |éfiic



is red and one oits children is red), and at the right child. The
“good” datasortsbt, red, black are subsorts of the “bad” datasorts
badRoot, etc.: the “bad” datasorts represent not that the color
invariant is violated, but that inaybe violated. See Figufé 2.

To save space, we exclude thestore_left function (which
is symmetric torestore_right) and theinsert function; the
full example is available cittp://type-refinements.info/
stardust/plpv/redblack-full.rml.

4.2.1 Related work

Our combination of refinements for red-black tree inserisomew,
but the application of datasort and index refinements iddgily is
not. In fact, Figur€l3 is based on code from Davies’ thesisi@3a
2005, pp. 277-279). Moreover, the black height refinemenbts
new either I(Xil 1998, pp. 161-165). Xi also guarantees thercol
invariant, but by refining the tree datatype by the index pobd
int * int x int, representing the color, black height, and “red height”
respectively0 in the first component means red ahcheans black,
with an existential quantifier used if the color is not knowhe so-
called “red height” is not analogous to the black height,ibstead
counts theconsecutiveed nodes, and i8 if there are none, i.e. if
the color invariant is satisfied. The resulting types areveavk and
substantially less legible than ours.

Other type-level programming techniques have been apmied
check red-black tree invariants, relying on phantom anstertial
types (Kahts 2001). In our opinion, such approaches arereeoea
awkward than Xi's color-encoding, and require major chanige
the basic tree datatype and code.

4.3 Example: Red-black tree deletion

As just discussed, others have studied refinements for lestdt-b
tree insertion. Deletion is another matter. Though more ptbm
cated than insertion, deletion in an imperative style candmked
up easily from standard sources; purely functional detetian-
not (unlike insertion, it is not treated hy Okasaki (199&)pw-
ever, there are implementations, such astiéwB1ackNapFn Struc-
ture in the Standard ML of New Jersey library. We easily trans
lated RedBlackMapFn into StardustML. Finding appropriate re-
finements and invariants was more difficult, and not madesebyi
several lacunae in the original code, including two bugdilegato a
violated color invariant in the tree returned by tie ete function.
However, we eventually succeeded, resulting in an impleatiem
that satisfies invariants (1)—(3) (see the previous section

The key data structure is th@pper, which represents a tree
with a hole,backwards allowing easy traversal toward the tree’s
root. This corresponds to the series of rotations and cdlanges
that may be required after deleting a node. The functinptakes
a zipper and a tree and plugs the tree into the zipper's hdie. T
TOP constructor (Figurgl5, bottom) represents a zipper cangist
of just a hole; th&.EFTB andLEFTR constructors represent the edge
from a left child to @Black or Red node, respectively. THeIGHTB
andRIGHTR constructors are symmetric. The examples in Fiflire 4
should clarify the constructors’ meaning.

We refine zippers by a datasort and two integer indices.

4.3.1 Datasort refinement okzipper

The datasort encodes two properties: the color of the hpl’s
ent and the color of the root of the resultafp(z, t). If a zipper
has datasoittlackZipper, the root (of the zipper, that is, the parent
of the hole) is black and can therefore tolerate black treesedl

as red; thus, all valuesEFTB(...) and RIGHTB(...) have data-
sortblackZipper. If a zipperz has datasoBRzipper (for “Black
Root zipper”), the resulting zipped treep(z, t) will have a black
root and thus have datasdstack; all zippers having the form
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Figure 4. Examples of zippers

...LEFTB(_,_,TOP)...
have datasofBRzipper.
We also have a datasardpZipper, such thatTOP : topZipper.
Zipping TOP with a treet yields t itself; therefore, zippingrop
with a black tree yields ablack tree. This property of a zipper
yielding a black tree when it is zipped with a black tree istaegd
by topZipper.

The remaining datasortsppOrBR andblackBRzipper, can be
thought of as the union and intersection, respectivel{3Rfipper
andtopZipper:

or the form...RIGHTB(_, ,TOP)...)

zipper

topOrBR blackZipper

bt
BRzipper topZipper

\/

blackBRzipper

43.2

We refine theipper datatype by a pair of natural numbers. A zipper
z has index refinemerih, hz) precisely ifzip, when givenz and

a treet of black heighth (that is,t : rbt(h)), yields a tree of black
heighthz. Hence,TOP has typezipper(h,h) for all h, because
zip(TOP, t) yields justt.

Index refinement ofzipper

4.3.3 Overview of the algorithm

Our code is closely based on the SML/NJ library, which claims
to implement, in a functional style, the imperative pseundtecof
Cormen et &l.1(1990). At a very high level, without regard thoe
red-black invariants, deletion of kéyin the treet goes as follows:

1. Starting from the root of, find a node with kek.
2. Join the left/right childrem/b of the node containing kely:

i. Find the minimumx of b; this x is greater than all keys in
a, and less than all other keysitn

ii. Delete the node containing

iii. Replace the node containirigwith one containing, with
the samex and the nevb (with x deleted) as its children.

We can distinguish cases based on the color of the node nogai
x, the minimum key in the subtree rootedbat First note that since
x is the minimum, its node must have an empty left child.

2These cases dwt correspond to thgoinRed andjoinBlack functions,
whose names refer to the color of the node contaiking
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(x[
datatype dict with nat
datasort dict :
badLeft < dict; badRoot < dict; badRight < dict;
rbt < badlLeft; rbt < badRoot; rbt < badRight;
nonempty < rbt; black < rbt;
red < nonempty;
nonemptyBlack < nonempty; nonemptyBlack < black
black(0)
datacon Black : -all h : nat-
int * dict(h) * dict(h) — dict(h+1)
int * rbt(h) * rbt(h) — nonemptyBlack (h+1)
int * badRoot(h) * rbt(h) — badLeft(h+1)
int * rbt(h) * badRoot(h) — badRight (h+1)

-al h :

datacon Empty :

&
&
&

datacon Red : nat-

int * dict(h) * dict(h) — dict(h)
& int * black(h) * black(h) — red(h)
& int * rbt(h) * black(h) — badRoot(h)
& int * black(h) * rbt(h) — badRoot(h)

1%
datatype dict = Empty
| Black of int * dict * dict
| Red of int * dict * dict
(x[
(x z : zipper(h, hz) if zip(z, t) : rbt(hz), where t : rbt(h))
datatype zipper with nat * nat

datasort zipper :
topOrBR < zipper;
BRzipper < topOrBR;
topZipper < topOrBR; topZipper < blackZipper;
blackBRzipper < topZipper; blackBRzipper < BRzipper

blackZipper < zipper;

datacon TOP : -all h : nat- topZipper (h, h)

datacon LEFTB : -all h, hz : nat-
int*rbt (h) *zipper (h+1,hz) — blackZipper (h,hz)
& int*rbt(h)*topO0rBR(h+1,hz) — blackBRzipper (h,hz)

datacon RIGHTB : -all h, hz : nat-
rbt (h) *int*zipper (h+1,hz) — blackZipper (h,hz)
& rbt(h)*int*topOrBR(h+1,hz) — blackBRzipper (h,hz)

datacon LEFTR : -all h, hz : nat-
int*black(h)*blackZipper (h,hz) — =zipper (h,hz)
& intxblack(h)*blackBRzipper (h,hz) — BRzipper (h,hz)

datacon RIGHTR : -all h, hz : nat-
black(h)*int*blackZipper (h,hz) — zipper (h,hz)
& black(h)*int*blackBRzipper (h,hz) — BRzipper (h,hz)
1%)
datatype zipper = TOP
| LEFTB of int * dict * zipper
| LEFTR of int * dict * zipper
| RIGHTB of dict * int * zipper
| RIGHTR of dict * int * zipper ;

Figure 5. rbdelete.rml, part 1: datatypes

e If the node containing is red, its right child cannot beed
(color invariant), nor can it bBlack (its left child is empty—
black height0—so its right child must also have black height
0, but anyBlack-rooted tree has black height at ledstso the
right child must also be empty.

Deleting a red node does not change any black heights, so the

black height invariant is preserved; the only change neésled
to substitutex for k.

o If the node containing is black, its right child cannot bglack
(by similar reasoning to the red case). However, its riglitdch
could beRed(y, Empty, Empty), in which case we can just re-
placex with y—keeping the node containingblack—which
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preserves black height. The hard case is when both children
of the node containing are empty: merely deleting that node
means that its parent will have a left subtree of black hefight
and a right subtree of black heightwhich is inconsistent. This

is called ablack deficit We can try to fix it by callingobZip,
which moves up the tree towards the root, performing rota-
tions and color changes. While this process will alwaysdyiel
a valid subtree that satisfies the black height invariand @
course the color invariant), it may not actually “fix the d#fic

the resulting subtree may still have a black height that & on
less than before. If that occurs—signalleddnZip returning
(true, t)—we callbbZip again, continuing the rotations and
color changes upward past the node that used to cokt@nd
now containsc). Otherwise, all the invariants have been fixed,
and we need only repladewith x and callzip.

4.3.4 Thezip function

The index refinement (at the start of Fig[ite 6) is plain: aighat
yields a tree of black heightz when zipped with a tree of black
heighth, when zipped with such a tree, yields a tree of black height
hz. After all, we refined theziipper datatype with the behavior of
zip in mind.

The datasorts are less obvious. The first part of the intéogsec
expresses the fact that if the parent of the zipper’s holdaskb
(blackZipper) then replacing the hole with any valid treebt)
yields a valid tree. The second part says that if the parent of
the hole isnot known to be black, then only a black tree can
be substituted, because the parent might be red and we cannot
allow a color violation. The third part of the intersecticays that,
when ablackBRzipper—a zipper with a black node as the parent
of the hole and that, when zipped, yields a black-rooted-tsise
zipped with any tree, a black-rooted tree results. The fosays
that when either aopZipper (such asT0P) or a BRzipper (such
asRIGHTB(a, 2, TOP)) is zipped with a black tree¢, a black tree
results—if the zipper iT0P, because the result consists of jtist
which is black; if the zipper i8Rzipper, because the result has a
black root regardless of the color uf

4.3.5 ThebbZip function

bbZip is a recursive, zipper-based version of the pseudocode “RB-
DELETE-FIXuP” (Carmen et all. 1990, p. 274); the comments show
how the various case arms correspond to sections of psedeloco
We therefore focus on the type annotation (Fiddre 6). Eadhgba
the intersection shares index refinements; we will look atfittst,
which has the simplest datasorts. Given a zipper that wipggredi
with a tree of black heighih + 1 yields a tree of black heighitz,

and a tree of black height (one less thaih + 1, i.e. , with a “black
deficit”), bbZip returns either

e (true,t) wheret : rbt(hz — 1) (that is, avalid tree—with no
internal black height mismatches—but with a black heighg on
less than before), or

e (false,t) wheret : rbt(hz), a valid tree with the same black
heighthz as the original tree.

The second part of the intersection says that given a zipyr t
when zipped with any tree, yields a tree with a black root, the
resulting tree (whether of black heightz — 1 or hz) will have

a black root. The third part of the intersection says thaegia
zipper that is eitheTOP or aBRzipper, and a black-rooted tree, the
resulting tree must be black. This information is needednive
typecheckdelMin.

4.3.6 ThedelMin function

delMin(t, z) returns the minimum key (an integer)init also re-
turnst with the minimum removed. It callsbZip to fix internal



(x[ val zip : -all h, hz : nat-
blackZipper (h, hz) * rbt(h) — rbt(hz)
& zipper (h, hz) * black(h) — rbt(hz)
& blackBRzipper (h, hz) * rbt(h) — black(hz)
& topOrBR(h, hz) * black(h) — black(hz) 1%)

fun zip arg = casearg of

(TOP, t) = t
| (LEFTB (x, b, z as _), a) = =zip(z, Black(x, a, b))
| (RIGHTB(a, x, z as _), b) = zip(z, Black(x, a, b))
| (LEFTR (x, b, z), a) = zip(z, Red(x, a, b))
| (RIGHTR(a, x, z), b) = zip(z, Red(x, a, b))

(* bbZip propagates a black deficit up the tree until either ofpe t
* IS reached, or the deficit can be covered. It returns a boolean
* that is true if there is still a deficit and the zipped trep.

(x[ val bbZip : -all h,hz : nat-
zipper (h+1,hz)*rbt(h) — ((bool(true)*rbt(hz-1))

V' (bool(false)*rbt (hz)))

& BRzipper (h+1,hz)*rbt(h) — ((bool(true)*black(hz-1))
V (bool(false)*black(hz)))

& topOrBR (h+1,hz)*black(h) — ((bool(true)*black(hz-1))
V (bool(false)*black(hz)))

1)

fun bbZip arg = case arg of

(TOP, t) = (true, t)

| (LEFTB(x, Red(y,c,d), z), a) = (x1L—Blackx)
bbZip (LEFTR(x, ¢, LEFTB(y, 4, z)), a)

| (LEFTB(x, Black(w,Red(y,c,d),e), z), a) =
(x*3L—Black x)
(false, zip(z, Black(y,Black(x,a,c), Black(w,d,e))))
| (LEFTR(x, Black(w,Red(y,c,d),e),z), a) = (x3L—Red)
(false, zip(z, Red(y, Black(x,a,c), Black(w,d,e))))

| (LEFTB(x, Black(y,c,Red(w,d,e)),z), a) =
(x*4L—Black x)
(false, zip(z, Black(y,Black(x,a,c), Black(w,d,e))))
| (LEFTR(x, Black(y,c,Red(w,d,e)),z), a) = (x4L—Red)
(false, zip(z, Red(y, Black(x,a,c), Black(w,d,e))))

| (LEFTR(x, Black(y,c,d),z), a) = (*2L—Red)
(false, zip(z, Black(x, a, Red(y,c,d))))

| (LEFTB(x, Black(y,c,d),z), a) = (x2L—Black=x)
bbZip(z, Black(x, a, Red(y,c,d)))

| (RIGHTB(Red(y,c,d),x,z), b) = (x1R—Blackx)
bbZip(RIGHTR(d, x, RIGHTB(c,y,z)), b)

| (RIGHTB(Black(y,Red(w,c,d),e),x,z), b) =
(*3R—Black x)
(false, zip(z, Black(y,Black(w,c,d), Black(x,e,b))))
| (RIGHTR(Black(y,Red(w,c,d),e),x,z), b) = (x3R—Red)
(false, zip(z, Red(y, Black(w,c,d), Black(x,e,b))))

(* This 4R is correct-— unlike the buggy NJ library *)
| (RIGHTB(Black(y,c,Red(w,d,e)),x,z), b) =
(*4R—Black )
(false, zip(z, Black(w,Black(y,c,d), Black(x,e,b))))
| (RIGHTR(Black(y,c,Red(w,d,e)),x,z), b) = (x4R—Redk)
(false, zip(z, Red(w, Black(y,c,d), Black(x,e,b))))

| (RIGHTR(Black(y,c,d),x,z), b) = (*2R—Red)
(false, zip(z, Black(x, Red(y,c,d), b)))

| (RIGHTB(Black(y,c,d),x,z), b) = (*2R—Blackx)
bbZip(z, Black(x, Red(y,c,d), b))

Figure 6. rbdelete.rml, part 2zip, bbZip

black height mismatches, but lik®dZip it may be unable to main-
tain the black height of the entire tree, so likeZip it returns a
Boolean indicating whether there is still a black deficiteTdata-
sorts are needed fjpinRed, to make sure that the new children of
the red node are black.
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4.3.7 The functionsjoinRed and joinBlack

If one subtreed or b) is empty, we simply zip up the tree{Zip)
with the other subtree; we can drop the first paitefip’s result—
the flag indicating whether the black height has changed-atmse
the zipperz goes all the way to the original root passediédete,
which has no siblings.

Otherwise, we calbelMin, which returns a tree that may or
may not have a deficit. If the returned flag is false, there idefait
and we can zip up to the root. If the flag is true, there is a defici
and we calbbZip—again, throwing away the resulting flag.

We hand-inlinedjoinRed’s call to delMin to make the color
invariant work (if there is some refinement é¢1Min that does
the job, it was not obvious to us). We removed several imptessi
“inlined” case arms, so this only slightly lengthenpselinRed.

4.3.8 Thedelete function

delete and its helperdel simply search for the key to delete,
building a zipper, and cajjoinRed or joinBlack.

4.3.9 Library bugs

We found two clear bugs in the SML/NJ library; triggeringheit
results in a tree with a red child of a red parent: that is, thlerc
invariant is broken. These trees are still ordered, so bearsuc-
ceed or fail as usual, and the failure of the color invariaogsinot
seem to cause subsequent operations to produce disordeesd t
Hence, the only calamity caused is that operations will takger
than they should. SincRedBlackMapFn makes the exported tree
type opaque, client code cannot possibly detect the brakerit
ant. Thus, these bugs will not be found unless insertion atetidn
are time-critical and someone is so stubborn as to actualysi
tigate whether the operations are logarithmic. Moreoventime
testing is not very helpful: traversing a tree to verify theariant
is linear time, so adding the tests to every operation makeset
operations linear instead of logarithmic, defeating theppse of a
balanced tree. (We might dream up more clever tests thatheald
only constant overhead, but then we have to verify our cleass.)

The first bug is in SML/NJ’s “4R” case ibbZip; upon inspec-
tion, something is obviously wrong because it is not symimeédr
the “4L" case. We found this bug some time before we settled on
the present refinement sipper: we had only a datasort refinement
onzipper, but even that, combined with reading each case closely,
sufficed to lead us to this bug.

The second bug is ijoinRed; if delMin returns with its first
argument true, meaning that the result has a black defiat, th
original code call®bZip to fix the deficit; however, the tree passed
tobbZip includes a red node witl’ as a child, bub’ may be red,
leading to a color violation (which isot somehow fixed inside
bbZip). We found this second bug much later than the first: we
had settled on the index refinement fpper and a nearly-final
version of the datasort refinement. Once we became sussittiati
b’ might not always be black, we looked for an inputdelete
that would trigger the bug; we found one, confirming that ¢her
was a bug and not simply a case of our refinements being too.weak

5. Booleans

If we consider index predicates such:asto be index functions,
then a Boolean sort manifests itself immediately, as thgeaf
such functions. The Boolean sort can also indexbihe datatype.
Such an indexing scheme is handy for specifying the result of
certain functions. For example, we define the type of the ML
function< to be-all a,b : int- int(a) * int(b) — bool(a < b).

As implemented, the Boolean sort has none of the usual Boolea
operations such as conjunction (though that is alreadygdatte
constraint language).



(x[ val delMin : -all h, hz : nat-

nonempty (h) * blackZipper (h, hz)
— int * ((bool(false)*rbt(hz))
V (bool (true) *rbt (hz-1)))

& nonemptyBlack (h) * zipper(h, hz)
int * ((bool(false)x*rbt(hz))
V (bool (true)*rbt (hz-1)))

& nonempty (h) * blackBRzipper (h, hz)
int * ((bool(false)*black(hz))
V (bool (true)*black (hz-1)))

& nonemptyBlack (h) * BRzipper(h, hz)
int * ((bool(false)x*black(hz))

V (bool (true) *black (hz-1))) 1%)

fun delMin arg = casearg of
(Red(y, Empty, b), z) =
(y, (false
(+ i.e., no deficit, black height unchangey, zip(z,b)))

|  (Black(y, Empty, b), z) =
(+ This is the minimum; deleting it yields a black defiai).
(y, bbZip(z,b))

| (Black(y, a, b), z) = delMin(a, LEFTB(y, b, z))
|  (Red(y, a, b), z) = delMin(a, LEFTR(y, b, z))

(*[ val joinRed : -all h,hz:nat-

black (h)*black (h)*blackZipper (h, hz) — rbt
fun joinRed arg = casearg of
(Empty, Empty, z) = zip(z, Empty)
(a, Empty, z) = #2(bbZip(z, a))
(Empty, b, z) = #2(bbZip(z, b))
(a, Black(x,Empty,bb), z)=#2(bbZip(RIGHTR(a,x,z),bb))
(a, Black(y,aa,bb), z) =
let in case delMin(aa, LEFTB(y, bb, TOP)) of

(x, (needB as false, b’)) = zip(z, Red(x,a,b’))
| (x, (needB as true, b’)) =
#2(bbZip (RIGHTR(a,x,2), b))

1%)

end

(*[ val joinBlack : -all h,hz:nat-
rbt (h) *rbt (h) *zipper (h+1, hz) — rbt
fun joinBlack arg = case arg of

1%)

(a, Empty, z) = #2(bbZip(z, a))
| (Empty, b, z) = #2(bbZip(z, b))
| (a, b, 2) =

let in case delMin(b, TOP) of

(x, (needB as false, b’)) = zip(z, Black(x,a,b’))
| (x, (needB as true, b’)) =
#2(bbZip (RIGHTB(a,x,2z), b))

end
(x[ val delete : -all h : nat- rbt(h) — int — rbt 1x)
fun delete t key =

let

(x[ val del : -all h, hz : nat-

rbt (h) * blackZipper (h, hz) — rbt
& black(h) * zipper(h, hz) — rbt 1%)
fun del arg = casearg of
(Empty, z) = raise NotFound
| (Black(keyl, a, b), z) =
if key = keyl then joinBlack (a, b, z)
else if key < keyl then del (a, LEFTB(keyl, b, z))
else del (b, RIGHTB(a, keyl, z))
| (Red(keyl, a, b), z) =
if key = keyl then joinRed (a, b, z)
else if key < keyl then del (a, LEFTR(keyl, b, z))
else del (b, RIGHTR(a, keyl, z))
n
del(t, TOP)
end

Figure 7. rbdelete.rml, part 3delMin, joinRed, joinBlack,
delete
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6. Dimensions: an invaluable refinement

Dimensions are ubiquitous in physics and related disaglin
For example, the plausibility of engineering calculatiaa be
checked by seeing whether the dimension of the result isxhe e
pected one. If one concludes that the work done by a physical
process isx - (a1 + az) wherex is a distance andi;, a, are
masses, something is wrong. If, on the other hand, the csindiu
has the formx - (n; + n2) wheren; andn, are forces, it is at
least possible that the calculation is correct, work beipgaguct

of distance and force. Basic operations like addition abjest to
sanity checking through dimensional analysis: one canddta
distance to a force, and so forttDifnensionrefers to a quantity
such as distance, mass or time; systemsmnits define base quan-
tities for dimensions. For example, in civilized countridee base
unit of distance is the meter.)

The idea of trying to catch dimension errors in programsds ol
Kennedy (1996) cites sources as early as 1978. Many dimensio
checking schemes were hamstrung by their lack of polymerphi
they could not universally quantify over dimension varesblFor
example, they could not express a suitably generic typeter t
square functiorin x = x * x. Kennedy’s system, extending Stan-
dard ML, is an elegant formulation providing dimension poby-
phism and user-definable dimensions. However, it is a satiata
extension of the underlying type system, and is complicéted
doing full inference rather than bidirectional checkingr s, di-
mensions are, formally, just another index domain; pratiticthe
implementation work involved was modest (less than onegpers
week).

We refine the primitive typeeal of floating point numbers with
a dimension. Certain quantities, including nonzero fl@apoint
literals, are dimensionless and are indexedibyIM; however, the
zero literal0.0 has type-all a : dim- real(a). Constantd, S and
so forth have typeeal(M), real(S), etc. All these constants have
the valuel.0, s03.0 * M has values.o.

In fact, the value produced b8.0 x M is equal to the values
produced bys.0, and to that produced 8,0+ S, by 3.0«M«M, and
so on. Unlike the data structure refinements of Seflion 4edgion
refinements say virtually nothing about values! Zero is aepiion
to this: it appears that if v : -all a : dim- real(a) thenv = 0.0.
However, for any- v : real(d) the set of possible values is exactly
the same for every, as well as being the same set as the simple
typereal. After all, there should be no tag at runtime.

But what, then, do we actually learn when a program with
dimension refinements passes the typechecker? With rell-toése
refinements, one could prove that any value of tyggemust have
the formRed(...), but with dimensions there are few directly
corresponding properties. Instead, being well typed mehat
subterms of dimension type are used in a consistent way. The
user must make some initial claims about dimensions (ofiserw
everything will be dimensionless and nothing is gained)jcivh
cannot be checked, though we can check the consistencyiof the
consequences. For example, the user must be free to muliyply
constants such al, to assign dimensions to literals and to the
results of functions likereal.fromString Given free access to
those constants, for arknown constantimensionsd; and d,,
it is trivial to write the appropriate ‘coercion’, such asstlone for
convertingM? to KG:

(x[ val m2_to_kg : real(M™2) — real(KG) 1*)
fun m2_to kg x = (x / (M * M)) * KG

However, there is no ‘universal cast’ between arbitraryetisions.

6.1 Definition of the index domain

The dimension sodim has no predicates besides equaliyDIM
stands for the multiplicative identity that indexes dimentess



guantities. The constants ak, S, KG, and any additional con-
stants the user declares. The functions are multiplicatjomhich
takes two dimensions (e.yl = S), and *', which takes a dimen-
sion and an integer (e.4 ~ 3). (One could also allow rational
exponents; see Kennedy (1896, p. 7) for a full discussion.)

6.2 Related work on dimension types in ML
We point out certain differences between Kennedy's work isn d

on the exponentdv® = (M % S)®, which is equivalent t¢M?)
(S°) = (MP) % (SP), reduces tda = b) A (0 = b). Without
existentials, that would be the end of the story, since eiratgx
expression of dimension sort can be reduced to a normal form i
which each base dimension amfversallyquantified) dimension
variable appears once and in some particular otder (Kelheeky,

pp. 16—17). Then equality is just the conjunction of eqiediof
exponents. However, existentials require that we actsallye for

mension types in ML and ours._Kennedy (1996, p. 66) notes that dimension variables, but this is quite easy. Given a normahf

the functionpower : int — real — real, such thatpower n x

equationi; = 1, containing a facto@ (with nonzero exponent),

yields x*, cannot be typed in his system because it lacks depen- we first rearrange the equation into the foaDIM = (i; ') * i,

dently typed integers. With our integer index refinemertiss is
easy:
-all a:int- -all d:dim-
int(a) — real(d) — real(d™a) 1%)
fun power n x =
if n =0 then 1.0
else ifn < 0 then 1.0 / power ("n) x
else x * power (n-1) x

(x[ val power :

Similarly, in Kennedy’s system, universal quantifiers oder
mension variables must be prenex (on the outside), justuiie
versal quantifiers over SML type variables. Kennedy (1998, p
66-67) gives the example of a higher-order functi@lyadd that
appliesprod to arguments of different dimensions (firstNODIM
andKG, then toKG andNODIM); Kennedy’s system cannot infer
the typepolyadd : (-all d; : dim- -all d; : dim- real(d;) —
real(d,) — real(d; = d2)) — real(KG) because the quantifiers
are inside the arrow.

fun polyadd prod = prod 2.0 KG + prod KG 3.0

Since we do not require universal index quantifiers to be gten
we can typecheckolyadd.

Another small example from Kennedy (1996, p. 11) implements

the Newton-Raphson method.

(x[ val newton : -all d1,d2:dim-

(x f, a functionx) (real(dl) —real(d2))
(x F', its derivativex) * (real(dl)—real((dl1”"1)*d2))
(x x, the initial guess) * real(dl)

(x xacc, relative accuracy) * real — real(dl)
fun newton (f, f’, x, xacc) =
let val dx = £ x / £’ x
val x> = x - dx
in if abs dx / x’ < xacc then x’
else newton (f, f’, x’, xacc)
end

1%)

Kennedy also presents results about dimension polymarphis
in the vein of parametricity (Reynolds 1983). We do not knéw i
similar results hold for our system.

6.3 Units of the same dimension

Some of the most catastrophic dimension bugs are not gtrictl

attributable to confusion of dimensions, but to confusibruits

In 1984, the space shuttle Discovery erroneously flew uposen
because a system was given input in feet, when it expected iimp
nautical milesl(Kennety 1996, p. 12). And in 1999, NASAs $12
million Mars Climate Orbiter was lost and presumed destioye
after navigational errors resulting in part from confushmtween
pound-forces and newtoris (Euler et al. 2001, p. 7).

Stardust has no specific support for multiple units of theesam
dimension. However, one can simply consider the units toige d
tinct dimensions, though at the cost of explicit conversibatween
units.

6.4 Implementation of dimensions

Neither ICS nor CVC Lite directly support dimensions, sor&uat
reduces a constraint on dimensions to a conjunction of caings
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and distribute the-1 over the factors iri;, yielding an equation
NODIM = G* %% % ... % jXn, wherek # 0. Multiplying both
sides bya * yieldsa * = j¥ « ... % jXn; raising both sides to
the powerl /(—k) gives the solved forna = . . ..

6.5 Related work on invaluable refinements

Our term “invaluable refinement” is new, but similar notidresve
come up in other contexts. Tiyalified type®fiFosteri(2002) en-
compass a variety of flow-sensitive, invaluable proper#feso or
more qualifiers, under a partial order (reminiscent of data®-
finements), may appear with a type. Foster’s qualified typman
tations are of two formsannot(e, Q), which adds the qualifier

Q to the type inferred fore (a kind of cast), anctheck(e, Q),
which directs the system to check th@tis among the qualifiers

of the type inferred foe. Thus, as with dimensions in our system,
qualified types are based on annotations provided by theamsker
cannot be checked at runtime. In our system, we suspectithat e
ther a datasort refinement or an index refinement with a domain
of finite sets of constants (the qualifiers) would suffice tadeio
qualified types, with some kind of cast—some well-namedtiten
function—acting aannot(e, Q), and type annotatiofe : A) with

the appropriate refinement actingas:ck(e, Q).

Garden-variety Hindley-Milner typing also supports inwble
refinements. Aphantom typdFEinne et all 1999; L eijen and Meijer
1999) is an ordinary datatype with a “phantom” polymorplyipet
parameter that is not tied to the values of that type, at heatsh the
obvious way thatx is tied tox list. Phantom types can even mimic
integer index refinements by encoding integers through dgmm
types, as _Blune (2001) does in his “No Longer Foreign Functio
Interface” for Standard ML of New Jersey. From the user'sipof
view, integer index refinements seem more natural.

Phantom types can also be used as value refinements, but the
typechecker’s ability to reason based on inversion is &ohit~or
invaluable refinements there are few interesting invergionci-
ples, but when phantom types are used to encode a value-based
property this is a serious shortcoming, especially sintmestive-
ness of pattern matching cannot be shown. Hence, resesittine
designed “first-class” phantom types, under various namgsCh-
eney and Hinze (20D3); Fluet and Pucella (20D6); Xi &1al0f30
Pevion Jones etlal. (2006). This approach lacks one virtpbaoi-
tom types: that one can use a standard compiler.

Phantom types (whether first- or second-class) can be seen as
tantamount to index refinements in which the index objects ar
types. These systems lack intersection types, so they t#ans-
parently express conjunctions of refinement propertiesieMian-
damentally, when the index objects are types, index equaliype
equivalence—which, as equational theories go, is rathpouer-
ished. Itis no coincidence that a standard example of phatyttpes
is an interpreter for a tiny typed language, where (in ounteol-
ogy) terms in the interpreted language are indexed by types.
encoding from the problem domain is trivial, because thec®u
language’s types are a superset of the interpreted langugpes.
When that is not the case, such encodings become nontrivial.



In order to (again, in our terminology) obtain richer indeo-d
mains than their current type expressions, phantom typersgs
have been enriched with elements of traditional dependgmnt t
ing (Sheard 2004). Unlike ours, these systems allow usessite
their own proofs of properties in undecidable domains. Feom
user’s perspective, this approach seems more complex than o

Ephemeral refinementiMandelbaum et al._2003) may be a
form of invaluable refinement as well: the refinements areuabo
‘the state of the world’, which is not a manipulable value MIS
and similar type systems. If we consider ephemeral refinégrien
volving mutable storage, a monadic formulation of epheinera
finements would reify the state into a value and the ephefireral
valuable refinement of the state into a value refinement.Krbfn
Haskell's state monad with a refinement about the array’secis:
the contents of the array are part of the world encapsulatetico
monad. However, given an ephemeral refinement that encades i
formation that cannot be directly inspected, such as (saoyepty
of) the bytes written to standard output, there is nothingeity;
unless the program is modified to store that informatiorretieno
value to refine. Thus, both value and invaluable refineméusld
be useful when effects are encapsulated monadically.

Finally, Refinement MLI(Davi€s 2005) does not support invalu
able refinements. In that system, the inhabitants of thesdettaare
specified through regular tree grammars in which the syménas
the datatype’s constructors; the only way to define dataghet
are not perfectly synonymous is to specify that they arebited
by different sets of values. (Mere laziness kept us fronofaihg
the same strategy: we did not want to bother transforminglaeg
tree grammar-based specifications into constructor types!

7. The design of Stardust

Stardust consists of a parser, a few preprocessing phaseasska-
tor from the source language to let-normal form, and a typeloér
that includes interfaces to external constraint solversyhich we
delegate much of the work of integer constraint solving.

The type system presents several implementation chaklenge
The first is that certain rules pretend that we can somehowsgue
how to instantiate index variables, for example, when elating
a universal quantifierall a : sort- . The usual approach, which
we follow, is to postpone instantiation by generating craists
with existential variables. However, for efficient typeckiag, con-
straint solving must be online. Otherwise, if we chedk) where
f: A & B, we may choosé : A, continue typechecking to the end
of the block, find that the constraint is false, backtrack eimoose
f:B,etc. IfA = list(0) — A’ andx : list(1), we should know
immediately that tryingt : A is wrong, sinced = 1 is invalid.
Thus, we give the additional constraint to the solver on theafid
when it reports thad = 1 is invalid we can proceed immediately to
considerf : B. Forn such choices, if the program is ill typed and
all choices (would) ultimately fail, this takes us from tgpecking
the block2™ times to onlyn times.

A fundamental challenge is making typechecking with irgers
tion and union types fast enough. To check an expressiomstgai
A & B, we check it againsi and thenB, doubling typechecking
time. To check an expression agaiAst/ B, we check it againsh
and, if that fails, again®?, doubling typechecking time in the worst
case. Dually, if we have a known expression (such as a vajiabl
type A & B, we first assume that it has tyge if typechecking
subsequently fails, we assume it has typeinally, if we have a
known expression of typd V B, it could have either type and
so we must typecheck first under the assumption that it has typ
A, and then under typB. Thus, in the worst case, typechecking is
exponential in the number of intersections and unions apEem
the program.
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Intersections and unions affect error reporting as we#alty
we might like reports of the form “checking against& B failed:
could not check again®& whenx : C; (wherex : C; V C3)”, in
addition to a program location. Still, bidirectionalitygs us some
advantage over typecheckers based on unification. As Péerde
Turner (1998) and Davies (2005) have observed, in a bidlineek
system, the location reported is more likely to be the reateaf
the error, which is not always the case when unification alene
used.

7.1 Interface to an ideal constraint solver

We would like a constraint solver that supports the follogviar all
index domains of interest:

1. A notion ofsolver contexfrepresented bg)) that encapsulates
assumptions;

2. An ASSERT operation taking a contex® and propositiornP,
yielding one of three answers:

(a) Valid if P is already valid under the current assumptions

(b) Invalid if P is unsatisfiable, that is, leads to an inconsistent
set of assumptions;

(c) Contingent(Q’) if P is neither valid under the current
assumptiong nor inconsistent when added €@; yields
anew contexf)’ = Q, P.

3. A\VALID operation taking a contex? and propositiorP, and
returning one of two possible answers:

(a) Valid if P is valid under the current assumptions;
(b) Invalid otherwise.

Implicit in this specification is that the contex¥ are persistent:

if ASSERT(Q1,P) yields Contingent(Q,), the “earlier” context
Q, should remain unchanged. This is a key property, given all th
backtracking the typechecker does. Where a constraintisdbes
not have this property, it can be simulated, though at sorst see
Sectio 8L. Likewise, where the constraint solver doesuapport
an index domain, propositions in that domain must be redteed
propositions in a supported domain.

7.2 Constraint-based typechecking

The typechecker has a notiongifitethat is independent of the par-
ticular constraint solver used. It includes index assuomstsuch as
the index sortingr:int and the propositiom > 0; an accumulated
constraint that needs to be valid to make the program wedidyp
a substitution containing solutions for existentially gtifeed vari-
ables; and a representation of the external constraintssistate.
Our constraint solvers do not support existential varstzde
all (ICS) or support them incompletely (CVC Lite), which sify
icantly affects the design. The typechecker itself managés-
tentials in the integer domain, and lies to the constraittesdoy
telling it that existential variables are universal. THere, when
adding a constraint we cannot immediately check its validince
the constraint may include existential variables that tbhlves
thinks are universal: we cannot directly chegknt = @ = 0
(meaningda. a = 0), only a:int = a = 0 (meaningva. a = 0)
with a universally quantified. Clearly, the first relation shoutdch
and the second should not. Fortunately, we can still “failyéa
(recallingf : A & B from the example earlier). Instead of checking
validity, we assert the new constraint, adding it to the ag#ions.
If the resulting assumptions are inconsistent (as @with 1, or—
less trivially—a = a + 1), no instantiation of existential variables
can make the constraint valid, so we can correctly fail, asmckb
track as needed.



Of course, we must check validity of the constraint at some
point! Otherwise, given a constraibt = 0, we would conclude
b:int = b = 0 sinceb = 0 is a consistent assumption. Therefore,
in addition to asserting = 0, we add it to a constraint built up
in a manner similar to off-line constraint solving. Everityahe
typechecker tries to solve for existentials (applying aplistic
and probably incomplete rewriting algorithm) and asks thiges
whether the built-up constraint is valid.

7.3

Stardust includes an interface to ICS (de Moura Et al.|2084)na
external constraint solver. ICS has cooperating decisioogalures
for fragments of rational arithmetic and several theoribs;type-
checker presently uses only the arithmetic theory. Whigeethis a
notion of “current context” in the ICS interface (for exammplCS’s
ASSERT operation takes only a proposition and implicitly uses the
current context as th®), previously constructed contexts can be
saved and restored quickly, yielding an interface extrgrolelse to
the idealized one presented above. This is no coincidenealen
signed our system with ICS in mind. We do not use ICS as a librar
instead, it runs as a separate process and we communioagthr
Unix pipes.

Interface to ICS

7.4 Interface to CVC Lite

Stardust also includes an interface to CVC Lite (Barrett and
Berezin| 2004), the successor to CVC, the Cooperating #lidi
Checker [(Stump et al. 2002), which in turn succeeded SVC, the
Stanford Validity Checkell (Barrett etlal. 1996). CVC Liteshzo-
operating decision procedures for fragments of integerrational
arithmetic, Boolean propositions (including conjunctiatisjunc-
tion, negation, and implication), and other theories; wespntly
use only the integer and Boolean theories. It has limitegstgor
quantifiers, both universal and existential (free varialdee, as in
ICS, considered universal); a responsénehlid may be given even
when an existential solution exists. We have not exploredtigr
that limited support is enough for Stardust; if as powerfuloar
home-grown existentials, we might get a simpler design.

Unlike ICS, CVC Lite does not support persistent contexte. W
discuss the impact of this in Sectibh 8.

CVC Lite has recently become CVC3. We hope to add support
for CVC3, which should allow us to easily implement an index
domain where the objects are inductive datatypes.

7.5 No refinement restriction

Davies' Refinement MLL(Davids 2005) hasedinement restriction

on intersection types: an intersectidn& B is well formed only

if A andB are refinements of the same simple type. For example,
even & odd is permitted ifeven andodd both refinelist; likewise,
(even — odd) & (odd — even) is permitted, since each com-
ponent of the intersection refinéist — list. On the other hand,
list & (list — list) andint & string do not satisfy the refinement
restriction; in the first]ists and functions are incompatible, while
int andstring are distinct base types. Because of the refinement
restriction, typechecking in Refinement ML is conservatwer
Standard ML: every program that is well typed in Refinement ML
is also well typed in Standard ML.

In contrast, Stardust does not enforce a refinement restrict
on intersections and unions. Stardust also does not chead co
that it knows (through the type system) to be dead. Thus,ribis
conservative in the sense that Refinement ML is.

7.6 Let-normal translation

Stardust translates programs into a let-normal form befigpe-
checking them, enabling a more efficient typechecking élyor
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than the one arising directly from the tridirectional systéDun-
field and Pfennin@.2004). Our translation is unusual in tHaya-
thesizing forms, including variables, are let-bound; thédps to
guarantee that no programs that would be well typed if |etitans-
lated (i.e. , well typed in the tridirectional system) beeoitirtyped
when translated. Because we have that guarantee, therfagho
translation is completely transparent to the user. Theldaththe
transformation and the proof that no well-typed progranobee
ill-typed (and vice versa) after translation are beyondsit@pe of
this paper; see Dunfi¢ld (2007, Ch. 5).

8. Speed of typechecking

In this section, we give the time needed to typecheck seesral
ample programs, and discuss some of the factors affectirfgrpe
mance.

Wall-clock time in seconds

CVC Lite CVC Lite
Input program ICS (library)  (standalone)
redblack-full 1.9 8.2 9.2
redblack-full-bugl 1.6 6.8 8.1
redblack <1 <1 <1
rbdelete * 37.7 31.6
bits * 9.5 4.0
bits-un 335 2985 2414

Table 1. Time required for typechecking

The times indicated are under Standard ML of New Jersey ver-
sion 110.59 on a 4-CPU Intel Xeon (3 GHz) and 2 GB RAM. The
constraint solvers were ICS version 2.0 (November 2003)Ganad
Lite version 20070121 (January 2007). An asterisk (*) inths
programs for which the constraint solver gives a wrong ansore
the system otherwise fails. ‘redblack-full’ is the programtigure
B; ‘redblack-full-bugl’ is that program with a bug introdagt; ‘red-
black’ is the same program with index refinements removedgus
only datasort refinements. ‘bits’ contains several fumion bit-
strings. ‘bits-un’ is similar, but uses union types morecesively.
The very long typechecking time is due in part to having tockhe
certain expressions against each component of a 4-way;thimse
expressions themselves are of a 4-way union type.

All of the dimension examples in this paper typecheck in less
than one second, which appears to be typical for code thatmiute
use intersection and union types.

8.1

Stardust communicates with ICS through Unix pipes. Thisas n
very efficient: experiments suggest that the overhead afisgone
command and receiving one responsgis40% for ICS.

We can also communicate with CVC Lite through Unix pipes,
but we have also implemented a direct interface to a shdveatyi
through CVC Lite’s C-level APl and the SML/NJ NLFFI. As we
expected, this speeds typechecking in most cases.

For CVC Lite, another source of inefficiency is CVC Lite’s in-
ability to rapidly switch back to previously visited contexUnlike
ICS, in which contexts are persistent and can be recallddrins
taneously, CVC Lite can roll back only to ancestors of itsrent
context. This requires us to “replay” assertions; typical0—-50%
of transactions with CVC Lite are replay assertions. Thiggests
that for our purposes, persistent context in a constrailvesads
useful but not absolutely essential.

Impact of solver interfaces

8.2 Conservation of speed

We believe that Stardust conserves typechecking spedd; sehse
that checking a program—more usefully, a block—that dods no



use property types should take polynomial time (as with muore
phic SML programs). This is subject to the caveat that pryper
types appear in the types of many primitive functions; argchl
that uses actually uses intersection types. This (unproven) claim
rests on our belief that the underlying type system has asuiofia
property (Prawiiz 1965, p. 53): formulas (here, type exgimes)—
and, therefore, connectives like—appear in parts of a derivation
only if they appear as subformulas of the goal (where typesin
notations are goals).

8.3 Scaling up

Typechecking is modular, in the specific sense that eactkldbc
mutually recursive function declarations can be checkeépen-
dently of each other block. For example, given a program tth
mutually recursive functiongl, f2 followed by a functiong, i.e.
funfl...andf2 ... fun g, if checkinggfails, it cannot be blamed
on a choice made while checkifigandf2.

Thus, while property types can make checking a particutzzibl
very slow, adding a second block of the same complexity will
only double typechecking time. This “block independendedidd
mean that once we have acceptable efficiency for typicalrprog
of a few hundred lines, only linear speedup will be required t
be acceptably efficient on larger programs. Moreover, wellsho
be able to get that speedup through an easy form of distdbute
computation: If we send each block to a different processor f
typechecking, the communication cost will be low, sinceitipit
is small and the output is tiny: typechecking either sucseexdfails
with some error information, for that block.

Davies’ work [Daviels 2005) suggests that there would be no
major barriers to adding ML modules to Stardust. This would
allow users to give refined types in module signatures, giogi
important documentation; it also does not add to the volufme o
annotations, since signatures must be written out anyway.

9. Related work

The type system that underlies Stardust is based on pride (Bam-
field and Pfenning_2004; Dunfield 2007), which includes isger
tions, unions, index refinements, and datasort refinements.

Intersection types are fairly old (Coppo elial. 1981); typfer-
ence is undecidablé_(Amadio and Curien 1998). Revnoldst(199
who was the first to use intersection types in a practical jarog
ming language, proved that typecheckings®Aacehard. Intersec-
tion types (sometimes with union types too) have also beed ts
infer control flow properties, e.g. Palsberg and Pavlopoy(®&i0il)
and for compositional type inference, e.g. Bakewell {24)06).

Freeman and Pfenning _(1991) introduced datasort refinement
combined with intersection types, showed that full typesiahce
was decidable under the refinement restriction, and degdlam
inference algorithm based on techniques from abstraatpret-
tion. Interaction with effects in a call-by-value languagas first
addressed conclusively by Davies and Pferning (2000), who r
stricted intersection introduction to values, pointed the un-
soundness of distributivity, and proposed a practicalrbaional
checking algorithm. Davies’ datasort refinement checkeavi€s
2005) supports all of Standard ML._Pierce (1991) gave exaspl
of programming with intersections and unions in a pwsgalculus,
relying on syntactic markers which are not needed in ouesyst

Xi (1998) formulated Dependent ML, a bidirectional type-sys
tem with index refinements for a variant of ML and implemerited
as an extension to Caml Light. He showed a number of appicsti
(using the integer constraint domain), including arrayristsucheck
elimination. To cope with some issues arising from exiséd-
dex quantification, Xi's approach transformed programs antet-
normal form before typechecking them; however, typecherks
then incomplete, in the sense that some programs that tgplech
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in their original form do not typecheck after translatione \At-

tack similar issues with existentials in our work in a brgeslmilar

way, through translation to our own peculiar variant ofnetmal

form. However, our let-normal typecheckimg complete (as well
as sound).(Dunfield 2007, Ch. 5).

The ancestor of index refinement is the notion of dependent
type developed by Martin-L6f and used in various theorenvipmp
systems. The typd$x:A. B andZx:A. B roughly correspond to the
universal and existential quantifiers over indices; howewnstead
of drawingx from a restricted index domain, dependent types draw
x from terms of typeA. This is powerful but (in any language in
which some programs do not terminate) undecidable.

A number of systems have tried to tame dependent types. In
Cayenne [(Augustsson_1998), typechecking “times out” adter
given number of steps. In Epigram_(McBride and McKinna 2004)
all well-typed programs terminate, so type equivalenceeisiat
able. The dependent indices are elementmdfictive familiesof
constructors; the example of natural numbers vzigho and succ
constructors is probably the canonical one. In the syste@hein
and Xi (2005), as in Epigram, users can write explicit praifype
equivalences; unlike Epigram, the language itself is r&tricted—
decidability comes by restricting the terms that can inthiadiices.

A similar system is described hy Licata and Harper (2005)p wh
give a detailed comparison of these and related type systems

We see two major advantages of our approach over these sys-
tems. The first is that our system needs no guidance beyowrd typ
annotations. The second is the legibility and clarity of thges
themselves. We believe that the types in our system arereasie
understand than in these more traditional dependent tygiersg.

It could be argued that both flavors of system add to the number
of ‘levels’ a user must think about—ours adds index refinesien
(and datasorts, but let us not muddy the comparison), whées

add dependent typing and kind-level programming. However,
level we add seems to b@wer than the types in conventional type
systems, rather than higher.

Our approach also differs significantly from extended stati
checking I(Leind_2001), which, like our system, uses animiat
to express properties and processes the invariants at leotimpe,
without the user writing explicit proofs. However, a repénm
ESC must be interpreted quite differently from a report frétar-
dust. In the extended static checking framework, a faveredgort
simply means that no problem wésundin the program; it does
not guarantee that the properties actually hold. In Starduse-
port that the program typechecks means that the propedty r
do hold (subject to the usual caveats about bugs in Stardedt, i
in the compiler, etc.). On the other hand, that limitatioraikey
reason that ESC can express many properties Stardust cannot

10. Conclusion

We have presented the first implementation of a system congpin
intersections, unions, and type refinements, in which tipeess-
ible properties, while limited by decidability concernse degible
and straightforward. We have formulated and implementeéxn
domains of integers, Booleans, and dimensions. While typec
ing speed is adequate for most of our examples, it is not fidtis-
factory; more work is needed to allow extensive use of iretien
and union types.

As the set of supported domains grows, an already presemt pro
lem grows with it: the scalability of the refinements therssl
Different invariants will be important in different part$ a pro-
gram. It is perfectly reasonable to index lists by lengthsialso
perfectly reasonable to index them by their contents, ordiges
property of a particular element. Our current approachireguhat
one either cram all manner of indices into a tuple, and index b
that, or create new datatypes for each new property, eathitwit



own refinement. The first technique is brazenly anti-moglute
second leads to code duplication and tedium. Thus, degjgnity
modular refinements is an important goal for future work.
We intend to explore additional index domains including bit
vectors, inductive families, functional arrays (vectofsagments
of set theory, and regular languages, all of which have jpalae-
cision procedures and are therefore compatible with ourcamb.
We are in the process of adding parametric polymorphismeto th
type system and implementation, and are investigatingheidas
to call-by-name and call-by-need semantics.
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