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Abstract
We present Stardust, an implementation of a type system for a
subset of ML with type refinements, intersection types, and union
types, enabling programmers to legibly specify certain classes of
program invariants that are verified at compile time. This isthe
first implementation of unrestricted intersection and union types
in a mainstream functional programming setting, as well as the
first implementation of a system with both datasort and indexre-
finements. The system—with the assistance of external constraint
solvers—supports integer, Boolean and dimensional index refine-
ments; we apply bothvalue refinements(to check red-black tree
invariants) andinvaluable refinements(to check dimensional con-
sistency). While typechecking with intersection and uniontypes is
intrinsically complex, our experience so far suggests thatit can be
practical in many instances.

Categories and Subject Descriptors D.1.1 [Programming Techniques]:
Applicative (Functional) Programming; D.2.4 [Software Engi-
neering]: Software/Program Verification
General Terms languages, verification

1. Introduction
Compile-time typechecking in statically typed languages such as
ML, Haskell, and Java catches many mistakes: “well typed pro-
grams cannot ‘go wrong’” (Milner 1978). However, many pro-
grams have bugs (do not behave as intended) yet do not actually
“go wrong” in the operational semantics. Adding two floatingpoint
values, where one represents a length and another a mass, is non-
sensical yet permitted, as is building a red-black tree in which a
red node has a red child. While one can often change data repre-
sentation to allow verification of such invariants in conventional
type systems—by wrapping the floating point value with a “dimen-
sion tag”, splitting the red-black tree datatype into two variants,
adding a “phantom” type argument, and so on—programs become
less efficient or, more importantly, less readable. Heavyweight ap-
proaches based on theorem proving may avoid those defects, but
are not worth the effort for many programming tasks. In this paper,
we follow a different approach, in which we leave the programs
and their underlying data structures alone, enriching onlythe type
expressions with specifications based on
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• datasort refinements(also called refinement types) (Davies and
Pfenning 2000; Davies 2005) andindex refinements(so-called
limited dependent types) (Xi and Pfenning 1999; Xi 1998) for
atomic properties of data structures;

• intersection typesandunion typesthat combine properties by
conjunction and disjunction, respectively (Davies and Pfenning
2000; Dunfield and Pfenning 2004).

Datasort and index refinements express properties of algebraic
datatypes: in red-black trees, datasort refinements can distinguish
empty from non-empty trees, and red nodes from black nodes; in-
teger index refinements encode theblack heightof trees, a natural
number. We also apply index refinements to base types: integers
are indexed by themselves (a singleton type); floats are indexed by
the associated dimensional unit (e.g. meters squared).

Our setting is a subset of core Standard ML with datasort and in-
dex refinements, intersection types, union types, and universal and
existential index quantification. The type system is closely based
on previous work (Dunfield and Pfenning 2003, 2004), though we
incorporate a further development,let-normal typechecking, de-
scribed only briefly here, which makes the earlier work’s problem-
atic union-elimination rule practical. This paper focuseson the type
system from a user’s perspective only; on the structure of the type-
checker; and on examples with datasort refinements, integerindex
refinements, and dimension index refinements.

Intersection types have rarely been exposed to users, with the
significant exception of datasort refinement systems (Freeman and
Pfenning 1991; Davies and Pfenning 2000; Dunfield and Pfenning
2003, 2004). True union types (that is,untaggedunion types) are
rarer still; we draw heavily on our previous work as well as our un-
published work (Dunfield 2007, Ch. 5) on let-normal typechecking.

Dimension (units of measure) checking is not a new idea, but
its encoding as an index domain is elegant and goes beyond the
old line of index refinement researchers that your index refinement
typechecker comes with any domain you want, as long as it’s
integers. It also provides a nice example of what we callinvaluable
refinements, which are not based on values.

The typechecker delegates much of the work of constraint solv-
ing in the index domains; the system presently has interfaces to
ICS and CVC Lite. As the power and range of such tools grows,
the typechecker’s power can grow with relatively little effort.

Section 2 describes our subset of Standard ML, called Star-
dustML. Section 3 explains our property type system. Sections 4
and 6 formulate the central index domains: integers and dimen-
sions, presenting example programs in each. Section 7 outlines the
design of the typechecking system and Section 8 discusses its per-
formance. Finally, we discuss related work and conclude.

2. The StardustML language
Except at the type level, StardustML is a subset of core (module-
free) Standard ML (Milner et al. 1997). A StardustML program
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sort ::= id | ( sort) | sort(* sort)∗

| { id : sort | proposition}
proposition::= index-exp| propositionand proposition

index-exp::= id | index-exp(+ | − | · · · ) index-exp| index-aexp
index-aexp::= # integer-literal ( index-exp) | integer-literal

| ( index-exp(, index-exp)∗ )
texp ::= id [( index-exp(, index-exp)∗ )] | ( texp)

| texp→ texp | texp* texp
| texp& texp | texp∨ texp
| { proposition} texp | [ proposition] texp
| -all id (, id)∗ : sort- texp
| -existsid (, id)∗ : sort- texp

Figure 1. Concrete syntax of index sorts, propositions, index ex-
pressions, and types in StardustML

consists of SML datatype declarations followed by a sequence of
blocks. A block is a sequence of mutually recursive declarations
(either fun . . . and . . . and . . . , or just a singlefun or val bind-
ing). Each block may be preceded by a type annotation of the
form (*[ . . . ]*). This annotation form appears as a comment
(* . . . *) to Standard ML compilers, allowing programs in the sub-
set language to be compiled normally (but see Section 7.5).

StardustML does not include parametric polymorphism, mod-
ules, ref, user exception declarations, records, and a number of
forms of syntactic sugar such as clausal function definitions. How-
ever, it does support all the interesting SML pattern forms.It also
supports exceptions, though an exception datatype is pre-defined
and cannot be changed by the user program.

We give the grammar for types and related constructs in Figure
1. The notations[. . . ] and(. . . )∗ respectively denote zero-or-one
and zero-or-more repetitions. Nonterminals are writtennonterm.
Terminals with several lexemes, such as identifiersid, appear in
bold italic, while keywords appear inbold.

3. The Stardust property type system
In addition to a subset of SML types, Stardust supports the full set
of property types from Dunfield and Pfenning (2004), as well as
guarded and asserting types (inspired by Xi (2004)).

3.1 Tridirectional typechecking

Stardust is based on tridirectional typechecking (Dunfieldand
Pfenning 2004), which is a form ofbidirectional typechecking. The
type of an expression is variouslysynthesizedor checked. In this
particular formulation of bidirectionality, introduction forms such
asfn and tuples are classified aschecking forms, while elimination
forms such ase1(e2) are classified assynthesizing forms. Type
annotations are needed precisely where a checking form is used in
a synthesizing position. For example, in the function application
e1(e2), the functione1 is in a synthesizing position, whilee2

is in a checking position. Hence, the expression(fn x ⇒ x)y
needs an annotation around thefn subexpression. In contrast,
map (fn x ⇒ x + 1) needs no annotation because thefn is in a
checking position. In practice, annotations seem to be rareexcept
for function declarations, where they are mandatory.

3.2 Atomic refinements

The basic level of properties is provided bydatasortandindexre-
finements. The former, also known as refinement types, are similar
to Refinement ML (Davies 2005): an ML-style (that is, algebraic
and inductive) datatype isrefinedby a set of datasorts organized
into an inclusion hierarchy: for example, odd- and even-length lists,
or inductively defined bitstrings (1) with no leading zeroes(std), or
(2) with no leading zeroes and also not the empty bitstring (pos).

odd

�

even

I

list

pos
6

std
6

bits

Our second variety of atomic refinement, the index refinement, is
very similar to DML (Xi 1998). It is a markedly limited form of
dependent type, over a decidable constraint domain. As expressions
have types, indices haveindex sorts. Following DML, the type
t with index i is written t(i); so, indexing lists by their length,
[5, 6] has typelist(2). In addition to ML datatypes, primitive
types such as integers and reals can be refined. As in DML, we
index integers by their values, so3 has typeint(3); the index
refinement serves as a singleton type. On the other hand, we index
the ML floating-point typereal by adimension. Thus,real(M ^ 2)
is the type of areas expressed in square meters.

Datasort and index refinements can be combined, as in the red-
black tree examples below.

3.3 Combining properties

Stardust provides several means of combining properties expressed
through atomic refinements. Intersection types& express conjunc-
tion: v : A & B says thatv : A and v : B. Likewise, union
types ∨ express disjunction:v : C ∨ D says thatv : C or
v : D (or possibly both). The types-all id (, id)∗ : sort- texp
and-existsid (, id)∗ : sort- texpquantify over indices. Several of
these are combined in the following ‘increment’ function onbit-
strings. Its type annotation says thatinc is a function that, for all
natural numberslen andvalue, takes bitstrings in standard form
(no leading zeroes) of lengthlen and valuevalue and returns a
positive (in standard form, and nonzero) bitstring of the same length
and valuevalue+1, the input value, or else (∨) a positive bitstring
of lengthlen + 1 and valuevalue + 1. Moreover, it also has (&)
a similar property when given a bitstring in a possibly-nonstandard
form (bits).

(*[ val inc :
-all len, value : nat-

std(len, value) → (pos(len, value+1)
∨ pos(len+1, value+1))

& bits(len, value)→ (bits(len, value+1)
∨ bits(len+1, value+1)) ]*)

fun inc n = case n of
E ⇒ One E

| Zero n ⇒ One n
| One n ⇒ Zero (inc n)

In defining the type of the built-in function*, we useassertingand
guardedtypes. The asserting type[P] A is like A but affirms that
the index-level propositionP holds. Theguarded type{P} A is
equivalent toA provided thatP holds, and useless otherwise (as a
“top” type would be). Thus, we can express thatif both arguments
to * are nonnegative, the result is as well:

primitive val * :
(-all a,b:int- int(a) * int(b) → int(a * b))

& (-all a,b:int- {a >= 0 and b >= 0} int(a) * int(b)
→ -exists c : int- [c >= 0] int(c))

& (-all d1,d2:dim- real(d1) * real(d2) → real(d1*d2))

When the type is index-refined but the index expression is omit-
ted, as whenlist, int or real appears alone, the type is interpreted
in one of two ways. For most types, such aslist and int, an exis-
tential quantifier is added:int becomes-exists a : int- int(a).
However, this does not work well forreal: quantities of type
-exists d : dim- real(d) are quite useless since they cannot be
added, subtracted, or converted to a quantity of known dimension.
Therefore, forreal we define adefault index, the special “no di-
mension” indexNODIM. Data in existing code is thus interpreted as
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Figure 2. Subsort relation used in Figure 3

dimensionless. In our investigations so far,real is the only type for
which a default index has seemed appropriate.

Precedence is as follows, from lowest to highest:

all { · · · } & → exists [ · · · ] * ∨

Thus,-all a : int-A → list(a) & B → list(a+1) is equivalent
to -all a : int- ((A → list(a)) & (B → list(a + 1))).

A program begins with datatype declarations, each of which
can begin with a bracketed refinement declaration comprised
of datacon declarations and an index sort specification, e.g.
datatype dict with nat. Datasorts are specified by a “kernel”
of the subsort relation—a set of pairs—of which the system takes
the reflexive-transitive closure. For an example of both of these,
discussed in Section 4.2, see Figures 2 and 3.

4. The integer index domain
The type system underlying Stardust is, like that of DML (Xi 1998),
parametric in the index domain. Stardust supports two majorindex
domains: integers and dimensions. The integer domain, described
in this section, was implemented in DML; applying index refine-
ments to dimension types, discussed in Section 6, is novel.

We write int for the index sort of integers. The constants are
. . . , ~1, 0, 1, . . . . The functions are+, -, and*. The predicates are
<, <=, =, <>, >=, >. Nonlinear expressions such asa * b are not
allowed, making the resulting constraints decidable.

The integer sort refines the base typeint. This is a mismatch,
sinceint is a finite type of integers. However, SML integer arith-
metic operations must raise an exception on overflow, so the results
of such operations will have the values their integer indices claim
they do; ifx = 5 thenx + 1 = 6 as claimed, while ifx = maxInt
thenx + 1 raises an exception—no harm done.

4.1 Natural numbers

The natural numbers are defined by asubset sort:

indexsort nat = {a:int | a >= 0}

Stardust replaces subset sorts by guarded and asserting types:
-all a : nat- int(a) → -existsb : nat- int(b) becomes-all a : int-
{a ≥ 0} int(a) → -existsb : int- [b ≥ 0] int(b). Other subset
sorts, such as strictly positive numbers, can be defined similarly.

4.2 Example: Red-black tree insertion

Red-black trees are a good example of datasort and index refine-
ments in combination. In this example, we fix the key type to be
int, and we have no associated record component, so that adict
represents a set of integers rather than a map from integers to some
other type. Since our refinements will be concerned with thestruc-
ture of the trees rather than the integers contained—we will not try
to guarantee an order invariant, for example1—having a set rather
than a map does not detract from the example.

1 In theory, one could guarantee order by indexing with the minimum and
maximum keys; in practice, this requires splitting disjunctions, which we
have not implemented. For a discussion, see Dunfield (2007, Ch. 6).

(∗ Based on an example of Rowan Davies and Frank Pfenning∗)
(*[ datatype dict with nat

datasort dict :
badLeft < dict; badRoot < dict; badRight < dict;
rbt < badLeft; rbt < badRoot; rbt < badRight;

red < rbt; black < rbt

datacon Empty : black(0)
datacon Black : -all h : nat-

int * dict(h) * dict(h) → dict(h+1)
& int * rbt(h) * rbt(h) → black(h+1)
& int * badRoot(h) * rbt(h) → badLeft(h+1)
& int * rbt(h) * badRoot(h) → badRight(h+1)

datacon Red : -all h : nat-
int * dict(h) * dict(h) → dict(h)

& int * black(h) * black(h) → red(h)
& int * rbt(h) * black(h) → badRoot(h)
& int * black(h) * rbt(h) → badRoot(h) ]*)

datatype dict = Empty
| Black of int * dict * dict
| Red of int * dict * dict ;

(∗ restore_right (Black(e,l,r))=⇒ dict
where (1) Black(e,l,r) is ordered,

(2) Black(e,l,r) has black height h,
(3) color invariant may be violated at the root of r:

one of its children might be red.
and dict is a re−balanced red/black tree (satisfying all invariants)
and same black height h.∗)

(*[ val restore_right :
-all h : nat- badRight(h) → rbt(h) ]*)

fun restore_right arg = case arg of
Black(e, Red lt, Red (rt as (_,Red _,_))) ⇒

Red(e, Black lt, Black rt) (∗ re−color∗)
| Black(e, Red lt, Red (rt as (_,_,Red _))) ⇒

Red(e, Black lt, Black rt) (∗ re−color∗)
| Black(e, l, Red(re, Red(rle,rll,rlr), rr)) ⇒

Black(rle, Red(e, l, rll), Red(re,rlr,rr))
| Black(e, l, Red(re, rl, rr as Red _)) ⇒

Black(re, Red(e, l, rl), rr)
| dict ⇒ dict

Figure 3. redblack-full.rml

datatype dict = Empty
| Black of int * dict * dict
| Red of int * dict * dict

Red-black trees must satisfy three invariants: (1) For every non-
empty node containing a keyk, every key in its left child is less
thank and every key in its right child is greater thank; (2) The
children of a red node are black (color invariant); (3) Everypath
from the root to a leaf has the same number of black nodes, called
the black height of the tree. Any tree satisfying these invariants is
balanced: the height of a tree containingn non-Empty nodes is at
most 2 log

2
(n + 1) (Cormen et al. 1990, p. 264). Invariant 2 is

concerned with color, and the colors of a datasort form a small
finite set, so it is a suitable candidate for a datasort refinement.
Invariant 3 involves node color, but also black height, which is a
natural number and therefore suitable for index refinement.

We begin with a datasortrbt of “proper” red-black trees, which
satisfy invariants 2 and 3.red andblack are subsorts ofrbt, rep-
resenting proper red-black trees with a root node of the specified
color.

But it is not quite enough to distinguish trees that satisfy all the
invariants (rbt) from those that might not satisfy the color invariant
(dict); if we know something is adict we know nothing about
where the color violation occurs. So we add datasortsbadRoot,
badLeft andbadRight for possible color violations at the root (the
root is red and some child is red), at the left child (the left child
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is red and one ofits children is red), and at the right child. The
“good” datasortsrbt, red, black are subsorts of the “bad” datasorts
badRoot, etc.: the “bad” datasorts represent not that the color
invariant is violated, but that itmaybe violated. See Figure 2.

To save space, we exclude therestore_left function (which
is symmetric torestore_right) and theinsert function; the
full example is available athttp://type-refinements.info/
stardust/plpv/redblack-full.rml.

4.2.1 Related work

Our combination of refinements for red-black tree insertionis new,
but the application of datasort and index refinements individually is
not. In fact, Figure 3 is based on code from Davies’ thesis (Davies
2005, pp. 277–279). Moreover, the black height refinement isnot
new either (Xi 1998, pp. 161–165). Xi also guarantees the color
invariant, but by refining the tree datatype by the index product
int ∗ int ∗ int, representing the color, black height, and “red height”
respectively.0 in the first component means red and1 means black,
with an existential quantifier used if the color is not known.The so-
called “red height” is not analogous to the black height, butinstead
counts theconsecutivered nodes, and is0 if there are none, i.e. if
the color invariant is satisfied. The resulting types are awkward and
substantially less legible than ours.

Other type-level programming techniques have been appliedto
check red-black tree invariants, relying on phantom and existential
types (Kahrs 2001). In our opinion, such approaches are evenmore
awkward than Xi’s color-encoding, and require major changes to
the basic tree datatype and code.

4.3 Example: Red-black tree deletion

As just discussed, others have studied refinements for red-black
tree insertion. Deletion is another matter. Though more compli-
cated than insertion, deletion in an imperative style can becooked
up easily from standard sources; purely functional deletion can-
not (unlike insertion, it is not treated by Okasaki (1998)).How-
ever, there are implementations, such as theRedBlackMapFn struc-
ture in the Standard ML of New Jersey library. We easily trans-
lated RedBlackMapFn into StardustML. Finding appropriate re-
finements and invariants was more difficult, and not made easier by
several lacunae in the original code, including two bugs leading to a
violated color invariant in the tree returned by thedelete function.
However, we eventually succeeded, resulting in an implementation
that satisfies invariants (1)–(3) (see the previous section).

The key data structure is thezipper, which represents a tree
with a hole,backwards, allowing easy traversal toward the tree’s
root. This corresponds to the series of rotations and color changes
that may be required after deleting a node. The functionzip takes
a zipper and a tree and plugs the tree into the zipper’s hole. The
TOP constructor (Figure 5, bottom) represents a zipper consisting
of just a hole; theLEFTB andLEFTR constructors represent the edge
from a left child to aBlack or Red node, respectively. TheRIGHTB
andRIGHTR constructors are symmetric. The examples in Figure 4
should clarify the constructors’ meaning.

We refine zippers by a datasort and two integer indices.

4.3.1 Datasort refinement ofzipper

The datasort encodes two properties: the color of the hole’spar-
ent and the color of the root of the result ofzip(z, t). If a zipper
has datasortblackZipper, the root (of the zipper, that is, the parent
of the hole) is black and can therefore tolerate black trees as well
as red; thus, all valuesLEFTB(. . . ) and RIGHTB(. . . ) have data-
sortblackZipper. If a zipperz has datasortBRzipper (for “Black
Root zipper”), the resulting zipped treezip(z, t) will have a black
root and thus have datasortblack; all zippers having the form

z [ ]
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t Black(5, t, b) Red(2, a, Black(5, t, b))

Figure 4. Examples of zippers

. . . LEFTB(_, _, TOP) . . . or the form . . . RIGHTB(_, _, TOP) . . . )
have datasortBRzipper.

We also have a datasorttopZipper, such thatTOP : topZipper.
Zipping TOP with a treet yields t itself; therefore, zippingTOP
with a black tree yields ablack tree. This property of a zipper
yielding a black tree when it is zipped with a black tree is captured
by topZipper.

The remaining datasorts,topOrBR andblackBRzipper, can be
thought of as the union and intersection, respectively, ofBRzipper
andtopZipper:

blackBRzipper

Y *
BRzipper

6
topZipper

6
Y

topOrBR blackZipper

Y*
zipper

4.3.2 Index refinement ofzipper

We refine thezipper datatype by a pair of natural numbers. A zipper
z has index refinement(h, hz) precisely ifzip, when givenz and
a treet of black heighth (that is,t : rbt(h)), yields a tree of black
height hz. Hence,TOP has typezipper(h, h) for all h, because
zip(TOP, t) yields justt.

4.3.3 Overview of the algorithm

Our code is closely based on the SML/NJ library, which claims
to implement, in a functional style, the imperative pseudocode of
Cormen et al. (1990). At a very high level, without regard forthe
red-black invariants, deletion of keyk in the treet goes as follows:

1. Starting from the root oft, find a node with keyk.

2. Join the left/right childrena/b of the node containing keyk:

i. Find the minimumx of b; this x is greater than all keys in
a, and less than all other keys inb.

ii. Delete the node containingx.

iii. Replace the node containingk with one containingx, with
the samea and the newb (with x deleted) as its children.

We can distinguish cases based on the color of the node containing
x, the minimum key in the subtree rooted atb.2 First note that since
x is the minimum, its node must have an empty left child.

2 These cases donotcorrespond to thejoinRed andjoinBlack functions,
whose names refer to the color of the node containingk.
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(*[
datatype dict with nat
datasort dict :

badLeft < dict; badRoot < dict; badRight < dict;
rbt < badLeft; rbt < badRoot; rbt < badRight;

nonempty < rbt; black < rbt;
red < nonempty;
nonemptyBlack < nonempty; nonemptyBlack < black

datacon Empty : black(0)

datacon Black : -all h : nat-
int * dict(h) * dict(h) → dict(h+1)

& int * rbt(h) * rbt(h) → nonemptyBlack(h+1)
& int * badRoot(h) * rbt(h) → badLeft(h+1)
& int * rbt(h) * badRoot(h) → badRight(h+1)

datacon Red : -all h : nat-
int * dict(h) * dict(h) → dict(h)

& int * black(h) * black(h) → red(h)
& int * rbt(h) * black(h) → badRoot(h)
& int * black(h) * rbt(h) → badRoot(h)

]*)
datatype dict = Empty

| Black of int * dict * dict
| Red of int * dict * dict

(*[
(∗ z : zipper(h, hz) if zip(z, t) : rbt(hz), where t : rbt(h).∗)
datatype zipper with nat * nat

datasort zipper :
topOrBR < zipper; blackZipper < zipper;
BRzipper < topOrBR;
topZipper < topOrBR; topZipper < blackZipper;
blackBRzipper < topZipper; blackBRzipper < BRzipper

datacon TOP : -all h : nat- topZipper(h, h)

datacon LEFTB : -all h, hz : nat-
int*rbt(h)*zipper(h+1,hz) → blackZipper(h,hz)

& int*rbt(h)*topOrBR(h+1,hz) → blackBRzipper(h,hz)

datacon RIGHTB : -all h, hz : nat-
rbt(h)*int*zipper(h+1,hz) → blackZipper(h,hz)

& rbt(h)*int*topOrBR(h+1,hz) → blackBRzipper(h,hz)

datacon LEFTR : -all h, hz : nat-
int*black(h)*blackZipper(h,hz) → zipper(h,hz)

& int*black(h)*blackBRzipper(h,hz) → BRzipper(h,hz)

datacon RIGHTR : -all h, hz : nat-
black(h)*int*blackZipper(h,hz) → zipper(h,hz)

& black(h)*int*blackBRzipper(h,hz) → BRzipper(h,hz)
]*)
datatype zipper = TOP

| LEFTB of int * dict * zipper
| LEFTR of int * dict * zipper
| RIGHTB of dict * int * zipper
| RIGHTR of dict * int * zipper ;

Figure 5. rbdelete.rml, part 1: datatypes

• If the node containingx is red, its right child cannot beRed
(color invariant), nor can it beBlack (its left child is empty—
black height0—so its right child must also have black height
0, but anyBlack-rooted tree has black height at least1), so the
right child must also be empty.

Deleting a red node does not change any black heights, so the
black height invariant is preserved; the only change neededis
to substitutex for k.

• If the node containingx is black, its right child cannot beBlack
(by similar reasoning to the red case). However, its right child
could beRed(y, Empty, Empty), in which case we can just re-
placex with y—keeping the node containingx black—which

preserves black height. The hard case is when both children
of the node containingx are empty: merely deleting that node
means that its parent will have a left subtree of black height0
and a right subtree of black height1, which is inconsistent. This
is called ablack deficit. We can try to fix it by callingbbZip,
which moves up the tree towards the root, performing rota-
tions and color changes. While this process will always yield
a valid subtree that satisfies the black height invariant (and of
course the color invariant), it may not actually “fix the deficit”:
the resulting subtree may still have a black height that is one
less than before. If that occurs—signalled bybbZip returning
(true, t)—we call bbZip again, continuing the rotations and
color changes upward past the node that used to containk (and
now containsx). Otherwise, all the invariants have been fixed,
and we need only replacek with x and callzip.

4.3.4 Thezip function

The index refinement (at the start of Figure 6) is plain: a zipper that
yields a tree of black heighthz when zipped with a tree of black
heighth, when zipped with such a tree, yields a tree of black height
hz. After all, we refined thezipper datatype with the behavior of
zip in mind.

The datasorts are less obvious. The first part of the intersection
expresses the fact that if the parent of the zipper’s hole is black
(blackZipper) then replacing the hole with any valid tree (rbt)
yields a valid tree. The second part says that if the parent of
the hole isnot known to be black, then only a black tree can
be substituted, because the parent might be red and we cannot
allow a color violation. The third part of the intersection says that,
when ablackBRzipper—a zipper with a black node as the parent
of the hole and that, when zipped, yields a black-rooted tree—is
zipped with any tree, a black-rooted tree results. The fourth says
that when either atopZipper (such asTOP) or a BRzipper (such
asRIGHTB(a, 2, TOP)) is zipped with a black treet, a black tree
results—if the zipper isTOP, because the result consists of justt,
which is black; if the zipper isBRzipper, because the result has a
black root regardless of the color oft.

4.3.5 ThebbZip function

bbZip is a recursive, zipper-based version of the pseudocode “RB-
DELETE-FIXUP” (Cormen et al. 1990, p. 274); the comments show
how the various case arms correspond to sections of pseudocode.
We therefore focus on the type annotation (Figure 6). Each part of
the intersection shares index refinements; we will look at the first,
which has the simplest datasorts. Given a zipper that when zipped
with a tree of black heighth + 1 yields a tree of black heighthz,
and a tree of black heighth (one less thanh+ 1, i.e. , with a “black
deficit”), bbZip returns either

• (true, t) wheret : rbt(hz − 1) (that is, avalid tree—with no
internal black height mismatches—but with a black height one
less than before), or

• (false, t) wheret : rbt(hz), a valid tree with the same black
heighthz as the original tree.

The second part of the intersection says that given a zipper that,
when zipped with any tree, yields a tree with a black root, the
resulting tree (whether of black heighthz − 1 or hz) will have
a black root. The third part of the intersection says that given a
zipper that is eitherTOP or aBRzipper, and a black-rooted tree, the
resulting tree must be black. This information is needed when we
typecheckdelMin.

4.3.6 ThedelMin function

delMin(t, z) returns the minimum key (an integer) int; it also re-
turnst with the minimum removed. It callsbbZip to fix internal
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(*[ val zip : -all h, hz : nat-
blackZipper(h, hz) * rbt(h) → rbt(hz)

& zipper(h, hz) * black(h) → rbt(hz)
& blackBRzipper(h, hz) * rbt(h) → black(hz)
& topOrBR(h, hz) * black(h) → black(hz) ]*)

fun zip arg = case arg of
(TOP, t) ⇒ t

| (LEFTB (x, b, z as _), a) ⇒ zip(z, Black(x, a, b))
| (RIGHTB(a, x, z as _), b) ⇒ zip(z, Black(x, a, b))
| (LEFTR (x, b, z), a) ⇒ zip(z, Red(x, a, b))
| (RIGHTR(a, x, z), b) ⇒ zip(z, Red(x, a, b))

(∗ bbZip propagates a black deficit up the tree until either the top
∗ is reached, or the deficit can be covered. It returns a boolean
∗ that is true if there is still a deficit and the zipped tree.∗)

(*[ val bbZip : -all h,hz : nat-
zipper(h+1,hz)*rbt(h) → ((bool(true)*rbt(hz-1))

∨ (bool(false)*rbt(hz)))
& BRzipper(h+1,hz)*rbt(h) → ((bool(true)*black(hz-1))

∨ (bool(false)*black(hz)))
& topOrBR(h+1,hz)*black(h) → ((bool(true)*black(hz-1))

∨ (bool(false)*black(hz)))
]*)
fun bbZip arg = case arg of

(TOP, t) ⇒ (true, t)

| (LEFTB(x, Red(y,c,d), z), a) ⇒ (∗1L−Black ∗)
bbZip(LEFTR(x, c, LEFTB(y, d, z)), a)

| (LEFTB(x, Black(w,Red(y,c,d),e), z), a) ⇒

(∗3L−Black ∗)
(false, zip(z, Black(y,Black(x,a,c), Black(w,d,e))))

| (LEFTR(x, Black(w,Red(y,c,d),e),z), a) ⇒ (∗3L−Red∗)
(false, zip(z, Red(y, Black(x,a,c), Black(w,d,e))))

| (LEFTB(x, Black(y,c,Red(w,d,e)),z), a) ⇒

(∗4L−Black ∗)
(false, zip(z, Black(y,Black(x,a,c), Black(w,d,e))))

| (LEFTR(x, Black(y,c,Red(w,d,e)),z), a) ⇒ (∗4L−Red∗)
(false, zip(z, Red(y, Black(x,a,c), Black(w,d,e))))

| (LEFTR(x, Black(y,c,d),z), a) ⇒ (∗2L−Red∗)
(false, zip(z, Black(x, a, Red(y,c,d))))

| (LEFTB(x, Black(y,c,d),z), a) ⇒ (∗2L−Black ∗)
bbZip(z, Black(x, a, Red(y,c,d)))

| (RIGHTB(Red(y,c,d),x,z), b) ⇒ (∗1R−Black ∗)
bbZip(RIGHTR(d, x, RIGHTB(c,y,z)), b)

| (RIGHTB(Black(y,Red(w,c,d),e),x,z), b) ⇒

(∗3R−Black ∗)
(false, zip(z, Black(y,Black(w,c,d), Black(x,e,b))))

| (RIGHTR(Black(y,Red(w,c,d),e),x,z), b) ⇒ (∗3R−Red∗)
(false, zip(z, Red(y, Black(w,c,d), Black(x,e,b))))

(∗ This 4R is correct−− unlike the buggy NJ library ∗)
| (RIGHTB(Black(y,c,Red(w,d,e)),x,z), b) ⇒

(∗4R−Black ∗)
(false, zip(z, Black(w,Black(y,c,d), Black(x,e,b))))

| (RIGHTR(Black(y,c,Red(w,d,e)),x,z), b) ⇒ (∗4R−Red∗)
(false, zip(z, Red(w, Black(y,c,d), Black(x,e,b))))

| (RIGHTR(Black(y,c,d),x,z), b) ⇒ (∗2R−Red∗)
(false, zip(z, Black(x, Red(y,c,d), b)))

| (RIGHTB(Black(y,c,d),x,z), b) ⇒ (∗2R−Black ∗)
bbZip(z, Black(x, Red(y,c,d), b))

Figure 6. rbdelete.rml, part 2:zip, bbZip

black height mismatches, but likebbZip it may be unable to main-
tain the black height of the entire tree, so likebbZip it returns a
Boolean indicating whether there is still a black deficit. The data-
sorts are needed injoinRed, to make sure that the new children of
the red node are black.

4.3.7 The functionsjoinRed and joinBlack

If one subtree (a or b) is empty, we simply zip up the tree (bbZip)
with the other subtree; we can drop the first part ofbbZip’s result—
the flag indicating whether the black height has changed—because
the zipperz goes all the way to the original root passed todelete,
which has no siblings.

Otherwise, we calldelMin, which returns a tree that may or
may not have a deficit. If the returned flag is false, there is nodeficit
and we can zip up to the root. If the flag is true, there is a deficit,
and we callbbZip—again, throwing away the resulting flag.

We hand-inlinedjoinRed’s call to delMin to make the color
invariant work (if there is some refinement ofdelMin that does
the job, it was not obvious to us). We removed several impossible
“inlined” case arms, so this only slightly lengthenedjoinRed.

4.3.8 Thedelete function

delete and its helperdel simply search for the key to delete,
building a zipper, and calljoinRed or joinBlack.

4.3.9 Library bugs

We found two clear bugs in the SML/NJ library; triggering either
results in a tree with a red child of a red parent: that is, the color
invariant is broken. These trees are still ordered, so searches suc-
ceed or fail as usual, and the failure of the color invariant does not
seem to cause subsequent operations to produce disordered trees.
Hence, the only calamity caused is that operations will takelonger
than they should. SinceRedBlackMapFn makes the exported tree
type opaque, client code cannot possibly detect the broken invari-
ant. Thus, these bugs will not be found unless insertion and deletion
are time-critical and someone is so stubborn as to actually inves-
tigate whether the operations are logarithmic. Moreover, runtime
testing is not very helpful: traversing a tree to verify the invariant
is linear time, so adding the tests to every operation makes those
operations linear instead of logarithmic, defeating the purpose of a
balanced tree. (We might dream up more clever tests that would add
only constant overhead, but then we have to verify our cleverness.)

The first bug is in SML/NJ’s “4R” case inbbZip; upon inspec-
tion, something is obviously wrong because it is not symmetric to
the “4L” case. We found this bug some time before we settled on
the present refinement ofzipper: we had only a datasort refinement
on zipper, but even that, combined with reading each case closely,
sufficed to lead us to this bug.

The second bug is injoinRed; if delMin returns with its first
argument true, meaning that the result has a black deficit, the
original code callsbbZip to fix the deficit; however, the tree passed
to bbZip includes a red node withb’ as a child, butb’ may be red,
leading to a color violation (which isnot somehow fixed inside
bbZip). We found this second bug much later than the first: we
had settled on the index refinement ofzipper and a nearly-final
version of the datasort refinement. Once we became suspicious that
b’ might not always be black, we looked for an input todelete
that would trigger the bug; we found one, confirming that there
was a bug and not simply a case of our refinements being too weak.

5. Booleans
If we consider index predicates such as> to be index functions,
then a Boolean sort manifests itself immediately, as the range of
such functions. The Boolean sort can also index thebool datatype.
Such an indexing scheme is handy for specifying the result of
certain functions. For example, we define the type of the ML
function< to be-all a, b : int- int(a) ∗ int(b) → bool(a < b).
As implemented, the Boolean sort has none of the usual Boolean
operations such as conjunction (though that is already partof the
constraint language).
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(*[ val delMin : -all h, hz : nat-

nonempty(h) * blackZipper(h, hz)
→ int * ((bool(false)*rbt(hz))

∨(bool(true)*rbt(hz-1)))

& nonemptyBlack(h) * zipper(h, hz)
→ int * ((bool(false)*rbt(hz))

∨(bool(true)*rbt(hz-1)))

& nonempty(h) * blackBRzipper(h, hz)
→ int * ((bool(false)*black(hz))

∨(bool(true)*black(hz-1)))

& nonemptyBlack(h) * BRzipper(h, hz)
→ int * ((bool(false)*black(hz))

∨(bool(true)*black(hz-1))) ]*)

fun delMin arg = case arg of
(Red(y, Empty, b), z) ⇒

(y, (false
(∗ i.e., no deficit, black height unchanged∗) , zip(z,b)))

| (Black(y, Empty, b), z) ⇒

(∗ This is the minimum; deleting it yields a black deficit.∗)
(y, bbZip(z,b))

| (Black(y, a, b), z) ⇒ delMin(a, LEFTB(y, b, z))
| (Red(y, a, b), z) ⇒ delMin(a, LEFTR(y, b, z))

(*[ val joinRed : -all h,hz:nat-
black(h)*black(h)*blackZipper(h, hz) → rbt ]*)

fun joinRed arg = case arg of
(Empty, Empty, z) ⇒ zip(z, Empty)

| (a, Empty, z) ⇒ #2(bbZip(z, a))
| (Empty, b, z) ⇒ #2(bbZip(z, b))
| (a, Black(x,Empty,bb), z)⇒#2(bbZip(RIGHTR(a,x,z),bb))
| (a, Black(y,aa,bb), z) ⇒

let in case delMin(aa, LEFTB(y, bb, TOP)) of
(x, (needB as false, b’)) ⇒ zip(z, Red(x,a,b’))

| (x, (needB as true, b’)) ⇒

#2(bbZip(RIGHTR(a,x,z), b’))
end

(*[ val joinBlack : -all h,hz:nat-
rbt(h)*rbt(h)*zipper(h+1, hz) → rbt ]*)

fun joinBlack arg = case arg of
(a, Empty, z) ⇒ #2(bbZip(z, a))

| (Empty, b, z) ⇒ #2(bbZip(z, b))
| (a, b, z) ⇒

let in case delMin(b, TOP) of
(x, (needB as false, b’)) ⇒ zip(z, Black(x,a,b’))

| (x, (needB as true, b’)) ⇒

#2(bbZip(RIGHTB(a,x,z), b’))
end

(*[ val delete : -all h : nat- rbt(h) → int → rbt ]*)
fun delete t key =

let
(*[ val del : -all h, hz : nat-

rbt(h) * blackZipper(h, hz) → rbt
& black(h) * zipper(h, hz) → rbt ]*)

fun del arg = case arg of
(Empty, z) ⇒ raise NotFound

| (Black(key1, a, b), z) ⇒

if key = key1 then joinBlack (a, b, z)
else if key < key1 then del (a, LEFTB(key1, b, z))
else del (b, RIGHTB(a, key1, z))

| (Red(key1, a, b), z) ⇒

if key = key1 then joinRed (a, b, z)
else if key < key1 then del (a, LEFTR(key1, b, z))
else del (b, RIGHTR(a, key1, z))

in
del(t, TOP)

end

Figure 7. rbdelete.rml, part 3:delMin, joinRed, joinBlack,
delete

6. Dimensions: an invaluable refinement
Dimensions are ubiquitous in physics and related disciplines.
For example, the plausibility of engineering calculationscan be
checked by seeing whether the dimension of the result is the ex-
pected one. If one concludes that the work done by a physical
process isx · (a1 + a2) wherex is a distance anda1 , a2 are
masses, something is wrong. If, on the other hand, the conclusion
has the formx · (n1 + n2) wheren1 andn2 are forces, it is at
least possible that the calculation is correct, work being aproduct
of distance and force. Basic operations like addition are subject to
sanity checking through dimensional analysis: one cannot add a
distance to a force, and so forth. (Dimensionrefers to a quantity
such as distance, mass or time; systems ofunitsdefine base quan-
tities for dimensions. For example, in civilized countries, the base
unit of distance is the meter.)

The idea of trying to catch dimension errors in programs is old.
Kennedy (1996) cites sources as early as 1978. Many dimension
checking schemes were hamstrung by their lack of polymorphism:
they could not universally quantify over dimension variables. For
example, they could not express a suitably generic type for the
square functionfn x ⇒ x ∗ x. Kennedy’s system, extending Stan-
dard ML, is an elegant formulation providing dimension polymor-
phism and user-definable dimensions. However, it is a substantial
extension of the underlying type system, and is complicatedby
doing full inference rather than bidirectional checking. For us, di-
mensions are, formally, just another index domain; practically, the
implementation work involved was modest (less than one person-
week).

We refine the primitive typereal of floating point numbers with
a dimension. Certain quantities, including nonzero floating-point
literals, are dimensionless and are indexed byNODIM; however, the
zero literal0.0 has type-all a : dim- real(a). ConstantsM, S, and
so forth have typereal(M), real(S), etc. All these constants have
the value1.0, so3.0 ∗ M has value3.0.

In fact, the value produced by3.0 ∗ M is equal to the values
produced by3.0, and to that produced by3.0∗S, by3.0∗M∗M, and
so on. Unlike the data structure refinements of Section 4, dimension
refinements say virtually nothing about values! Zero is an exception
to this: it appears that if⊢ v : -all a : dim- real(a) thenv = 0.0.
However, for any⊢ v : real(d) the set of possible values is exactly
the same for everyd, as well as being the same set as the simple
typereal. After all, there should be no tag at runtime.

But what, then, do we actually learn when a program with
dimension refinements passes the typechecker? With red-black tree
refinements, one could prove that any value of typered must have
the form Red(. . . ), but with dimensions there are few directly
corresponding properties. Instead, being well typed meansthat
subterms of dimension type are used in a consistent way. The
user must make some initial claims about dimensions (otherwise
everything will be dimensionless and nothing is gained), which
cannot be checked, though we can check the consistency of their
consequences. For example, the user must be free to multiplyby
constants such asM, to assign dimensions to literals and to the
results of functions likeReal.fromString. Given free access to
those constants, for anyknown constantdimensionsd1 and d2 ,
it is trivial to write the appropriate ‘coercion’, such as this one for
convertingM2 to KG:

(*[ val m2_to_kg : real(M^2) → real(KG) ]*)
fun m2_to_kg x = (x / (M * M)) * KG

However, there is no ‘universal cast’ between arbitrary dimensions.

6.1 Definition of the index domain

The dimension sortdim has no predicates besides equality.NODIM
stands for the multiplicative identity that indexes dimensionless
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quantities. The constants areM, S, KG, and any additional con-
stants the user declares. The functions are multiplication*, which
takes two dimensions (e.g.M ∗ S), and ‘̂ ’, which takes a dimen-
sion and an integer (e.g.M ^ 3). (One could also allow rational
exponents; see Kennedy (1996, p. 7) for a full discussion.)

6.2 Related work on dimension types in ML

We point out certain differences between Kennedy’s work on di-
mension types in ML and ours. Kennedy (1996, p. 66) notes that
the functionpower : int → real → real, such thatpower n x
yields xn, cannot be typed in his system because it lacks depen-
dently typed integers. With our integer index refinements, this is
easy:

(*[ val power : -all a:int- -all d:dim-
int(a) → real(d) → real(d^a) ]*)

fun power n x =
if n = 0 then 1.0
else if n < 0 then 1.0 / power (~n) x
else x * power (n-1) x

Similarly, in Kennedy’s system, universal quantifiers overdi-
mension variables must be prenex (on the outside), just likeuni-
versal quantifiers over SML type variables. Kennedy (1996, pp.
66-67) gives the example of a higher-order functionpolyadd that
appliesprod to arguments of different dimensions (first toNODIM
andKG, then toKG andNODIM); Kennedy’s system cannot infer
the typepolyadd : (-all d1 : dim- -all d2 : dim- real(d1) →

real(d2) → real(d1 ∗ d2)) → real(KG) because the quantifiers
are inside the arrow.

fun polyadd prod = prod 2.0 KG + prod KG 3.0

Since we do not require universal index quantifiers to be prenex,
we can typecheckpolyadd.

Another small example from Kennedy (1996, p. 11) implements
the Newton-Raphson method.

(*[ val newton : -all d1,d2:dim-
(∗ f, a function∗) (real(d1)→real(d2))
(∗ f’, its derivative∗) * (real(d1)→real((d1 ^~1)*d2))
(∗ x, the initial guess∗) * real(d1)
(∗ xacc, relative accuracy∗) * real → real(d1) ]*)

fun newton (f, f’, x, xacc) =
let val dx = f x / f’ x

val x’ = x - dx
in if abs dx / x’ < xacc then x’

else newton (f, f’, x’, xacc)
end

Kennedy also presents results about dimension polymorphism
in the vein of parametricity (Reynolds 1983). We do not know if
similar results hold for our system.

6.3 Units of the same dimension

Some of the most catastrophic dimension bugs are not strictly
attributable to confusion of dimensions, but to confusion of units.
In 1984, the space shuttle Discovery erroneously flew upsidedown
because a system was given input in feet, when it expected input in
nautical miles (Kennedy 1996, p. 12). And in 1999, NASA’s $125
million Mars Climate Orbiter was lost and presumed destroyed
after navigational errors resulting in part from confusionbetween
pound-forces and newtons (Euler et al. 2001, p. 7).

Stardust has no specific support for multiple units of the same
dimension. However, one can simply consider the units to be dis-
tinct dimensions, though at the cost of explicit conversions between
units.

6.4 Implementation of dimensions

Neither ICS nor CVC Lite directly support dimensions, so Stardust
reduces a constraint on dimensions to a conjunction of constraints

on the exponents:Ma = (M ∗ S)b , which is equivalent to(Ma) ∗

(S0) = (Mb) ∗ (Sb), reduces to(a = b) ∧ (0 = b). Without
existentials, that would be the end of the story, since everyindex
expression of dimension sort can be reduced to a normal form in
which each base dimension or (universallyquantified) dimension
variable appears once and in some particular order (Kennedy1996,
pp. 16–17). Then equality is just the conjunction of equalities of
exponents. However, existentials require that we actuallysolve for
dimension variables, but this is quite easy. Given a normal form
equationi1 = i2 containing a factorba (with nonzero exponent),
we first rearrange the equation into the formNODIM = (i−1

1
) ∗ i2

and distribute the−1 over the factors ini1, yielding an equation
NODIM = bak ∗ j

k1

1
∗ · · · ∗ jkn

n , wherek 6= 0. Multiplying both
sides byba−k yields ba−k = j

k1

1
∗ · · · ∗ jkn

n ; raising both sides to
the power1/(−k) gives the solved formba = . . . .

6.5 Related work on invaluable refinements

Our term “invaluable refinement” is new, but similar notionshave
come up in other contexts. Thequalified typesof Foster (2002) en-
compass a variety of flow-sensitive, invaluable properties: Zero or
more qualifiers, under a partial order (reminiscent of datasort re-
finements), may appear with a type. Foster’s qualified type anno-
tations are of two forms:annot(e, Q), which adds the qualifier
Q to the type inferred fore (a kind of cast), andcheck(e, Q),
which directs the system to check thatQ is among the qualifiers
of the type inferred fore. Thus, as with dimensions in our system,
qualified types are based on annotations provided by the userand
cannot be checked at runtime. In our system, we suspect that ei-
ther a datasort refinement or an index refinement with a domain
of finite sets of constants (the qualifiers) would suffice to model
qualified types, with some kind of cast—some well-named identity
function—acting asannot(e, Q), and type annotation(e : A) with
the appropriate refinement acting ascheck(e, Q).

Garden-variety Hindley-Milner typing also supports invaluable
refinements. Aphantom type(Finne et al. 1999; Leijen and Meijer
1999) is an ordinary datatype with a “phantom” polymorphic type
parameter that is not tied to the values of that type, at leastnot in the
obvious way thatα is tied toα list. Phantom types can even mimic
integer index refinements by encoding integers through dummy
types, as Blume (2001) does in his “No Longer Foreign Function
Interface” for Standard ML of New Jersey. From the user’s point of
view, integer index refinements seem more natural.

Phantom types can also be used as value refinements, but the
typechecker’s ability to reason based on inversion is limited. For
invaluable refinements there are few interesting inversionprinci-
ples, but when phantom types are used to encode a value-based
property this is a serious shortcoming, especially since exhaustive-
ness of pattern matching cannot be shown. Hence, researchers have
designed “first-class” phantom types, under various names,e.g. Ch-
eney and Hinze (2003); Fluet and Pucella (2006); Xi et al. (2003);
Peyton Jones et al. (2006). This approach lacks one virtue ofphan-
tom types: that one can use a standard compiler.

Phantom types (whether first- or second-class) can be seen as
tantamount to index refinements in which the index objects are
types. These systems lack intersection types, so they cannot trans-
parently express conjunctions of refinement properties. More fun-
damentally, when the index objects are types, index equality is type
equivalence—which, as equational theories go, is rather impover-
ished. It is no coincidence that a standard example of phantom types
is an interpreter for a tiny typed language, where (in our terminol-
ogy) terms in the interpreted language are indexed by types.The
encoding from the problem domain is trivial, because the source
language’s types are a superset of the interpreted language’s types.
When that is not the case, such encodings become nontrivial.
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In order to (again, in our terminology) obtain richer index do-
mains than their current type expressions, phantom type systems
have been enriched with elements of traditional dependent typ-
ing (Sheard 2004). Unlike ours, these systems allow users towrite
their own proofs of properties in undecidable domains. Froma
user’s perspective, this approach seems more complex than ours.

Ephemeral refinements(Mandelbaum et al. 2003) may be a
form of invaluable refinement as well: the refinements are about
‘the state of the world’, which is not a manipulable value in SML
and similar type systems. If we consider ephemeral refinements in-
volving mutable storage, a monadic formulation of ephemeral re-
finements would reify the state into a value and the ephemeral/in-
valuable refinement of the state into a value refinement. Think of
Haskell’s state monad with a refinement about the array’s contents:
the contents of the array are part of the world encapsulated by the
monad. However, given an ephemeral refinement that encodes in-
formation that cannot be directly inspected, such as (some property
of) the bytes written to standard output, there is nothing toreify;
unless the program is modified to store that information, there is no
value to refine. Thus, both value and invaluable refinements should
be useful when effects are encapsulated monadically.

Finally, Refinement ML (Davies 2005) does not support invalu-
able refinements. In that system, the inhabitants of the datasorts are
specified through regular tree grammars in which the symbolsare
the datatype’s constructors; the only way to define datasorts that
are not perfectly synonymous is to specify that they are inhabited
by different sets of values. (Mere laziness kept us from following
the same strategy: we did not want to bother transforming regular
tree grammar-based specifications into constructor types!)

7. The design of Stardust
Stardust consists of a parser, a few preprocessing phases, atransla-
tor from the source language to let-normal form, and a typechecker
that includes interfaces to external constraint solvers, to which we
delegate much of the work of integer constraint solving.

The type system presents several implementation challenges.
The first is that certain rules pretend that we can somehow guess
how to instantiate index variables, for example, when eliminating
a universal quantifier-all a : sort- . The usual approach, which
we follow, is to postpone instantiation by generating constraints
with existential variables. However, for efficient typechecking, con-
straint solving must be online. Otherwise, if we checkf(x) where
f : A & B, we may choosef : A, continue typechecking to the end
of the block, find that the constraint is false, backtrack andchoose
f : B, etc. If A = list(0) → A ′ andx : list(1), we should know
immediately that tryingf : A is wrong, since0 = 1 is invalid.
Thus, we give the additional constraint to the solver on the fly, and
when it reports that0 = 1 is invalid we can proceed immediately to
considerf : B. Forn such choices, if the program is ill typed and
all choices (would) ultimately fail, this takes us from typechecking
the block2n times to onlyn times.

A fundamental challenge is making typechecking with intersec-
tion and union types fast enough. To check an expression against
A & B, we check it againstA and thenB, doubling typechecking
time. To check an expression againstA ∨ B, we check it againstA
and, if that fails, againstB, doubling typechecking time in the worst
case. Dually, if we have a known expression (such as a variable) of
type A & B, we first assume that it has typeA; if typechecking
subsequently fails, we assume it has typeB. Finally, if we have a
known expression of typeA ∨ B, it could have either type and
so we must typecheck first under the assumption that it has type
A, and then under typeB. Thus, in the worst case, typechecking is
exponential in the number of intersections and unions appearing in
the program.

Intersections and unions affect error reporting as well: ideally
we might like reports of the form “checking againstA & B failed:
could not check againstB whenx : C1 (wherex : C1 ∨ C2)”, in
addition to a program location. Still, bidirectionality gives us some
advantage over typecheckers based on unification. As Pierceand
Turner (1998) and Davies (2005) have observed, in a bidirectional
system, the location reported is more likely to be the real cause of
the error, which is not always the case when unification aloneis
used.

7.1 Interface to an ideal constraint solver

We would like a constraint solver that supports the following for all
index domains of interest:

1. A notion ofsolver context(represented byΩ) that encapsulates
assumptions;

2. An ASSERT operation taking a contextΩ and propositionP,
yielding one of three answers:

(a) Valid if P is already valid under the current assumptionsΩ;

(b) Invalid if P is unsatisfiable, that is, leads to an inconsistent
set of assumptions;

(c) Contingent(Ω ′) if P is neither valid under the current
assumptionsΩ nor inconsistent when added toΩ; yields
a new contextΩ ′ = Ω, P.

3. A VALID operation taking a contextΩ and propositionP, and
returning one of two possible answers:

(a) Valid if P is valid under the current assumptions;

(b) Invalid otherwise.

Implicit in this specification is that the contextsΩ are persistent:
if ASSERT(Ω1 , P) yields Contingent(Ω2), the “earlier” context
Ω1 should remain unchanged. This is a key property, given all the
backtracking the typechecker does. Where a constraint solver does
not have this property, it can be simulated, though at some cost; see
Section 8.1. Likewise, where the constraint solver does notsupport
an index domain, propositions in that domain must be reducedto
propositions in a supported domain.

7.2 Constraint-based typechecking

The typechecker has a notion ofstatethat is independent of the par-
ticular constraint solver used. It includes index assumptions such as
the index sortinga:int and the propositiona > 0; an accumulated
constraint that needs to be valid to make the program well typed;
a substitution containing solutions for existentially quantified vari-
ables; and a representation of the external constraint solver’s state.

Our constraint solvers do not support existential variables at
all (ICS) or support them incompletely (CVC Lite), which signif-
icantly affects the design. The typechecker itself managesexis-
tentials in the integer domain, and lies to the constraint solver by
telling it that existential variables are universal. Therefore, when
adding a constraint we cannot immediately check its validity, since
the constraint may include existential variables that the solver
thinks are universal: we cannot directly checkba:int |= ba = 0
(meaning∃a. a = 0), only a:int |= a = 0 (meaning∀a. a = 0)
with a universally quantified. Clearly, the first relation should hold
and the second should not. Fortunately, we can still “fail early”
(recallingf : A & B from the example earlier). Instead of checking
validity, we assert the new constraint, adding it to the assumptions.
If the resulting assumptions are inconsistent (as with0 = 1, or—
less trivially—a = a + 1), no instantiation of existential variables
can make the constraint valid, so we can correctly fail, and back-
track as needed.
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Of course, we must check validity of the constraint at some
point! Otherwise, given a constraintb = 0, we would conclude
b:int |= b = 0 sinceb = 0 is a consistent assumption. Therefore,
in addition to assertingb = 0, we add it to a constraint built up
in a manner similar to off-line constraint solving. Eventually, the
typechecker tries to solve for existentials (applying a simplistic
and probably incomplete rewriting algorithm) and asks the solver
whether the built-up constraint is valid.

7.3 Interface to ICS

Stardust includes an interface to ICS (de Moura et al. 2004) as an
external constraint solver. ICS has cooperating decision procedures
for fragments of rational arithmetic and several theories;the type-
checker presently uses only the arithmetic theory. While there is a
notion of “current context” in the ICS interface (for example, ICS’s
ASSERT operation takes only a proposition and implicitly uses the
current context as theΩ), previously constructed contexts can be
saved and restored quickly, yielding an interface extremely close to
the idealized one presented above. This is no coincidence: we de-
signed our system with ICS in mind. We do not use ICS as a library;
instead, it runs as a separate process and we communicate through
Unix pipes.

7.4 Interface to CVC Lite

Stardust also includes an interface to CVC Lite (Barrett and
Berezin 2004), the successor to CVC, the Cooperating Validity
Checker (Stump et al. 2002), which in turn succeeded SVC, the
Stanford Validity Checker (Barrett et al. 1996). CVC Lite has co-
operating decision procedures for fragments of integer andrational
arithmetic, Boolean propositions (including conjunction, disjunc-
tion, negation, and implication), and other theories; we presently
use only the integer and Boolean theories. It has limited support for
quantifiers, both universal and existential (free variables are, as in
ICS, considered universal); a response ofInvalid may be given even
when an existential solution exists. We have not explored whether
that limited support is enough for Stardust; if as powerful as our
home-grown existentials, we might get a simpler design.

Unlike ICS, CVC Lite does not support persistent contexts. We
discuss the impact of this in Section 8.

CVC Lite has recently become CVC3. We hope to add support
for CVC3, which should allow us to easily implement an index
domain where the objects are inductive datatypes.

7.5 No refinement restriction

Davies’ Refinement ML (Davies 2005) has arefinement restriction
on intersection types: an intersectionA & B is well formed only
if A andB are refinements of the same simple type. For example,
even & odd is permitted ifeven andodd both refinelist; likewise,
(even → odd) & (odd → even) is permitted, since each com-
ponent of the intersection refineslist → list. On the other hand,
list & (list → list) and int & string do not satisfy the refinement
restriction; in the first,lists and functions are incompatible, while
int and string are distinct base types. Because of the refinement
restriction, typechecking in Refinement ML is conservativeover
Standard ML: every program that is well typed in Refinement ML
is also well typed in Standard ML.

In contrast, Stardust does not enforce a refinement restriction
on intersections and unions. Stardust also does not check code
that it knows (through the type system) to be dead. Thus, it isnot
conservative in the sense that Refinement ML is.

7.6 Let-normal translation

Stardust translates programs into a let-normal form beforetype-
checking them, enabling a more efficient typechecking algorithm

than the one arising directly from the tridirectional system (Dun-
field and Pfenning 2004). Our translation is unusual in that all syn-
thesizing forms, including variables, are let-bound; thishelps to
guarantee that no programs that would be well typed if left untrans-
lated (i.e. , well typed in the tridirectional system) become ill-typed
when translated. Because we have that guarantee, the let-normal
translation is completely transparent to the user. The details of the
transformation and the proof that no well-typed programs become
ill-typed (and vice versa) after translation are beyond thescope of
this paper; see Dunfield (2007, Ch. 5).

8. Speed of typechecking
In this section, we give the time needed to typecheck severalex-
ample programs, and discuss some of the factors affecting perfor-
mance.

Wall-clock time in seconds
CVC Lite CVC Lite

Input program ICS (library) (standalone)

redblack-full 1.9 8.2 9.2
redblack-full-bug1 1.6 6.8 8.1
redblack < 1 < 1 < 1
rbdelete * 37.7 31.6
bits * 9.5 4.0
bits-un 33.5 298.5 241.4

Table 1. Time required for typechecking

The times indicated are under Standard ML of New Jersey ver-
sion 110.59 on a 4-CPU Intel Xeon (3 GHz) and 2 GB RAM. The
constraint solvers were ICS version 2.0 (November 2003) andCVC
Lite version 20070121 (January 2007). An asterisk (*) indicates
programs for which the constraint solver gives a wrong answer, or
the system otherwise fails. ‘redblack-full’ is the programin Figure
3; ‘redblack-full-bug1’ is that program with a bug introduced; ‘red-
black’ is the same program with index refinements removed, using
only datasort refinements. ‘bits’ contains several functions on bit-
strings. ‘bits-un’ is similar, but uses union types more extensively.
The very long typechecking time is due in part to having to check
certain expressions against each component of a 4-way union; those
expressions themselves are of a 4-way union type.

All of the dimension examples in this paper typecheck in less
than one second, which appears to be typical for code that does not
use intersection and union types.

8.1 Impact of solver interfaces

Stardust communicates with ICS through Unix pipes. This is not
very efficient: experiments suggest that the overhead of sending one
command and receiving one response is20–40% for ICS.

We can also communicate with CVC Lite through Unix pipes,
but we have also implemented a direct interface to a shared library
through CVC Lite’s C-level API and the SML/NJ NLFFI. As we
expected, this speeds typechecking in most cases.

For CVC Lite, another source of inefficiency is CVC Lite’s in-
ability to rapidly switch back to previously visited contexts. Unlike
ICS, in which contexts are persistent and can be recalled instan-
taneously, CVC Lite can roll back only to ancestors of its current
context. This requires us to “replay” assertions; typically, 20–50%
of transactions with CVC Lite are replay assertions. This suggests
that for our purposes, persistent context in a constraint solver is
useful but not absolutely essential.

8.2 Conservation of speed

We believe that Stardust conserves typechecking speed, in the sense
that checking a program—more usefully, a block—that does not
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use property types should take polynomial time (as with monomor-
phic SML programs). This is subject to the caveat that property
types appear in the types of many primitive functions; any block
that uses* actually uses intersection types. This (unproven) claim
rests on our belief that the underlying type system has a subformula
property (Prawitz 1965, p. 53): formulas (here, type expressions)—
and, therefore, connectives like&—appear in parts of a derivation
only if they appear as subformulas of the goal (where types inan-
notations are goals).

8.3 Scaling up

Typechecking is modular, in the specific sense that each block of
mutually recursive function declarations can be checked indepen-
dently of each other block. For example, given a program withtwo
mutually recursive functionsf1, f2 followed by a functiong, i.e.
fun f1 . . . and f2 . . . fun g, if checkingg fails, it cannot be blamed
on a choice made while checkingf1 andf2.

Thus, while property types can make checking a particular block
very slow, adding a second block of the same complexity will
only double typechecking time. This “block independence” should
mean that once we have acceptable efficiency for typical programs
of a few hundred lines, only linear speedup will be required to
be acceptably efficient on larger programs. Moreover, we should
be able to get that speedup through an easy form of distributed
computation: If we send each block to a different processor for
typechecking, the communication cost will be low, since theinput
is small and the output is tiny: typechecking either succeeds, or fails
with some error information, for that block.

Davies’ work (Davies 2005) suggests that there would be no
major barriers to adding ML modules to Stardust. This would
allow users to give refined types in module signatures, providing
important documentation; it also does not add to the volume of
annotations, since signatures must be written out anyway.

9. Related work
The type system that underlies Stardust is based on prior work (Dun-
field and Pfenning 2004; Dunfield 2007), which includes intersec-
tions, unions, index refinements, and datasort refinements.

Intersection types are fairly old (Coppo et al. 1981); type infer-
ence is undecidable (Amadio and Curien 1998). Reynolds (1996),
who was the first to use intersection types in a practical program-
ming language, proved that typechecking isPSPACE-hard. Intersec-
tion types (sometimes with union types too) have also been used to
infer control flow properties, e.g. Palsberg and Pavlopoulou (2001)
and for compositional type inference, e.g. Bakewell et al. (2005).

Freeman and Pfenning (1991) introduced datasort refinements
combined with intersection types, showed that full type inference
was decidable under the refinement restriction, and developed an
inference algorithm based on techniques from abstract interpreta-
tion. Interaction with effects in a call-by-value languagewas first
addressed conclusively by Davies and Pfenning (2000), who re-
stricted intersection introduction to values, pointed outthe un-
soundness of distributivity, and proposed a practical bidirectional
checking algorithm. Davies’ datasort refinement checker (Davies
2005) supports all of Standard ML. Pierce (1991) gave examples
of programming with intersections and unions in a pureλ-calculus,
relying on syntactic markers which are not needed in our system.

Xi (1998) formulated Dependent ML, a bidirectional type sys-
tem with index refinements for a variant of ML and implementedit
as an extension to Caml Light. He showed a number of applications
(using the integer constraint domain), including array bounds check
elimination. To cope with some issues arising from existential in-
dex quantification, Xi’s approach transformed programs into a let-
normal form before typechecking them; however, typechecking is
then incomplete, in the sense that some programs that typecheck

in their original form do not typecheck after translation. We at-
tack similar issues with existentials in our work in a broadly similar
way, through translation to our own peculiar variant of let-normal
form. However, our let-normal typecheckingis complete (as well
as sound) (Dunfield 2007, Ch. 5).

The ancestor of index refinement is the notion of dependent
type developed by Martin-Löf and used in various theorem proving
systems. The typesΠx:A. B andΣx:A. B roughly correspond to the
universal and existential quantifiers over indices; however, instead
of drawingx from a restricted index domain, dependent types draw
x from terms of typeA. This is powerful but (in any language in
which some programs do not terminate) undecidable.

A number of systems have tried to tame dependent types. In
Cayenne (Augustsson 1998), typechecking “times out” aftera
given number of steps. In Epigram (McBride and McKinna 2004),
all well-typed programs terminate, so type equivalence is decid-
able. The dependent indices are elements ofinductive familiesof
constructors; the example of natural numbers withzeroand succ
constructors is probably the canonical one. In the system ofChen
and Xi (2005), as in Epigram, users can write explicit proofsof type
equivalences; unlike Epigram, the language itself is not restricted—
decidability comes by restricting the terms that can inhabit indices.
A similar system is described by Licata and Harper (2005), who
give a detailed comparison of these and related type systems.

We see two major advantages of our approach over these sys-
tems. The first is that our system needs no guidance beyond type
annotations. The second is the legibility and clarity of thetypes
themselves. We believe that the types in our system are easier to
understand than in these more traditional dependent type systems.
It could be argued that both flavors of system add to the number
of ‘levels’ a user must think about—ours adds index refinements
(and datasorts, but let us not muddy the comparison), while theirs
add dependent typing and kind-level programming. However,the
level we add seems to belower than the types in conventional type
systems, rather than higher.

Our approach also differs significantly from extended static
checking (Leino 2001), which, like our system, uses annotations
to express properties and processes the invariants at compile time,
without the user writing explicit proofs. However, a reportfrom
ESC must be interpreted quite differently from a report fromStar-
dust. In the extended static checking framework, a favorable report
simply means that no problem wasfound in the program; it does
not guarantee that the properties actually hold. In Stardust, a re-
port that the program typechecks means that the properties really
do hold (subject to the usual caveats about bugs in Stardust itself,
in the compiler, etc.). On the other hand, that limitation isa key
reason that ESC can express many properties Stardust cannot.

10. Conclusion
We have presented the first implementation of a system combining
intersections, unions, and type refinements, in which the express-
ible properties, while limited by decidability concerns, are legible
and straightforward. We have formulated and implemented index
domains of integers, Booleans, and dimensions. While typecheck-
ing speed is adequate for most of our examples, it is not fullysatis-
factory; more work is needed to allow extensive use of intersection
and union types.

As the set of supported domains grows, an already present prob-
lem grows with it: the scalability of the refinements themselves.
Different invariants will be important in different parts of a pro-
gram. It is perfectly reasonable to index lists by length; itis also
perfectly reasonable to index them by their contents, or by some
property of a particular element. Our current approach requires that
one either cram all manner of indices into a tuple, and index by
that, or create new datatypes for each new property, each with its
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own refinement. The first technique is brazenly anti-modular; the
second leads to code duplication and tedium. Thus, designing truly
modular refinements is an important goal for future work.

We intend to explore additional index domains including bit
vectors, inductive families, functional arrays (vectors), fragments
of set theory, and regular languages, all of which have practical de-
cision procedures and are therefore compatible with our approach.

We are in the process of adding parametric polymorphism to the
type system and implementation, and are investigating extensions
to call-by-name and call-by-need semantics.
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