
Project Report: Dependently typed
programming with lambda encodings in Cedille

Ananda Guneratne, Chad Reynolds, and Aaron Stump

Computer Science, The University of Iowa, Iowa City, Iowa, USA
ananda-guneratne@uiowa.edu, chad-reynolds@uiowa.edu,

aaron-stump@uiowa.edu??

Abstract. This project report presents Cedille, a dependent type the-
ory based on lambda encodings. Cedille is an extension of the Calculus
of Constructions with new type features enabling induction and large
eliminations (computing a type by recursion on a term) for lambda en-
codings, which are not available for lambda-encoded data in related type
theories. Cedille is presented through a number of examples, including
both programs and proofs.

1 Introducing Cedille

In this report, we describe a new project aimed at developing a dependently
typed programming language called Cedille, based on lambda encodings. In de-
pendent type theory, lambda encodings were abandoned in the 1980s, due to
several serious problems: induction is provably not derivable [9], and one cannot
use lambda encodings across multiple levels of the type theory making it impos-
sible to compute both terms and types by recursion on lambda-encoded data.
For these reasons, languages like Coq and Agda are based on a datatype sub-
system, including case expressions or pattern matching, and special additional
typing and reduction rules. With lambda encodings, one can avoid all this, and
work with a pure lambda calculus. This simplifies the design and meta-theory
of the language. Furthermore, one can use higher-order encodings, which cor-
respond to datatype definitions with negative occurrence of the datatype being
defined. These are disallowed in systems like Coq and Agda, but are allowed in
languages like System F. Such datatypes have been proposed for representing
expressions with binders, a long-standing challenge in functional programming
and type theory (see, e.g., [24]).

The third author has developed new solutions to the problems of induc-
tion and large eliminations, in a type theory called the Calculus of Dependent
Lambda Eliminations (CDLE) [21]. The main ideas are (1) to add a special form
of recursive types where constructors are first declared, for purposes of stating
a dependent elimination principle (which must mention the constructors), and
then defined using a lambda encoding; and (2) to use a lifting operation to lift
simply typed terms to the type level, for large eliminations. In this report, we

?? Guneratne and Reynolds are doctoral students.

describe our initial experience with an implementation of CDLE called Cedille.
We begin with an informal look at type checking (Section 2), and the user in-
terface for Cedille (Section 3). Next, we recall the Parigot encoding, which is
recommended for Cedille programming (Section 4). We then discuss equational
reasoning in Cedille in general (Section 5), and through some examples with
Parigot-encoded natural numbers (Sections 6 and 7). Next we give some exam-
ples with lists (Section 8), and a somewhat longer proof example, for transitivity
of compare on natural numbers (Section 9). Finally, we consider a beginning ex-
ample of a higher-order lambda encoding (Section 10), and conclude (Section 11).

1.1 Related Work

Probably the best-known lambda encoding is the Church encoding [4], typable in
System F [3, 8]. The inherent inefficiency of predecessor, proved by Parigot [19],
was addressed later by the same author, who proposed a new lambda encoding
with constant-time predecessor [18]. The size of the normal form of Parigot-
encoded natural number n is O(2n), but this does not result in inefficient com-
putation using modern functional programming implementations [11]. Stump
and Fu give a comprehensive discussion of efficiency of various lambda encod-
ings [22].

Coq and Agda are two prominent interactive theorem provers based on con-
structive type theory [14, 7]. Coq is based on the Calculus of Inductive Con-
structions (CIC) [25]. This formalism adds inductive datatypes to the Extended
Calculus of Constructions [13], which is itself based on the original Calculus
of Constructions [5]. The problems noted above – underivability of induction,
lack of large eliminations (needed for deriving propositions like 0 6= 1), and
(inessentially) inefficiency of accessor functions like predecessor – motivated the
addition of inductive types as primitive [6]. Agda has a somewhat different basis
than Coq: it uses predicative polymorphism only, where Coq has both pred-
icative and impredicative quantification;, and it is based on pattern-matching
equations including axiom K, which is not derivable in CIC [10]. Still, for pur-
poses of comparison with Cedille, it is very similar to Coq, as it is also based
on a primitive notion of inductive datatype. In contrast, in Cedille, all data are
lambda-encoded and there are no primitive inductive typs.

It is worth noting that while Coq and Agda remain active testbeds for new
research in theorem proving and verification based on constructive type theory,
ours is not the only project seeking new foundations. Geuvers and Basold propose
a new type theory based solely on inductive and co-inductive types, without even
function space as a primitive type form [1]. Work continues to create new systems
for homotopy type theory (e.g., [23, 2]). One motivation for that work is to allow
interchange of isomorphic structures, a central concern also for Morphoid Type
Theory [15]. These efforts focus on different aspects of type theory than that
targeted by Cedille, which seeks to provide a more fundamental account of data
via lambda encodings.

2 Type checking in Cedille

The starting point for the CDLE type theory on which Cedille is based is the
Calculus of Constructions (CC), extended with support for implicit arguments,
taken from the Implicit Calculus of Constructions [17]. Implicit inputs to func-
tions are ones which exist just for purposes of specification: they can be men-
tioned in the types of later arguments. A basic example for dependently typed
programming is taking in the length of a vector as an implicit argument. Vector
operations like reverse, for example, do not need to inspect this length compu-
tationally; it is just there to allow the statement of the type of the input (and
output) vector. In Cedille, an erasure function is applied to terms to erase these
implicit arguments, and other typing annotations, from terms, before equational
reasoning.

To this basic type theory (CC plus implicit arguments), Cedille adds typing
features to support induction and large eliminations with lambda encodings.
Let us now consider these features and informally introduce the type-checking
algorithm, using the example of the datatype of booleans.

rec Bool | tt : Bool , ff : Bool =

∀ P : Bool → ? .

P tt → P ff → P self

with

tt = Λ P . λ a . λ b . a ,

ff = Λ P . λ a . λ b . b .

Fig. 1. The Cedille definition of the datatype of booleans

Figure 1 shows the Cedille definition for the inductive type Bool. Cedille
supports top-level definition of inductive types using the rec keyword. Such def-
initions first declare types for the constructors of the datatype (here tt and
ff) in terms of the name of the datatype (here Bool). At the end of the rec

statement, after the with keyword, the constructors are then defined using a
lambda-encoding. In between, a type is given which the named datatype is de-
fined to equal. We call this the body of the datatype definition, in this case:

∀ P : Bool → ? . P tt → P ff → P self

This type is allowed to mention the name of the datatype recursively, but
only in a positive position (to the left of an even number of functional constructs
in the type). Here, we are saying that Bool is the type of those terms t such
that for any property P of booleans, if one proves the property for tt and also
for ff, then the property is proved also for t. The quantification over predicates
on booleans is why the definition must be recursive. The dependence of the type
of t on t itself is captured using the special variable self. Technically, this self

reference is expressed using dependent intersection types [12], though the Cedille
implementation hides all other details for these.

As just noted, the definition in Figure 1 ends with definitions for the con-
structors tt and ff, in this case using the Church encoding. These definitions are
type-checked in a context where the name of the datatype is definitionally equal
to the body, and the constructors are all assumed to have the typings and defini-
tions given in the rec declaration. Importantly, however, the constructors may
not occur free in the erasure of the body. This means that they can only be men-
tioned in erased positions, for purposes of dependent typing. Erased arguments
are denoted with a minus sign in Cedille’s input syntax. For Bool, they need not
be mentioned at all. Cedille implements local type inference [20], allowing us to
elide the types for the bound variables in the definitions of tt and ff. The cap-
ital lambda symbol is used to bind erased arguments. Erasing the definitions of
tt and ff of Figure 1 indeed gives the standard definitions for Church-encoded
boolean true and false (namely λ a . λ b . a and λ a . λ b . b).

and ⇐ Bool → Bool → Bool =

λ x . λ y . x · (λ b : Bool . Bool) y ff .

Fig. 2. Definition of boolean conjunction

Figure 2 shows the Cedille definition of boolean conjunction. Cedille defi-
nitions use the symbol ⇐ to separate the symbol being defined from the type
against which the defining term will be checked. Such definitions are processed
in checking mode with local type inference; i.e., the term and the type are both
inputs to the typing algorithm. The definition in Figure 2 erases to the standard
one for Church-encoded booleans.

Note that to apply x, we must specify the instantiation of the predicate P

from Figure 1, here (λ b : Bool . Bool). Application of an expression to a
type is denoted using ·. This instantiation is rather verbose, and can be avoided
using McBride’s idea of “elimination with a motive” [16]: we can instruct the
type checker to use the type against which we are checking the application of x
(namely Bool), to construct this predicate automatically. The Cedille notation
for elimination with a motive is θ, and the more concise definition is then just:

and ⇐ Bool → Bool → Bool =

λ x . λ y . θ x y ff .

In this case, the motive (λ b : Bool . Bool) ignores the input b. When we
come below to proving theorems, however, the motives will make use of such
inputs, to state non-trivial predicates to be proved.

As an example of Cedille’s second novel typing construct, Figure 3 shows the
standard impredicative definitions of types True and False, and a function map-
ping booleans to these types. In consistent pure type theories like the Calculus

of Constructions, one cannot apply an expression at multiple levels of the lan-
guage: Church-encoded booleans can be defined at the term level or at the type
level, but they cannot be used across levels. Cedille features a lifting operator ↑
for lifting predicatively typed terms (no type quantifiers) to the type level. The
expression ↑ X . b · (λ b : Bool . X) : (I → I → I) says that we are
lifting the term b · (λ b : Bool . X) to the type level. The bound type vari-
able X is a name that can be used to stand, at the type level, for the kind ?. The
lifting expression specifies the resulting kind using a lifting type I → I → I.
This lifting type is needed for type-level conversions involving these lifting types;
otherwise the conversion relation would need to depend on the typing relation.
We avoid this by including the lifting type in the syntax. We intend in future
work to infer the lifting type during typing so it does not have to appear in the
input syntax (while remaining part of the abstract syntax during conversion). A
basic example of a conversion for lifting types is seen if we apply Bool-to-type

to tt. Lifting tt to the type level yields, with the help of the lifting type, the
following:

λ A : ? . λ B : ? . A

This is applied to True and False, reducing via type-level β-reduction to True.
Typing is done modulo a relation of definitional equality, which automatically

equates certain terms and types. Terms are equated if βη-equal, and types if they
are β-equal or related by certain conversions for lifting types as just mentioned.
As usual in type theory, it is customary to consider some notion(s) of provable
equality, in addition to definitonal. We consider this topic shortly (Section 5).

True ⇐ ? = ∀ X : ? . X → X .

False ⇐ ? = ∀ X : ? . X .

Bool-to-type ⇐ Bool → ? =

λ b : Bool . ↑ X . b · (λ b : Bool . X) : (I → I → I) · True · False .

Fig. 3. Function mapping booleans to True and False

3 User interface for Cedille

Before we look at further aspects of the Cedille language and examples of using it,
let us consider briefly the user interface. Users interact with Cedille via an emacs
interface, written in around 1200 lines of elisp. This interface communicates with
the backend Cedille tool, written in around 3700 lines of Agda, not including
parsers automatically generated from just under 300 lines of grammars. The
basic interaction between the frontend (the emacs interface) and the backend
is for the frontend to request that the backend parse a .ced file, namely the
one the user is viewing in emacs. If the buffer is parsable, the backend sends

back an annotated parse tree in a certain standard format. The format for the
parse tree is as a list of spans, where a span is a starting and ending character
position in the file, together with a name for the kind of parse-tree node this
span represents, and a list of extra annotations. The frontend uses a generic elisp
library called se (for “structured editing”) to reassemble a parse tree from the
list of spans. It is then possible to navigate through the text in the emacs buffer
following the syntactic structure of the code. One highlights a span, and then
can navigate up, down, left, or right in the parse tree, shifting the highlighted
span as one goes.

This basic architecture has so far proven extremely flexible. The backend
exports essentially all available typing information as extra annotations on the
spans it is sending to the frontend. So for each node in the parse tree, the user
of the emacs mode can view the type of that node, and any further annotations
the backend has supplied. This information is brought up in a buffer called
the inspect buffer. Once the input file has been parsed by the backend, the
emacs mode enters a special minor mode for navigation. During navigation, the
buffer is read-only. Single keystrokes are then used for navigation commands and
to toggle display of the inspect buffer, which is updated automatically during
navigation. This makes it very quick to comb through the substantial amount of
type information one gets with dependent typing. There are also keystrokes to
navigate through type errors reported by the backend. The frontend recognizes
which spans have errors through the inclusion of an additional attribute error.

As the interface has been developed, further functionality has almost always
been easily supported by simply adding more attributes to the spans. Attributes
that are just used for such functionality are filtered out of the inspect buffer by
default. An example is functionality to jump to the position in a (possibly differ-
ent) source file where a symbol is defined. This is implemented in the frontend
with the help of a location attribute, which the backend adds to the spans for
every occurrence of a symbol. With similar additional help from the backend,
to recognize which nodes are binders and which children of those nodes are the
bound variables, the frontend computes the typing context at any given point
in the code, and displays it in a context buffer. This buffer has its own minor
mode allowing sorting and filtering of the context based on various parameters.
A final additional buffer is a summary buffer, which lists all the top-level typ-
ings in a file. This is useful to see a summary of the lemmas proved in a long
source file, for example. From the summary buffer, one can jump to the position
in the source file for a summarized typing, with a single keystroke.

So Cedille’s interface is based on the goal of providing easy navigation of all
available typing information. The architecture commits to this goal by having
the backend provide all this information at once as annotations to the parse tree
it sends to the frontend. This is fundamentally different from the interfaces for
tools like Coq and Agda, which are based on a more traditional querying style of
interaction with the backend. In these tools, it is not possible to navigate through
source files and see all the typing information for the subexpressions in the
file. The Cedille implementation provides this additional power in a very small

number of lines of code (the total line count is just over 5000 lines), thanks to
this basic architectural decision to have the backend send all typing information
to the frontend. The frontend then helps the user navigate and sort through
the information. This architecture should be relevant for other implementations
seeking to aid a user in understanding complex information computed locally for
some sources.

4 Parigot-encoded natural numbers

Having considered the user interface, let us return to the details of lambda
encodings in Cedille. The Parigot encoding combines the best qualities of the
Church and Scott encodings, allowing for both recursion and pattern matching.
We illustrate this encoding for the standard example of natural numbers. In
Cedille, this is defined as follows:

rec Nat | S : Nat → Nat , Z : Nat =

∀ P : Nat → ? .

(Π n : Nat . P n → P (S n)) → P Z → P self

with

S = λ n . Λ P . λ s . λ z . s n (n · P s z) ,

Z = Λ P . λ s . λ z . z.

The first line declares the constructors S and Z for Nat. The second and third
lines define Nat as the type for lambda expressions that can verify any property P
about nats, given a proof that P n implies P (S n) and a proof that P Z. In other
words, it provides a way to prove statements about Nats using mathematical
induction. Note that, as is often done in other languages like Coq or Agda, one
could use this form of induction to derive other induction principles, like strong
induction, as theorems. The fourth through sixth lines define the constructors
for Nat. S is the successor, a lambda term that takes a Nat and gives back the
next higher Nat (so S 1 is 2, for instance). Z is simply zero.

Under this definition, the first four Nats are:

0 = Λ P . λ s . λ z . z.

1 = Λ P . λ s . λ z . s 0 z

2 = Λ P . λ s . λ z . s 1 (s 0 z)

3 = Λ P . λ s . λ z . s 2 (s 1 (s 0 z))

Thus, each Nat contains within it every nat that came before it, allowing for
easy retrieval of the predecessor. To accomplish this, any function f that is input
for s must be of type ∀ X . Nat → (X → X), which is to say that it must begin
by taking in the predecessor. Note that this means that the Church encoding
can easily be recovered by simply choosing an s that discards the predecessor
argument. For example, we can convert Parigot-encoded 3 to Church-encoded 3
as follows:

λ s’ . 3 · (λ x : Nat . Nat) (λ pn . s’)

= λ s’ . λ z . (λ pn . s’) 2 ((λ pn . s’) 1 ((λ pn . s’) Z z))

= λ s’ . λ z . s’ (s’ (s’ z))

To define add, we write:

add ⇐ Nat → Nat → Nat = λ n . λ m . θ n (λ pn . S) m .

where pn binds the predecessor of n (and is not used at all in the computation).
As for the predecessor itself, retrieving it is simple:

P ⇐ Nat → Nat = λ n . θ n (λ pn . λ _ . pn) n .

5 Equational reasoning in Cedille

syntax description

β prove T if it is an equation whose sides are, after erasure, β-equivalent
ε t if T is an equation, β-reduce both sides to head-normal form, and check

t against this. With εl instead of ε, just reduce the lhs of T (and
similarly, just the rhs with εr)

ρ t - t’ if t proves an equation, replace the lhs with the rhs in T , and check t’

against this
δ t if t proves an equality between head-normal forms with distinct head

variable, then prove (any) T , as such an equality contradicts the theory
of β-equality

π n t if t proves an equality between head-normal forms with the binders λx̄
and same head variable, then prove that the n’th argument of the head
of the lhs is equal to the corresponding argument of the rhs; where
those arguments must be prefixed by the same binders λx̄.

χ T’ - t confirm that T and T ′ are convertible, and then check t against T ′.
χ - t synthesize a type T ′ for t and then confirm that T and T ′ are convert-

ible.

Fig. 4. Term constructs for equational reasoning in Cedille, when checking against a
type T

While it is well-known that various forms of equality can be defined in type
theory, our experience so far has suggested that there are some desirable forms
of reasoning which require a built-in equality type, denoted t ' t’ in Cedille.
The intended semantics is that the term t is β-equivalent to t’. For pure closed
terms, this coincides with being βη-equivalent, providing a semantic justification
for the use of βη-equivalence in Cedille.

Figure 4 summarizes some of Cedille’s built-in equational reasoning princi-
ples. These are term constructs, used to prove equations or deduce facts from
equations. An important concept here is that of head-normal form. Recall that

a head-normal form is a term of the form λx̄.xi t̄, where x̄ is a nonempty se-
quence of variables bound at the top of the term, xi is one of these variables,
called the head variable, and t̄ is a possibly empty sequence of terms given
as arguments to that head variable. We found that reduction to head-normal
form keeps terms more readable than reduction to normal form. Note that as
mentioned above, equational reasoning is performed on erased terms, which are
pure untyped lambda terms where all typing annotations have been erased.

As explained in Figure 4, β is used to prove an equation T where both sides
are βη-equivalent. For example, the simple lemma

and-tt-0 ⇐ Π x : Bool . and tt x ' x = λ x. β .

uses this construct to prove our and operation applied to boolean true, tt, and
any boolean, x, is equivalent to the value of that boolean x.

The ε construct is used to β-reduce portions of an equation to head-normal
form. In our Cedille programming, the typical use case we have for ε is reduction
of an equation in preparation for use of ρ. Our ρ construct is applied to rewrite
the left-hand side of the current equation, T, being reasoned about using its
argument equation, for the purpose of stepping towards a proof of T. Examples
of ε and ρ in Cedille code can be seen later in Sections 6 and 8.

Another equational principle is π, which is a kind of injectivity for head-
normal forms. For a simple example, suppose we have a proof p that λc.c a
equals λc.c b. Then π0 p would prove that λc.a equals λc.b. A more realistic
example of a proof using this construct is given in Section 7.

The δ construct is for the case where a proof that both sides are equal
according to the built-in equality is impossible. As explained in Figure 4, this
means that each side of the equation has distinct head variables while in head-
normal form. As an example:

Bool-contra ⇐ (tt ' ff) → False = λ u . δ u .

shows δ in use. Looking back at the definitions of tt and ff, we can see the
difference in head variable, as the terms are already in head-normal form. This
is similar to the “absurd pattern” in Agda.

In theorem provers like Coq, there are tactics (change) for changing the cur-
rent goal type T which the user is seeking to inhabit (i.e., prove) to some other
goal type which is definitionally equal to the T . There are many reasons to want
to do this, but the most critical is that while the core type theory is defined mod-
ulo definitional equality, one often has additional operations, defined via tactics
or some other construct outside the core type theory, which do not work modulo
definitional equality. These operations may be sensitive to the exact syntactic
form of the goal type. In the case of Cedille, our ρ construct for rewriting is such
an operation. To check a ρ-term, Cedille looks for a subexpression of the goal
type T which is definitionally equal to the left-hand side of a proven equation. It
may happen that a certain goal type T does not contain any such subexpression,
but is convertible to a type which does. For example, consider trying to prove

(λ x . f (g x)) a ' f a

assuming g a ' a. The left-hand side of the goal equation is convertible to
f (g a), to which a rewrite with the assumed equation could be applied. But the
original left-hand side (of the goal) does not contain any subterm convertible to
g a. It is necessary first to β-reduce the left-hand side of the goal, and then such
a subexpression appears. In a case like this, one can use a χ-term to change the
form of the goal equation to f (g a) ' f a. The rewrite can then be applied.

6 Proving the injectivity of addition

In Section 4, we defined natural numbers (Nats) using the Parigot encoding.
Now, we want to make use of this definition to prove statements about the Nats.
For example, consider the following proof that the function add x is injective for
all x of type Nat:

Add-inj ⇐ Π x : Nat . Π y : Nat . Π z : Nat .

add x y ' add x z → y ' z =

λ x . λ y . λ z . θ x

% Inductive Step

(λ px . λ h . λ pf .

h (Succ-Inj (add px y) (add px z) (

ρ (Add-Succ-Comm-0 px y) -

ρ (Add-Succ-Comm-0 px z) -

pf)))

% Base Case

(λ pf . ρ (Add-Ident-0 y) -

ρ (Add-Ident-0 z) - pf).

We divide this theorem into a proof for the base case and a proof for the
inductive step. To verify its correctness, we must ensure that the β terms in
both steps are recognized as valid by Cedille. This involves making substitutions
until we have an equality of the form t ' t.

The θ x term at the head of the λ expression tells Cedille that we are going
to do a proof by induction on x (a ”split” on x). Given this splitting, we are
then expected to provide a proof for the inductive step followed by a proof for
the base case.

Consider first the base case. The λ pf means that we are giving as input a
proof that

add Z y ' add Z z

where the substitution of Z for x is inferred from the context. The type of λ pf is
determined using Cedille’s local type inference algorithm. Cedille’s user interface
can display this type to the user. Given this proof, we then do a rewrite (using
the ρ construct) with an instance of the Add-Ident-0 theorem, which states that
for all n,

add Z n ' n

i.e. that zero is the identity for addition. Recall from Figure 4 that the syntax
of ρ expressions is ρ t - t’, where t is a proof an equation which is used to
rewrite the type for checking t’. By applying Add-Ident-0 to y, we get a proof
of add Z y ' y; similarly we apply Add-Ident-0 to z. The two ρ expressions
rewrite the type of pf using these equations, obtaining a proof that y ' z.

Now we consider the more complex inductive step proof. First, we have
as inputs the following: px, the predecessor to x; h, our inductive hypothesis
which states that (add px y ' add px z) → y ' z ; and pf, a proof
that add (S px) y ' add (S px) z. The obvious route to take here is to elim-
inate the S terms on both sides of pf and then give pf as an input to h to obtain
y ' z. The first step is to get S to the outside of the add terms, where it will
be easier to eliminate. We achieve this with the help of the Add-Succ-Comm-0,
which proves for any Nats n,m that

add (S n) m ' S (add n m)

By applying this theorem to both px,y and px,z, we transform pf to

S (add px y) ' S (add px z)

Now that S is on the outside of the term, we can make use of Succ-Inj, a proof
of the injectivity of the successor function, which states that

(S x ' S y) → x ' y

for all Nats x,y. By using (add px y),(add px z) as our x,y, we obtain
a proof of

add px y ' add px z

We can plug this into our hypothesis h to get y ' z , completing our proof.

7 Using the pi construct

The example proof of the injectivity of add x worked by making use the ρ
construct to rewrite the input proof. In this section, we showcase a different
proof tool: the π construct. We want to prove that

Π x : Nat . Π y : Nat . (S x ' S y) → x ' y

in order to support our proof of Add-inj. The proof may be written as follows:

S-inj ⇐ Π x : Nat . Π y : Nat . (S x ' S y) → x ' y =

λ x . λ y . λ pf . π1 pf .

Here, the purpose of π1 is to prove that the terms at argument position 1
(where these positions start from 0) of the head-normal form of S x ' S y are
equal. The terms in the resulting equality are prefixed by the same λ-abstractions
as the starting head-normal form. The head-normal form of S x ' S y is

λ s . λ z . s x (x s z) ' λ s . λ z . s y (y s z)

So applying π1 to h produces a proof of

λ s . λ z . x s z ' λ s . λ z . y s z

The sides of this equation are then η-equivalent to x and y, respectively. So the
type of the proof π1 h is definitionally equal to x ' y, as desired.

8 Examples with lists

Here is the Cedille definition for lists:

rec List (A : ?) : | Cons : A → List → List , Nil : List =

∀ P : List → ? .

(Π h : A . Π t : List . P t → P (Cons h t)) →
P Nil →
P self

with

Cons = λ e . λ l . Λ P . λ c . λ n . c e l (l · P c n),

Nil = Λ P . λ c . λ n . n .

Looking at this definition, we can see that operations on the list datatype
will follow a specific pattern. Each function will accept arguments for the Cons
and Nil cases, and then pass these functions to the list. This encoding inherently
captures the foldr form familiar to many functional programmers. If we give a
Cedille foldr definition:

foldr ⇐ ∀ A : ? . ∀ B : ? .

(A → (List · A) → B → B) → B → List · A → B =

Λ A . Λ B . λ f . λ b . λ l . θ l f b .

We can see that the list encoding does the work of foldr here. Below is an
example of how similar the foldr and non-foldr definitions are, using the example
of reversing the elements of a list:

singleton ⇐ ∀ A : ? . A → List · A =

Λ A . λ a . (Cons · A) a (Nil · A) .

reverseCons ⇐ ∀ A : ? .

A → (List · A) → (List · A) → (List · A) =

Λ A . λ h . λ t . λ r . (append · A) r (singleton · A h) .

reverse ⇐ ∀ A : ? . (List · A) → (List · A) =

Λ A . λ l . θ l (reverseCons · A) (Nil · A) .

reverse2 ⇐ ∀ A : ? . (List · A) → (List · A) =

Λ A . (foldr · A · (List · A)) (reverseCons · A) (Nil · A) .

Typically in functional programming fold allows for smaller definitions, but
the need to pass types to our polymorphic definition gives the non-foldr version
a slight edge in conciseness.

One of the main strengths of Cedille is that the lambda-encoded types also
bring this conciseness to the proofs. Below, we demonstrate this conciseness by
proving that the inverse of the reverse function is itself. This requires a lemma,
reverse-last, but the proof of these two properties is only marginally longer than
the statement of the properties themselves.

reverse-last ⇐
∀ A : ? . Π l : List · A . Π a : A .

reverse (append l (Cons a Nil)) ' Cons a (reverse l) =

Λ A . λ l . λ a . θ l

(λ h . λ t . λ ih . εl ρ ih - β)
β .

reverse-involution ⇐
∀ A : ? . Π l : List · A . reverse (reverse l) ' l =

Λ A . λ l . θ l

(λ h . λ t . λ ih .

εl ρ (reverse-last · A (reverse · A t) h) - ρ ih - β)
β .

The reverse-involution definition is our focus here, and we can break down
this definition into two main pieces: our statement to prove and then the proof
of these statements. Looking at the first and second lines of the definition, we
see that it is stating that for any type, A, and for any list, l, the reverse of
the reverse of a list is beta-equivalent to that list. On the third line we need
parameters for the type and the list, and finally the θ l computes the predicate
with which to instantiate the parameter l (as explained in Section 2 above).

Next, we have the proofs for both the Cons and Nil instances of a list. The
equational steps in these two proofs are as follows:

Cons case:

Cons h t = reverse (reverse (Cons h t))

=β reverse (append (reverse t) (Cons h Nil))

=ρ reverse-last Cons h (reverse (reverse t))

=ρ IH Cons h t

Nil case:

Nil = reverse (reverse Nil)

=β Nil

This reasoning is mirrored in the Cedille code. The εl is used to beta-reduce
the reverse side of the equation. Then we use our ρ construct to rewrite our
equation using the reverse-last lemma, and again to rewrite the equation using
our induction hypothesis. Our β construct then finalizes the Cons case and is
the entire proof for the Nil case, stating that both sides of the equation are
beta-equivalent.

9 Proving the transitivity of the comparison operator

In this section we will define a comparison operator on Nats and prove that it
is transitive. This operator returns an element of the following type:

rec compare-t | LT : compare-t , EQ : compare-t , GT : compare-t =

∀ P : compare-t → ? .

P LT → P EQ → P GT → P self

with

LT = Λ P . λ a . λ b . λ c . a ,

EQ = Λ P . λ a . λ b . λ c . b ,

GT = Λ P . λ a . λ b . λ c . c .

Note the similarity to Church-encoded booleans; compare-t is a type which
may have one of three values, and one of three distinct expressions will be eval-
uated depending on which of the three values is found. The definition of the
compare function is then:

compare ⇐ Nat → Nat → compare-t =

λ n . θ n

(λ pn . λ hn . λ m . θ m (λ pm . λ _ . hn pm) GT)

(λ m . θ m (λ _ . λ _ . LT) EQ) .

This function splits on the first input (n). If it is a successor, then compare

checks the second input, and returns either compare pn pm (if that is a successor
too) or GT (if it is zero). Otherwise, if n ' Z, compare checks the second input
and returns either LT (if it is a successor) or EQ (if it is zero).

Suppose we want to prove a statement about compare. For instance, we might
want to prove that compare is transitive. This proof can also be written through
case splitting:

compare-trans ⇐
Π x : Nat . Π y : Nat . Π z : Nat . Π o : compare-t .

(compare x y ' o) → (compare y z ' o) →
(compare x z ' o) =

λ x . θ x

(λ px . λ hx . λ y . θ y

(λ py . λ _ . λ z . θ z

(λ pz . λ _ . λ o . λ pf-xy . λ pf-yz .

ρ (hx py pz o pf-xy pf-yz) - β)

(λ _ . λ _ . λ pf-yz . ρ (ς pf-yz) - β))

(λ z . θ z

(λ _ . λ _ . λ _ . λ pf-xy . λ pf-yz .

δ (ρ (ς pf-xy) - pf-yz))

(λ _ . λ pf-xy . λ pf-yz .

δ (ρ (ς pf-xy) - pf-yz))))

(λ y . θ y

(λ _ . λ _ . λ z . θ z

(λ _ . λ _ . λ _ . λ pf-xy . λ _ .

ρ (ς pf-xy) - β)

(λ _ . λ pf-xy . λ pf-yz .

δ (ρ (ς pf-xy) - pf-yz)))

(λ z . θ z

(λ _ . λ _ . λ _ . λ pf-xy . λ pf-yz .

δ (ρ (ς pf-xy) - pf-yz))

(λ _ . λ pf-xy . λ _ . pf-xy))) .

In this proof, there are four inputs: x, y, z, and a comparison type o. The
type of the proof also provides the assumptions that compare x y ' o (labeled
pf-xy), and compare y z ' o (labeled pf-yz). The body of the proof simply
splits on each of the x, y, z variables in order for a total of 8 cases. Some
of these cases follow trivially from the input proofs. For example, in the case
where x, y, and z are all zero (the last line of the proof), we have the proof
pf-xy = compare Z Z ' o (where the two zeros are x and y) and we are re-
quired to prove that pf-xy = compare Z Z ' o (where the two zeros are x and
z). So we can simply regurgitate the input proof to solve the case

Other cases may be proven by contradiction using δ. For example, suppose
x and y are zero, but z is a successor (the penultimate line of the proof). In this
case, we are given proofs that

compare Z Z ' o

compare Z (S pz) ' o

and are asked to prove that compare Z (S pz) ' o. If we substitute the former
into the latter, we end up with a proof of compare Z (S pz) ' compare Z Z.

However, we also know by the definition of compare that compare Z Z ' EQ

and compare Z (S pz) ' LT. Thus, we use δ along with this contradiction to
prove anything we want (in this case, that compare Z (S pz) ' o).

The most complicated case is when all three Nats are successors. In this case,
we call the inductive hypothesis

hx py pz o ⇐
compare px py ' o → compare py pz ' o → compare px pz ' o

with the proofs

compare (S px) (S py) ' o

compare (S py) (S pz) ' o

Of course, as we know from the definition of compare, when both inputs are
successors compare (S a) (S b) will return compare a b, so these input proofs
satisfy the type requirements and thus our inductive hypothesis duly produces
a proof of compare px pz ' o.

10 Reasoning about higher-order datatypes

Lambda terms can themselves be encoded as lambda terms. One of the simplest
ways to accomplish this is using the Church-term (or ctrm) encoding scheme. A
ctrm is a lambda term of type

ctrm ⇐ ? = ∀ X : ? .

(X → X → X) → ((X → X) → X) → X .

where the first argument determines what happens when one ctrm is applied
to another (App) and the second argument determines what happens when a
symbol is bound to a lambda (Lam). Together, they allow for operations that
depend on the structure of the term itself. To encode a term as a ctrm, we
simply replace each occurrence of an application or lambda binding with the
appropriate function. For example, to encode

λ x . λ y . x y

we would write

example ⇐ ctrm =

Λ X . λ A . λ L . L (λ x . L (λ y . A x y)) .

Now suppose we want to measure the size of a term, defined by the number of
nodes in its abstract syntax tree. Then we must encode two pieces of information:

1. The size of an application node is 1 plus the sum of the sizes of its child
nodes.

2. The size of a lambda node is 2 (one for the lambda binder itself, and one
for the binding occurrence of the variable) plus the size of the bound term,
where each occurence of the bound symbol has a size of 1.

We can write a size function using this idea:

size-app = λ s1 : Nat . λ s2 : Nat . S (add s1 s2) .

size-lam = λ f : Nat → Nat . S (S (f (S Z))) .

size = λ t : ctrm . t · Nat size-app size-lam .

Applying size to the above example term and β-reducing, we indeed get the
expected value (7).

Unlike previous examples, ctrm is not declared using a rec-statement, so
there is no way to prove statements inductively about ctrms. However, some
equational reasoning about ctrms is still possible. For example, suppose we want
to prove that the ctrm representations of boolean true and false (tt and ff) are
not equal. We can write:

% tt = λ x . λ y . x

ctt ⇐ ctrm = Λ X . λ A . λ L . L (λ x . L (λ y . x)) .

% ff = λ x . λ y . y

cff ⇐ ctrm = Λ X . λ A . λ L . L (λ x . L (λ y . y)) .

ctt-cff-neq ⇐ (ctt ' cff) → False = λ pf . δ (π0 (π0 pf)) .

Here, we use π0 twice to strip away the lambdas inside the term, leaving us with

λ a . λ l . λ x . λ y . x ' λ a . λ l . λ x . λ y . y

At this point, Cedille is able to recognize a contradiction, allowing us to derive
False using a δ.

11 Conclusion and future work

This report has introduced the Cedille project, which is seeking to develop a
new proof assistant and dependently typed programming language, based on
lambda encodings. We have seen proofs of standard theorems, carried out here
with lambda encodings instead of primitive datatypes. For future work, we in-
tend to explore much further the power of higher-order lambda encodings for
datatypes that cannot be defined in traditional type theories with primitive in-
ductive types. Examples are datatypes for representing expressions with locally
scoped names, such as object-language syntax, typing derivations, and similar
structures. We have preliminary results on devising extended versions of the
ctrm datatype above, using rec-defined types, to support inductive reasoning
with higher-order encodings. We intend to develop this preliminary work, to take

advantage of the latent higher-order power of lambda encodings. Further future
work includes continuing development of the frontend and backend tools, based
on the architectural decision to export all typing information from the backend
to the frontend. There are some operations, like indexing into a library, that need
more back-and-forth interaction because the amount of possible information to
send is too great. We intend to extend the communication protocol between
frontend and backend to account for these.

Acknowledgments. Thanks to the anonymous TFP 2016 pre-proceedings
reviewer for helpful comments which helped improve the paper. This work has
been supported by NSF on a grant titled “Lambda Encodings Reborn” (award
1524519), and through the DoD MURI project “Semantics, Formal Reasoning,
and Tools for Quantum Programming” (award FA9550-16-1-0082).

References

1. Henning Basold and Herman Geuvers. Type Theory based on Dependent Inductive
and Coinductive Types. In Natarajan Shankar, editor, IEEE Symposium on Logic
in Computer Science (LICS), 2016.

2. Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in
cubical sets. In Ralph Matthes and Aleksy Schubert, editors, 19th International
Conference on Types for Proofs and Programs, TYPES 2013, volume 26 of LIPIcs,
pages 107–128. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

3. Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Theor. Comput. Sci., 39:135–154, 1985.

4. Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press,
1941. Annals of Mathematics Studies, no. 6.

5. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76(2-3):95–120, 1988.

6. Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-
Löf and Grigori Mints, editors, COLOG-88, International Conference on Computer
Logic, pages 50–66, 1988.

7. The Agda development team. Agda, 2016. Version 2.5.1.

8. Steven Fortune, Daniel Leivant, and Michael O’Donnell. The expressiveness of
simple and second-order type structures. J. ACM, 30(1):151–185, 1983.

9. Herman Geuvers. Induction Is Not Derivable in Second Order Dependent Type
Theory. In Typed Lambda Calculi and Applications (TLCA), pages 166–181, 2001.

10. M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In
Twenty-five years of constructive type theory, volume 36 of Oxford Logic Guides,
pages 83–111. Oxford University Press, 1998.

11. Pieter Koopman, Rinus Plasmeijer, and Jan Martin Jansen. Church Encoding of
Data Types Considered Harmful for Implementations. In Rinus Plasmeijer and
Sam Tobin-Hochstadt, editors, 26th Symposium on Implementation and Applica-
tion of Functional Languages (IFL), 2014. Presented version.

12. Alexei Kopylov. Dependent intersection: A new way of defining records in type
theory. In 18th IEEE Symposium on Logic in Computer Science (LICS), pages
86–95, 2003.

13. Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, 1990.

14. The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2016. Version 8.5.

15. David A. McAllester. Implementation and abstraction in mathematics. CoRR,
abs/1407.7274, 2014.

16. Conor McBride. Elimination with a motive. In Paul Callaghan, Zhaohui Luo,
James McKinna, and Robert Pollack, editors, Types for Proofs and Programs,
International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000, Se-
lected Papers, volume 2277 of Lecture Notes in Computer Science, pages 197–216.
Springer, 2000.

17. Alexandre Miquel. The Implicit Calculus of Constructions Extending Pure Type
Systems with an Intersection Type Binder and Subtyping. In Samson Abramsky,
editor, Typed Lambda Calculi and Applications, pages 344–359. 2001.

18. Michel Parigot. Programming with proofs: a second order type theory. In
H. Ganzinger, editor, European Symposium On Programming (ESOP), volume 300
of Lecture Notes in Computer Science, pages 145–159. 1988.

19. Michel Parigot. On the representation of data in lambda-calculus. In Egon Börger,
HansKleine Büning, and Michael Richter, editors, Computer Science Logic (CSL),
volume 440 of Lecture Notes in Computer Science, pages 309–321. 1989.

20. Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans.
Program. Lang. Syst., 22(1):1–44, 2000.

21. Aaron Stump. The Calculus of Dependent Lambda Eliminations, 2016. Under
review, draft paper available from the author’s homepage.

22. Aaron Stump and Peng Fu. Efficiency of lambda-encodings in total type theory.
Journal of Functional Programming, 26:e3 (31 pages), 2016.

23. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute for Ad-
vanced Study, 2013.

24. Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encoding higher-
order abstract syntax with parametric polymorphism. J. Funct. Program.,
18(1):87–140, 2008.

25. Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis, Paris
Diderot University, France, 1994.

