
Under consideration for publication in Math. Struct. in Comp. Science

Monotone Recursive Types and Recursive

Data Representations in Cedille

Christopher Jenkins and Aaron Stump

Computer Science, 14 MacLean Hall, The University of Iowa, Iowa City, Iowa, USA

email: {firstname}-{lastname}@uiowa.edu

Received 10 April 2021

Guided by Tarksi’s fixpoint theorem in order theory, we show how to derive monotone

recursive types with constant-time roll and unroll operations within Cedille, an

impredicative, constructive, and logically consistent pure typed lambda calculus. As

applications, we use monotone recursive types to generically derive two recursive

representations of data in lambda calculus, the Parigot and Scott encoding, together

with constant-time destructors, a recursion scheme, and expected induction principles.

1. Introduction

In type theory and programming languages, recursive types µX.T are types where the

variable X bound by µ in T stands for the entire type expression again. The relationship

between a recursive type and its one-step unrolling [µX.T /X]T is the basis for the

important distinction of iso- and equi-recursive types (Crary et al., 1999) (see also Pierce,5

2002, Section 20.2). With iso-recursive types, the two types are related by constant-

time functions unroll ∶ µX.T → [µX.T /X]T and roll ∶ [µX.T /X]T → µX.T which

are mutual inverses (composition of these two in any order produces a function that is

C. Jenkins and A. Stump 2

extensionally the identity function). With equi-recursive types, the recursive type and its

one-step unrolling are considered definitionally equal, and unroll and roll are not needed10

to pass between the two.

Without restrictions, adding recursive types as primitives to an otherwise terminating

theory allows the typing of diverging terms. For example, let T be any type and let

B abbreviate µX. (X → T). Then, we see that B is equivalent to B → T , allowing

us to assign type B → T to λx.x x. From that type equivalence, we see that we may15

also assign type B to this term, allowing us to assign the type T to the diverging term

Ω = (λx.x x) λx.x x. This example shows that not only termination, but also soundness

of the theory when interpreted as a logic under the Curry-Howard isomorphism (Sørensen

and Urzyczyn, 2006), is lost when introducing unrestricted recursive types (T here is

arbitrary, so this would imply all types are inhabited).20

The usual restriction on recursive types is to require that to form (alternatively, to

introduce or to eliminate) µ X. T , the variable X must occur only positively in T ,

where the function-type operator → preserves polarity in its codomain part and switches

polarity in its domain part. For example, X occurs only positively in (X → Y) → Y ,

while Y occurs both positively and negatively. Since positivity is a syntactic condition,25

it is not compositional: if X occurs positively in T1 and in T2, where T2 contains also the

free variable Y , this does not mean it will occur positively in [T1/Y]T2 (the substitution

of T1 for Y in T2). For example, take T1 to be X and T2 to be Y →X.

In search of a compositional restriction for ensuring termination in the presence of

recursive types, Matthes (1999, 2002) investigated monotone iso-recursive types in a30

theory that requires evidence of monotonicity equivalent to the following property of a

type scheme F (where the center dot indicates application to a type):

∀Y.∀Z. (Y → Z) → F ⋅ Y → F ⋅Z

Recursive Types and Data Representations in CDLE 3

In Matthes’s work, monotone recursive types are an addition to an underlying type

theory, and the resulting system must be analyzed anew for such properties as subject

reduction, confluence, and normalization. In the present paper, we take a different ap-35

proach by deriving monotone recursive types within an existing type theory, the Calculus

of Dependent Lambda Eliminations (CDLE) (Stump, 2017; Stump and Jenkins, 2018).

Given any type scheme F satisfying a form of monotonicity, we show how to define a

type Rec ⋅F together with constant-time rolling and unrolling functions that witness the

isomorphism between Rec ⋅F and F ⋅ (Rec ⋅F). The definitions are carried out in Cedille,40

an implementation of CDLE.† The main benefit to this approach is that the existing

meta-theoretic results for CDLE – namely, confluence, logical soundness, and normaliza-

tion for a class of types that includes ones defined here – apply, since they hold globally

and hence perforce for the particular derivation of monotone recursive types.

Recursive representations of data in typed lambda calculi. One important ap-45

plication of recursive types is their use in forming inductive datatypes, especially within

a pure typed lambda calculus where data must be encoded using lambda expressions.

The most well-known method of lambda encoding is the Church encoding, or iterative

representation, of data, which produces terms typable in System F unextended by recur-

sive types. The main deficiency of Church-encoded data is that data destructors, such as50

predecessor for naturals, can take no better than linear time to compute (Parigot, 1989).

Recursive types can be used to type lambda encodings with efficient data destructors

(Splawski and Urzyczyn, 1999; Stump and Fu, 2016).

As practical applications of Cedille’s derived recursive types, we generically derive two

recursive representations of data described by Parigot (1989, 1992): the Scott encod-55

ing and the Parigot encoding. While both encodings support efficient data destructors,

† All code and proofs appearing in listings can be found in full at https://github.com/cedille/

cedille-developments/tree/master/recursive-representation-of-data

https://github.com/cedille/cedille-developments/tree/master/recursive-representation-of-data
https://github.com/cedille/cedille-developments/tree/master/recursive-representation-of-data

C. Jenkins and A. Stump 4

the Parigot encoding readily supports the primitive recursion scheme but suffers from

exponential-space complexity, whereas the Scott encoding has only linear-space complex-

ity but only readily supports the case-distinction scheme. For both encodings, we derive

a recursion scheme and induction principle. That this can be done for the Scott encod-60

ing in CDLE is itself a remarkable result that builds on the derivations by Lepigre and

Raffalli (2019) and Parigot (1988) of a strongly normalizing recursor for Scott naturals

in resp. a Curry style type theory with a sophisticated subtyping system and a logical

framework. To the best of our knowledge, the generic derivation for Scott-encoded data is

the second-ever demonstration of a lambda encoding with induction principles, efficient65

data destructors, and linear-space complexity (see Firsov et al. (2018) for the first).

Overview of this paper. We begin the remainder of this paper with an introduction

to CDLE (Section 2), before proceeding to the derivation of monotone recursive types

(Section 3). Our presentations of the application of recursive types in deriving lambda

encodings with induction follows a common structure: Section 5 covers the Scott encoding70

by first giving a concrete derivation of natural numbers supporting a weak induction

principle, then the fully generic derivation; Section 6 gives a concrete example for Parigot-

encoded naturals with an induction principle, then the fully generic derivation, and some

important properties of the generic encoding (proven within Cedille); and Section 7

revisits the Scott encoding, showing concretely how to derive the recursion principle75

for naturals, then generalizes to the derivation of the standard induction principle for

generic Scott-encoded data, and finally shows that the same properties hold also for this

derivation. Finally, Section 8 concludes by discussing related and future work.

2. Background: the Calculus of Dependent Lambda Eliminations

In this section, we review the Calculus of Dependent Lambda Eliminations (CDLE)80

and its implementation in the Cedille programming language (Stump, 2017; Stump and

Recursive Types and Data Representations in CDLE 5

Jenkins, 2018). CDLE is a logically consistent constructive type theory that contains as

a subsystem the impredicative and extrinsically typed Calculus of Constructions (CC).

It is designed to serve as a tiny kernel theory for interactive theorem provers, minimizing

the trusted computing base. CDLE can be described concisely in 20 typing rules and85

is implemented by Cedille Core (Stump, 2018b), a type checker consisting of ∼1K lines

of Haskell. For the sake of exposition, we present the less dense version of CDLE im-

plemented by Cedille, described by Stump and Jenkins (2018) (Stump (2017) describes

an earlier version), and have slightly simplified the typing rule concerning the ρ term

construct.90

To achieve compactness, CDLE is a pure typed lambda calculus, and in particular

has no primitive constructs for inductive datatypes. Instead, datatypes can be repre-

sented using lambda encodings. Geuvers (2001) showed that induction principles are not

derivable for these in second-order dependent type theory. Stump (2018a) showed how

CDLE overcomes this fundamental difficulty by extending CC with three new typing95

constructs: the dependent intersections of Kopylov (2003); equality over untyped terms;

and the implicit products of Miquel (2001). The formation rules for these new constructs

are first shown in Figure 1, and their introduction and elimination rules are explained in

Section 2.2.

2.1. Type and kind constructs100

There are two sorts of classifiers in CDLE. Kinds κ classify type constructors, and types

(type constructors of kind ⋆) classify terms. Figure 1 gives the inference rules for the

judgment Γ ⊢ κ that kind κ is well-formed under context Γ, and for judgment Γ ⊢ T
→

∈ κ

that type constructor T is well-formed and has kind κ under Γ. For brevity, we take

these figures as implicitly specifying the grammar for types and kinds. In the inference105

rules, capture-avoiding substitution is written [t/x] for terms and [T /X] for types, and

C. Jenkins and A. Stump 6

convertibility of classifiers is notated with ≅. The non-congruence rules for conversion

for types are given in Figure 2 (the convertibility rules for kinds do not appear here as

they consist entirely of congruence rules). In those rules, call-by-name reduction, written

↝c and ↝∗c for its reflexive transitive closure, is used to reduce types to weak head110

normal form before checking convertibility with the auxiliary relation ≅t, in which term

subexpressions are checked for βη-equivalence modulo erasure (see Figure 4).

Γ ⊢ κ

Γ ⊢ ⋆

Γ ⊢ T
→

∈ ⋆ Γ, x ∶ T ⊢ κ

Γ ⊢ Πx ∶T.κ

Γ ⊢ κ′ Γ,X ∶ κ′ ⊢ κ

Γ ⊢ ΠX ∶κ′. κ

Γ ⊢ T
→

∈ κ

(X ∶ κ) ∈ Γ

Γ ⊢X
→

∈ κ

Γ ⊢ κ Γ,X ∶ κ ⊢ T
→

∈ ⋆

Γ ⊢ ∀X ∶κ.T
→

∈ ⋆

Γ ⊢ T
→

∈ ⋆ Γ, x ∶ T ⊢ T ′
→

∈ ⋆

Γ ⊢ ∀x ∶T.T ′
→

∈ ⋆

Γ ⊢ T
→

∈ ⋆ Γ, x ∶ T ⊢ T ′
→

∈ ⋆

Γ ⊢ Πx ∶T.T ′
→

∈ ⋆

Γ ⊢ T
→

∈ ⋆ Γ, x ∶ T ⊢ T ′
→

∈ κ

Γ ⊢ λx ∶T.T ′
→

∈ Πx ∶T.κ

Γ ⊢ κ Γ,X ∶ κ ⊢ T
→

∈ κ′

Γ ⊢ λX ∶κ.T
→

∈ ΠX ∶κ.κ′

Γ ⊢ T
→

∈ Πx ∶T ′. κ Γ ⊢ t
←

∈ T ′

Γ ⊢ T t
→

∈ [t/x]κ

Γ ⊢ T1
→

∈ ΠX ∶κ2. κ1

Γ ⊢ T2
→

∈ κ′2 κ2 ≅ κ
′

2

Γ ⊢ T1 ⋅ T2
→

∈ [T2/X]κ1

Γ ⊢ T
→

∈ ⋆ Γ, x ∶ T ⊢ T ′
→

∈ ⋆

Γ ⊢ ι x ∶T.T ′
→

∈ ⋆

FV(t t′) ⊆ dom(Γ)

Γ ⊢ {t ≃ t′}
→

∈ ⋆

Fig. 1. Types and kinds of CDLE

The kinds of CDLE are the same as those of CC: ⋆ classifies types, ΠX ∶κ1. κ2 classifies

type-level functions that abstract over type constructors, and Πx ∶T.κ classifies type-level

functions that abstract over terms. The type constructs that CDLE inherits from CC115

Recursive Types and Data Representations in CDLE 7

T1 ≅ T2 T1 ≅
t T2

T1 ↝
∗

c T
′

1 c T2 ↝
∗

c T
′

2 c T ′1 ≅
t T ′2

T1 ≅ T2

X ≅t X

T1 ≅
t T2 ∣t1∣ =βη ∣t2∣

T1 t1 ≅
t T2 t2

∣t1∣ =βη ∣t′1∣ ∣t2∣ =βη ∣t′2∣

{t1 ≃ t2} ≅
t {t′1 ≃ t′2}

Fig. 2. Non-congruence rules for classifier convertibility

are type variables, (impredicative) type constructor quantification ∀X ∶κ.T , dependent

function (or product) types Πx ∶ T.T ′, abstractions over terms λx ∶ T.T ′ and over type

constructors λX ∶ κ.T , and application of type constructors to terms T t and to type

constructors T1 ⋅ T2.

The additional type constructs are: types for dependent functions with erased argu-120

ments (or implicit product types) ∀x ∶T.T ′; dependent intersection types ι x ∶T.T ′; and

equality types {t ≃ t′}. Kinding for the first two of these follows the same format as

kinding of dependent function types, e.g., ∀x ∶T.T ′ has kind ⋆ if T has kind ⋆ and if T ′

has kind ⋆ under a typing context extended by the assumption x ∶T . For equality types,

the only requirement for the type {t ≃ t′} to be well-formed is that the free variables of125

both t and t′ (written FV(t t′)) are declared in the typing context. Thus, the equality is

untyped, as neither t nor t′ need be typable.

2.2. Term constructs

Figure 3 gives the type inference rules for annotated terms in Cedille. These rules are

bidirectional (c.f. Pierce and Turner, 2000): judgment Γ ⊢ t
→

∈ T indicates term t synthe-130

sizes type T under typing context Γ and judgment Γ ⊢ t
←

∈ T indicates t can be checked

against type T . These rules are to be read bottom-up as an algorithm for type inference,

with Γ and t considered inputs in both judgments and the type T an output in the syn-

thesis judgment and input in the checking judgment. As is common for a bidirectional

C. Jenkins and A. Stump 8

Γ ⊢ t
→

∈ T Γ ⊢ t
←

∈ T

Γ ⊢ t
↝
∗

c
∈ T = ∃T ′. Γ ⊢ t

→

∈ T ′ ∧ T ′ ↝∗c T

(x ∶ T) ∈ Γ

Γ ⊢ x
→

∈ T

Γ ⊢ t
→

∈ T ′ T ′ ≅ T

Γ ⊢ t
←

∈ T

T ↝∗c Πx ∶T1. T2 Γ, x ∶ T1 ⊢ t
←

∈ T2

Γ ⊢ λx. t
←

∈ T

Γ ⊢ t
↝
∗

c
∈ Πx ∶T ′. T Γ ⊢ t′

←

∈ T ′

Γ ⊢ t t′
→

∈ [t′/x]T

T ′ ↝∗c ∀X ∶κ.T Γ,X ∶ κ ⊢ t
←

∈ T

Γ ⊢ ΛX. t
←

∈ T ′

Γ ⊢ t
↝
∗

c
∈ ∀X ∶κ.T

Γ ⊢ T ′
→

∈ κ′ κ′ ≅ κ

Γ ⊢ t ⋅ T ′
→

∈ [T ′/X]T

T ↝∗c ∀x ∶T1. T2

Γ, x ∶ T1 ⊢ t
←

∈ T2 x /∈ FV(∣t∣)

Γ ⊢ Λx. t
←

∈ T

Γ ⊢ t
↝
∗

c
∈ ∀x ∶T ′. T Γ ⊢ t′

←

∈ T ′

Γ ⊢ t -t′
→

∈ [t′/x]T

T ↝∗c ι x ∶T1. T1 Γ ⊢ t1
←

∈ T1

Γ ⊢ t2
←

∈ [t1/x]T2 ∣t1∣ =βη ∣t2∣

Γ ⊢ [t1, t2]
←

∈ T

Γ ⊢ t
↝
∗

c
∈ ι x ∶T.T ′

Γ ⊢ t.1
→

∈ T

Γ ⊢ t
↝
∗

c
∈ ι x ∶T.T ′

Γ ⊢ t.2
→

∈ [t.1/x]T ′

T ↝∗c {t1 ≃ t2}

FV(t′) ⊆ dom(Γ) ∣t1∣ =βη ∣t2∣

Γ ⊢ β{t′}
←

∈ T

Γ ⊢ t
↝
∗

c
∈ {t1 ≃ t2} Γ ⊢ [t2/x]T

′
→

∈ ⋆

Γ ⊢ t′
←

∈ [t2/x]T
′ [t1/x]T

′ ≅ T

Γ ⊢ ρ t @x.T ′ - t′
←

∈ T

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t
←

∈ T

Γ ⊢ χ T - t
→

∈ T

Γ ⊢ t
←

∈ {t′ ≃ t′′}

Γ ⊢ t′
←

∈ T FV(t′′) ⊆ dom(Γ)

Γ ⊢ ϕ t - t′ {t′′}
←

∈ T

Γ ⊢ t
↝
∗

c
∈ {t1 ≃ t2}

Γ ⊢ ς t
→

∈ {t2 ≃ t1}

Γ ⊢ T1
→

∈ ⋆

Γ ⊢ t1
←

∈ T1 Γ, x ∶T1 ⊢ t2
←

∈ T2

Γ ⊢ [x◁ T1 = t1] - t2
←

∈ T2

Γ ⊢ t
→

∈ T ′ T ′ ≅ {λx.λy. x ≃ λx.λy. y}

Γ ⊢ δ - t
←

∈ T

Fig. 3. Rules for synthesizing a type for a term and checking a term against a type

Recursive Types and Data Representations in CDLE 9

system, Cedille has a mechanism allowing the user to ascribe a type annotation to a135

term: χ T - t synthesizes type T if T is a well-formed type of kind ⋆ and t can be checked

against this type. During type inference, types may be call-by-name reduced to weak

head normal form in order to reveal type constructors. For brevity, we use the shorthand

Γ ⊢ t
↝
∗

c
∈ T (defined formally near the top of Figure 3) in some premises to indicate that

t synthesizes some type T ′ that reduces to T .140

We assume the reader is familiar with the type constructs of CDLE inherited from

CC. Abstraction over types in terms is written ΛX. t, and application of terms to types

(polymorphic type instantiation) is written t ⋅ T . In code listings, type arguments are

sometimes omitted when Cedille can infer these from the types of term arguments (see

Jenkins and Stump (2018) for details). Local term definitions are given with145

[x◁ T1 = t1] - t2

to be read “let x of type T1 be t1 in t2,” and global definitions are given with x◁ T = t.

(ended with a period), where t is checked against type T .

In describing the new type constructs of CDLE, we make reference to the erasures of

the corresponding annotations for terms. The full definition of the erasure function ∣ − ∣,

which extracts an untyped lambda calculus term from a term with type annotations, is150

given in Figure 4. For the term constructs of CC, type abstractions ΛX. t erase to ∣t∣

and type applications t ⋅T erase to ∣t∣. As a Curry-style theory, the convertibility relation

of Cedille is βη-conversion for untyped lambda calculus terms — there is no notion of

reduction or conversion for the type-annotated language of terms.

The implicit product type ∀x ∶T1. T2 of Miquel (2001) is the type of function which155

accept an erased (computationally irrelevant) input of type T1 and produce a result of

type T2. Implicit products are introduced with Λx. t, and the type inference rule is the

same as for ordinary function abstractions except for the side condition that x does not

C. Jenkins and A. Stump 10

∣x∣ = x ∣λx. t∣ = λx. ∣t∣

∣t t′∣ = ∣t∣ ∣t′∣ ∣t ⋅ T ∣ = ∣t∣

∣Λx. t∣ = ∣t∣ ∣t -t′∣ = ∣t∣

∣[t, t′]∣ = ∣t∣ ∣t.1∣ = ∣t∣

∣t.2∣ = ∣t∣ ∣β{t}∣ = ∣t∣

∣ρ t @x.T ′ - t′∣ = ∣t′∣ ∣ϕ t - t′ {t′′}∣ = ∣t′′∣

∣χ T - t′∣ = ∣t∣ ∣ς t∣ = ∣t∣

∣[x◁ T1 = t1] - t2∣ = (λx. ∣t2∣) ∣t1∣ ∣δ - t∣ = λx.x

Fig. 4. Erasure for annotated terms

occur free in the erasure of the body t. Thus, the argument can play no computational

role in the function but exists solely for the purposes of typing, and the erasure of the160

introduction form is ∣t∣. For application, if t has type ∀x ∶T1. T2 and t′ has type T1, then

t -t′ has type [t′/x]T2 and erases to ∣t∣. When x is not free in ∀x ∶T1. T2, we may write

T1 ⇒ T2, similarly to writing T → T ′ for Πx ∶T.T ′.

Note that the notion of computational irrelevance here is not that of a different sort

of classifier for types (e.g. Prop in Coq, c.f. The Coq development team, 2018) that sep-165

arates terms in the language into those which can be used for computation and those

which cannot. Instead, it is similar to quantitative type theory (Atkey, 2018): relevance

and irrelevance are properties of binders, indicating how a function may use an argument.

The dependent intersection type ι x ∶T1. T2 of Kopylov (2003) is the type for terms

t which can be assigned both type T1 and type [t/x]T2. In Cedille’s annotated language,170

the introduction form [t1, t2] can be checked against type ι x ∶T1. T2 if t1 can be checked

against type T1, t2 can be checked against [t1/x]T2, and the two terms are βη-equivalent

modulo erasure (written ∣t1∣ =βη ∣t2∣). For the elimination forms, if t synthesizes type

ι x ∶ T1. T2 then t.1 (which erases to ∣t∣) synthesizes type T1, and t.2 (erasing to the

same) synthesizes type [t.1/x]T2. Thus, dependent intersections can be thought of as a175

dependent pair type where the two components are equal, and so we may “forget” the

second component: [t1, t2] erases to ∣t1∣. Put another way, dependent intersections are a

Recursive Types and Data Representations in CDLE 11

restricted form of computationally transparent subset types where the proof that some

term t inhabits the subset must be definitionally equal to t — and, as a consequence of

this restriction, the proof may be accessed for use in computation in the form of t itself.180

The equality type {t1 ≃ t2} is the type of proofs that t1 is propositionally equal to t2.

The introduction form β{t′} proves reflexive equations between βη-equivalence classes of

terms: it can be checked against the type {t1 ≃ t2} if ∣t1∣ =βη ∣t2∣ and if the subexpression

t′ has no undeclared free variables. We discuss the significance of the fact that t′ is

unrelated to the terms being equated, dubbed the Kleene trick, below. In code listings,185

if t′ is omitted from the introduction form, it defaults to λx.x.

The elimination form ρ t @x.T ′ - t′ for the equality type {t1 ≃ t2} replaces occurrences

of t1 in the checked type with t2 before checking t′. The user indicates the occurrences of

t1 to replace with x in the annotation @x.T ′, which binds x in T ′. The rule requires that

[t2/x]T
′ has kind ⋆, then checks t′ against this type, and finally confirms that [t1/x]T

′
190

(which might not be well-kinded) is convertible with the expected type T . The entire

expression erases to ∣t′∣.

Example. Assume m and n have type Nat , suc and pred have type Nat → Nat , and

furthermore that ∣pred (suc t)∣ =βη ∣t∣ for all t. If e has type {suc m ≃ suc n}, then

ρ e @x.{pred x ≃ pred (suc n)} − β can be checked with type {m ≃ n} as follows:195

we check that {pred (suc n) ≃ pred (suc n)}, obtained from substituting x in the ρ

annotation with the right-hand side of the equation of the type of e, has kind ⋆; we check

β against this type; and we check that substituting x with suc m is convertible with the

expected type {m ≃ n}. By assumption ∣pred (suc m)∣ =βη ∣m∣ and ∣pred (suc n)∣ =βη ∣n∣,

so {m ≃ n} ≅ {pred (suc m) ≃ pred (suc n)}.200

Equality types in CDLE come with two additional axioms, a strong form of the direct

computation rule of NuPRL (see Allen et al., 2006, Section 2.2) given by ϕ and proof by

C. Jenkins and A. Stump 12

contradiction given by δ. The inference rule for an expression of the form ϕ t - t′ {t′′}

says that the entire expression can be checked against type T if t′ can be, if there are no

undeclared free variables in t′′ (so, t′′ is a well-scoped but otherwise untyped term), and205

if t proves that t′ and t′′ are equal. The crucial feature of ϕ is its erasure: the expression

erases to ∣t′′∣, effectively enabling us to cast t′′ to the type of t′.

An expression of the form δ - t may be checked against any type if t synthesizes a type

convertible with a particular false equation, {λx.λy. x ≃ λx.λy. y}. To broaden the class

of false equations to which one may apply δ, the Cedille tool implements the Böhm-out210

semi-decision procedure (Böhm et al., 1979) for discriminating between βη-inequivalent

terms. We use δ only once in this paper as part of a final comparison between the Scott

and Parigot encoding (see Section 7.3).

Finally, Cedille provides a symmetry axiom ς for equality types, with ∣t∣ the erasure of

ς t. This axiom is purely a convenience; without ς, symmetry for equality types can be215

proven with ρ.

2.3. The Kleene trick

As mentioned earlier, the introduction form β{t′} for the equality type contains a subex-

pression t′ that is unrelated to the equated terms. By allowing t′ to be any closed (in

context) term, we are able to define a type of all untyped lambda calculus terms.220

Definition 1 (Top). Let Top be the type {λx.x ≃ λx.x}.

We dub this the Kleene trick, as one may find the idea in Kleene’s later definitions

of numeric realizability in which any number is allowed as a realizer for a true atomic

formula (Kleene, 1965).

Combined with dependent intersections, the Kleene trick also allows us to derive com-225

putationally transparent equational subset types. For example, let Nat again be the type

Recursive Types and Data Representations in CDLE 13

of naturals with zero the zero value, Bool the type of Booleans with tt the truth value,

and isEven ∶ Nat → Bool a function returning tt if and only if its argument is even.

Then, the type Even of even naturals can be defined as ι x ∶Nat .{isEven x ≃ tt}. Since

∣isEven zero∣ =βη ∣tt ∣, we can check [zero, β{zero}] against type Even, and the expression230

erases to ∣zero∣. More generally, if n is a Nat and t a proof that {isEven n ≃ tt}, then

[n, ρ t @x.{x ≃ tt} − β{n}] can be checked against type Even: the erasure of the first and

second components are equal, and within the second component ρ rewrites the expected

type {isEven n ≃ tt} to {tt ≃ tt} then checks β{n} against this.

2.4. Meta-theory235

It may concern the reader that, with the Kleene trick, it is possible to type non-terminating

terms, leading to a failure of normalization in general in CDLE. For example, the looping

term Ω, β{(λx.x x) λx.x x}, can be checked against type Top. More subtly, the ϕ axiom

allows non-termination in inconsistent contexts. Assume there is a typing context Γ and

term t such that Γ ⊢ t
→

∈ ∀X ∶⋆.X, and let ω be the term240

ϕ (t ⋅ {λx.x ≃ λx.x x}) − (ΛX.λx.x) {λx.x x}

Under Γ, ω can be checked against the type ∀X ∶ ⋆.X → X, and by the erasure rules ω

erases to λx.x x. We can then type the looping term Ω:

Γ ⊢ ω ⋅ (∀X ∶⋆.X →X) ω
→

∈ ∀X ∶⋆.X →X

Unlike the situation for unrestricted recursive types discussed in Section 1, the existence

of non-normalizing terms does not threaten the logical consistency of CDLE. For example,

extensional Martin-Löf type theory is consistent but, due to a similar difficulty with245

inconsistent contexts, is non-normalizing (Dybjer and Palmgren, 2016).

C. Jenkins and A. Stump 14

Proposition 2 (Stump and Jenkins, 2018).

There is no term t such that ⊢ t
→

∈ ∀X ∶⋆.X.

Neither does non-termination from the Kleene trick or ϕ with inconsistent contexts

preclude the possibility of a qualified termination guarantee. In Cedille, closed terms of250

a function type are call-by-name normalizing.

Proposition 3 (Stump and Jenkins, 2018). Suppose that ⊢ t
→

∈ T , and that there

exists t′ such that ⊢ t′
→

∈ T → Πx ∶ T1. T2 and ∣t′∣ = λx.x. Then ∣t∣ is call-by-name

normalizing.

Lack of normalization in general does, however, mean that type inference in Cedille255

is formally undecidable, as there are several inference rules in which full βη-equivalence

of terms is checked. In practice, this is not a significant impediment: even in implemen-

tations of strongly normalizing dependent type theories, it is possible for type inference

to trigger conversion checking between astronomically slow functions, effectively causing

the implementation to hang. For the recursive representations of inductive types we de-260

rive in this paper, we show that closed lambda encodings do indeed satisfy the criterion

required to guarantee call-by-name normalization.

3. Deriving Recursive Types in Cedille

To derive recursive types in Cedille, we implement a version of Tarski’s fixpoint theorem

for monotone functions over a complete lattice. We recall first recall the simple corollary265

of Tarski’s more general result (c.f. Lassez et al., 1982).

Definition 4 (f-closed). Let f be a monotone function on a preorder (S,⊑). An element

x ∈ S is said to be f -closed if and only if f(x) ⊑ x.

Recursive Types and Data Representations in CDLE 15

Theorem 5 (Tarski, 1955). Suppose f is a monotone function on complete lattice

(S,⊑,⊓). Let R be the set of f -closed elements of S and r = ⊓R. Then f(r) = r.270

The version we implement is a strengthening of this corollary, in the sense that it has

weaker assumptions than Theorem 5: rather than require S be a complete lattice, we

only need that S is a preorder and R has a greatest lower bound.

3.1. Tarski’s Theorem

Theorem 6. Suppose f is a monotone function on a preorder (S,⊑), and that the set275

R of all f -closed elements has a greatest lower bound r. Then f(r) ⊑ r and r ⊑ f(r).

Proof.

1 First prove f(r) ⊑ r. Since r is the greatest lower bound of R, it suffices to prove

f(r) ⊑ x for every x ∈ R. So, let x be an arbitrary element of R, and since r is a lower

bound of x, r ⊑ x. By monotonicity, we therefore obtain f(r) ⊑ f(x), and since x ∈ R280

we have that f(x) ⊑ x By transitivity, we conclude that f(r) ⊑ x.

2 Now prove r ⊑ f(r). Using 1 above and monotonicity of f , we have that f(f(r)) ⊑

f(r). This means that f(r) ∈ R, and since r is a lower bound of R, we have r ⊑ f(r).

Notice in this proof prima facie impredicativity: we pick a fixpoint r of f by reference285

to a collection R which (by 1) contains r. We will see that this impredicativity carries

over to Cedille. We will instantiate the underlying set S of the preorder in Theorem 6

to the set of Cedille types — this is why we need to relax the assumption of Theorem 5

that S is a complete lattice. However, we must still answer several questions:

— how should the ordering ⊑ be implemented;290

— ho do we express the idea of a monotone function; and

C. Jenkins and A. Stump 16

— how do we obtain the greatest lower bound of R?

One possibility that is available in System F is to choose functions A → B as the

ordering A ⊑ B, positive type schemes T (having a free variable X, and such that A→ B

implies [A/X]T → [B/X]T) as monotonic functions, and use universal quantification to295

define the desired greatest lower bound as ∀X. (T →X) →X. This approach, described

by Wadler (1990), is essentially a generalization of order theory to category theory, and

the terms inhabiting recursive types so derived are Church encodings. However, the

resulting recursive types lack property that roll and unroll are constant-time operations.

In Cedille, another possibility is available: we can interpret the ordering relation as300

type inclusions, in the sense that T1 is included into T2 if and only if every term t of

type T1 is definitionally equal to some term of type T2. To show how type inclusions

can be expressed as a type within Cedille (Cast , Section 3.3), we first demonstrate how

to internalize the property that some untyped term t can be viewed has having type T

(View , Section 3.2): type inclusions are thus a special case of internalized typing where305

we view λx.x has having type T1 → T2.

3.2. Views

Figure 5 gives the implementation of the View type family in Cedille, and Figure 6

summarizes this derivation with an axiomatic presentation. Type View ⋅T t is the subset

of type T consisting of terms provably equal to the untyped (more precisely Top-typed,310

see Definition 1) term t, and is defined as the dependent intersection of terms which have

type T and prove themselves equal to t.

The introduction from intrView takes an untyped term t1 and two computationally

irrelevant arguments: a term t2 of type T and a proof t that t2 is equal to t1. The

definition uses the ϕ axiom (Figure 3) and the Kleene trick (Section 2.3) so that the315

resulting View ⋅ T erases to ∣t1∣ (see Figure 4 for erasure rules). Because of the Kleene

Recursive Types and Data Representations in CDLE 17

module view .

import utils/top .

View ◁ Π T: ⋆. Top → ⋆ = λ T: ⋆. λ t: Top. ι x: T. { x ≃ t } .

intrView ◁ ∀ T: ⋆. Π t1: Top. ∀ t2: T. { t2 ≃ t1 } ⇒ View ⋅T t1

= Λ T. λ t1. Λ t2. Λ t. [ϕ t - t2 { t1 } , β{ t1 }] .

elimView ◁ ∀ T: ⋆. Π t: Top. View ⋅T t ⇒ T

= Λ T. λ t. Λ v. ϕ v.2 - v.1 { t } .

eqView ◁ ∀ T: ⋆. ∀ t: Top. ∀ v: View ⋅T t. { t ≃ v }

= Λ T. Λ t. Λ v. ρ v.2 @x.{ t ≃ x } - β .

selfView ◁ ∀ T: ⋆. Π t: T. View ⋅T β{ t }

= Λ T. λ t. intrView β{ t } -t -β .

extView

◁ ∀ S: ⋆. ∀ T: ⋆. Π t: Top. (Π x: S. View ⋅T β{ t x }) ⇒ View ⋅(S → T) t

= Λ S. Λ T. λ t. Λ v.

intrView ⋅(S → T) β{ t } -(λ x. elimView β{ t x } -(v x)) -β .

Fig. 5. Internalized typing (view.ced)

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t
←

∈ Top

Γ ⊢ View ⋅ T t ∶ ⋆

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t1
←

∈ Top Γ ⊢ t2
←

∈ View ⋅ T t1

Γ ⊢ elimView ⋅ T t1 -t2
→

∈ T

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t1
←

∈ Top Γ ⊢ t2
←

∈ T Γ ⊢ t
←

∈ {t2 ≃ t1}

Γ ⊢ intrView ⋅ T t1 -t2 -t
→

∈ View ⋅X t1

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t1
←

∈ Top Γ ⊢ t2
←

∈ View ⋅ T t1

Γ ⊢ eqView ⋅ T -t1 -t2
→

∈ {t1 ≃ t2}

∣elimView ⋅ T t1 -t2∣ = (λx.x) ∣t1∣

∣intrView ⋅ T t1 -t2 -t∣ = (λx.x) ∣t1∣

∣eqView ∣ = λx.x

Fig. 6. Internalized typing, axiomatically

C. Jenkins and A. Stump 18

trick, the requirement that a term has type T and also proves itself equal to t1 does

not restrict the terms and types over which we may form a View . The elimination form

elimView takes an untyped term t and an erased argument v proving that t may be

viewed as having type T , and returns a term of type T . The crucial property of elimView320

is that this returned term is definitionally equal to t itself!

Definition eqView provides a reasoning principle for views. It states that every proof v

that t may be viewed as having type T is in fact propositionally equal to t. In the body,

we use ρ to rewrite the expected type with the equational component of the dependent

intersection defining View ⋅ T t.325

The last two definitions of Figure 5, selfView and extView , are auxiliary. Since they can

be derived solely from the introduction and elimination forms, they are not included in the

axiomatization given in Figure 6. Definition selfView reflects the typing judgment that

t has type T into the proposition that β{t} can be viewed as having type T . Definition

extView provides an extensional typing principle for functions: if we can show of an330

untyped term t that for all inputs x of type S, t x can be viewed as having type T , then

in fact t can be viewed as having type S → T .

We give a few of examples.

— Let List be the type family of lists with constructor nil ∶ ∀A ∶ ⋆.List ⋅ A, and Bool

the type of Booleans. We can construct a proof of View ⋅ (List ⋅ Bool) β{nil} as335

follows: provide for the second argument of intrView the term nil ⋅ Bool , and the

third argument β. This is accepted because ∣β{nil}∣ = ∣nil ⋅Bool ∣ = ∣nil ∣.

— Let S and T be types and t a term of type ι x ∶S.T . We can construct a view of t as

having type S using t.1 and β, since ∣t.1∣ = ∣t∣.

— Let Bool = ∀X ∶ ⋆.X → X → X be the type of encoded Booleans, with tt ∶ Bool and340

ff ∶ Bool its constructors. Using extView , we can view the untyped term λx.x tt ff as

having type Bool → Bool . Let t ∶ Bool be arbitrary, then by selfView we can construct

Recursive Types and Data Representations in CDLE 19

module cast.

import view .

Cast ◁ ⋆ → ⋆ → ⋆ = λ S: ⋆. λ T: ⋆. View ⋅(S → T) β{ λ x. x } .

intrCast ◁ ∀ S: ⋆. ∀ T: ⋆. ∀ t: S → T. (Π x: S. { t x ≃ x }) ⇒ Cast ⋅S ⋅T

= Λ S. Λ T. Λ t. Λ t’.

extView ⋅S ⋅T β{ λ x. x } -(λ x. intrView β{ x } -(t x) -(t’ x)) .

elimCast ◁ ∀ S: ⋆. ∀ T: ⋆. Cast ⋅S ⋅T ⇒ S → T

= Λ S. Λ T. Λ c. elimView β{ λ x. x } -c .

eqCast ◁ ∀ S: ⋆. ∀ T: ⋆. ∀ c: Cast ⋅S ⋅T. { λ x. x ≃ c }

= Λ S. Λ T. Λ c. eqView -β{ λ x. x } -c .

Fig. 7. Casts (cast.ced)

a proof of View ⋅ Bool β{t ⋅ Bool tt ff }. When checking that this is convertible (see

Figure 2) with the expected type View ⋅Bool β{(λx.x tt ff) t}, we erase annotations

in terms and find that ∣t∣ ∣tt ∣ ∣ff ∣ =βη (λx.x ∣tt ∣ ∣ff ∣) ∣t∣, as desired.345

3.3. Casts

Type inclusions, or casts, are represented by functions from S to T that are provably

equal to λx.x (see Breitner et al., 2016, and also Firsov et al., 2018 for the related

notion of Curry-style “identity functions”). With types playing the role of elements of

the preorder, existence of a cast from types S to T will play the role of the ordering350

S ⊑ T in the proof of Theorem 6. We give the derivation of casts in Cedille in Figure 7,

and summarize our results axiomatically in Figure 8.

We define Cast ⋅ S ⋅ T as a view of λx.x as having type S → T . In intrinsic type

theory, there would not be much more to say: identity functions cannot map from S to

T unless S and T are convertible types. But in an extrinsic type theory like CDLE, there355

are many nontrivial casts, and this is especially true in the presence of the ϕ axiom.

Indeed, by enabling the definition of extView , ϕ plays a crucial role in the definition of

C. Jenkins and A. Stump 20

Γ ⊢ S
→

∈ ⋆ Γ ⊢ T
→

∈ ⋆

Γ ⊢ Cast ⋅ S ⋅ T
→

∈ ⋆

Γ ⊢ S
→

∈ ⋆ Γ ⊢ T
→

∈ ⋆ Γ ⊢ t
←

∈ S → T Γ ⊢ t′
←

∈ Πx ∶S.{t x ≃ x}

Γ ⊢ intrCast ⋅ S ⋅ T -t -t′
→

∈ Cast ⋅ S ⋅ T

Γ ⊢ S
→

∈ ⋆ Γ ⊢ T
→

∈ ⋆ Γ ⊢ c
←

∈ Cast ⋅ S ⋅ T

Γ ⊢ elimCast ⋅ S ⋅ T -c
→

∈ S → T

Γ ⊢ S
→

∈ ⋆ Γ ⊢ T
→

∈ ⋆ Γ ⊢ c
←

∈ Cast ⋅ S ⋅ T

Γ ⊢ eqCast ⋅ S ⋅ T -c
→

∈ {λx.x ≃ c}

∣intrCast ⋅ S ⋅ T -t -t′∣ = (λx. (λx.x) x) λx.x

∣elimCast ⋅ S ⋅ T -c∣ = (λx.x) λx.x

∣eqCast ∣ = λx.x

Fig. 8. Casts, axiomatically

the introduction form intrCast , which takes as erased arguments a function t ∶ S → T

and a proof that t is extensionally the identity function for all terms of type S.

Without extView , we might expect that the body of intrCast should look like360

intrView ⋅ (S → T) β{λx.x} -t -●

where ● holds the place of a proof of {t ≃ λx.x}. However, Cedille’s type theory is

intensional, so from the assumption that t behaves like the identity function on terms of

type S we cannot conclude that t is equal to λx.x. Since Cedille’s operational semantics

and definitional equality is over untyped terms, our assumption regarding the behavior

of t on terms of type S gives us no guarantees about the behavior of t on terms of other365

types, and thus no guarantee about the intensional structure of t.

The trick used in the definition of intrCast is rather to give an extensional typing to

the identity function, using the typing and property of t. In the body, we use extView

with an erased proof that assumes an arbitrary x ∶ S and constructs a view of x having

Recursive Types and Data Representations in CDLE 21

castRefl ◁ ∀ S: ⋆. Cast ⋅S ⋅S

= Λ S. intrCast -(λ x. x) -(λ _. β) .

castTrans ◁ ∀ S: ⋆. ∀ T: ⋆. ∀ U: ⋆. Cast ⋅S ⋅T ⇒ Cast ⋅T ⋅U ⇒ Cast ⋅S ⋅U

= Λ S. Λ T. Λ U. Λ c1. Λ c2.

intrCast -(λ x. elimCast -c2 (elimCast -c1 x)) -(λ _. β) .

castUnique ◁ ∀ S: ⋆. ∀ T: ⋆. ∀ c1: Cast ⋅S ⋅T. ∀ c2: Cast ⋅S ⋅T. { c1 ≃ c2 }

= Λ S. Λ T. Λ c1. Λ c2. ρ ς (eqCast -c1) @x.{ x ≃ c2 } - eqCast -c2 .

Fig. 9. Casts form a preorder (cast.ced)

type T using the typing of t x and the proof t′ x that {t x ≃ x}. So rather than showing370

t is λx.x, we are showing that t justifies giving λx.x the type S → T .

The elimination form, elimCast , takes an erased argument c of type Cast ⋅ S ⋅ T and

produced a function of type S → T . Cast is ultimately defined using a dependent inter-

section, and we can see that c.1 has the desired type. However, c is an erased argument

to elimCast and can only be used for the purposes of typing, not computation — so we375

cannot use c.1. Fortunately, elimView allows us to give λx.x the type S → T using c as

an erased argument. The entire definition, then, is definitionally equal to λx.x.

3.3.1. Casts form a preorder on types. Recall that a preorder (S,⊑) consists of a set S

and a reflexive and transitive binary relation ⊑ over S. In the proof-relevant setting of

type theory, establishing that a relation on types induces a preorder requires that we also380

show, for all types T1 and T2, proofs of T1 ⊑ T2 are unique — otherwise, we might only

be working in a category. We now show that Cast satisfies all three of these properties.

Theorem 7. Cast induces a preorder (or thin category) on Cedille types.

Proof. Figure 9 gives the proofs in Cedille of reflexivity (castRefl), transitivity (castTrans),

and uniqueness (castUnique) for Cast .385

3.3.2. Monotonicity. Monotonicity of a type scheme F ∶ ⋆ → ⋆ in this preorder is defined

as Mono in Figure 10 as a lifting, for all types S and T , of any cast from S to T to a

C. Jenkins and A. Stump 22

module mono .

import cast .

Mono ◁ (⋆ → ⋆) → ⋆

= λ F: ⋆ → ⋆. ∀ X: ⋆. ∀ Y: ⋆. Cast ⋅X ⋅Y → Cast ⋅(F ⋅X) ⋅(F ⋅Y) .

Fig. 10. Monotonicity (mono.ced)

cast from F ⋅ S to F ⋅ T . In the subsequent derivations of Scott and Parigot encodings,

we shall omit the details of monotonicity proofs; once the general principle behind them

is understood, these proofs are mechanical and do not provide further insight into the390

encoding. We give an example in Figure 11 to highlight the method.

NatF ◁ ⋆ → ⋆ = λ N: ⋆. ∀ X: ⋆. X → (N → X) → X.

monoNatF ◁ Mono ⋅NatF

= Λ X. Λ Y. λ c.

intrCast

-(λ n. Λ Z. λ z. λ s. n z (λ r. s (elimCast -c r)))

-(λ n. β).

Fig. 11. Monotonicity for NatF

Type scheme NatF is the impredicative encoding of the signature for natural numbers.

To prove that it is monotonic, we assume arbitrary types X and Y such that there is a

cast c from the former to the latter, and must exhibit a cast from NatF ⋅X to NatF ⋅Y . We

do this using intrCast on a function that is definitionally equal (βη-convertible modulo395

erasure) to the identity function.

After assuming n ∶ NatF ⋅X, we introduce a term of type NatF ⋅Y by abstracting over

a type Z and terms z ∶ Z and s ∶ Y → Z. Instantiating the type argument of n with Z,

the second term argument we need to provide must have type X → Z. This is done by

η-expanding s and inserting the assumed cast c from X to Y .400

Recursive Types and Data Representations in CDLE 23

module recType (F : ⋆ → ⋆).

import cast .

import mono .

Rec ◁ ⋆ = ∀ X: ⋆. Cast ⋅(F ⋅X) ⋅X ⇒ X.

recLB ◁ ∀ X: ⋆. Cast ⋅(F ⋅X) ⋅X ⇒ Cast ⋅Rec ⋅X

= Λ X. Λ c. intrCast -(λ x. x -c) -(λ _. β) .

recGLB ◁ ∀ Y: ⋆. (∀ X: ⋆. Cast ⋅(F ⋅X) ⋅X ⇒ Cast ⋅Y ⋅X) ⇒ Cast ⋅Y ⋅Rec

= Λ Y. Λ u. intrCast -(λ y. Λ X. Λ c. elimCast -(u -c) y) -(λ _. β) .

recRoll ◁ Mono ⋅F ⇒ Cast ⋅(F ⋅Rec) ⋅Rec

= Λ mono.

recGLB ⋅(F ⋅Rec)

-(Λ X. Λ c. castTrans ⋅(F ⋅Rec) ⋅(F ⋅X) ⋅X -(mono (recLB -c)) -c) .

recUnroll ◁ Mono ⋅F ⇒ Cast ⋅Rec ⋅(F ⋅Rec)

= Λ mono. recLB -(mono (recRoll -mono)).

Fig. 12. Monotone recursive types derived in Cedille (recType.ced)

3.4. Translating the proof of Theorem 6 to Cedille

Figure 12 shows the translation of the proof of Theorem 6 to Cedille, deriving monotone

recursive types. Cedille’s module system allows us to parametrize the module shown in

Figure 12 by the type scheme F , and all definitions implicitly take F as an additional

type argument. In prose (in the axiomatic presentation in Figure 14), we give F explicitly.405

As noted in Section 3.1, it is enough to require that the set of f -closed elements (here,

F -closed types) has a greatest lower bound. In Cedille’s meta-theory (Stump and Jenkins,

2018), types are interpreted as closed sets of (βη-equivalence classes of) terms, and in

particular the meaning of an impredicative quantification ∀X ∶⋆. T is the intersection of

the meanings (under different assignments of meanings to the variable X) of the body.410

Such an intersection functions as the greatest lower bound, as we will see.

The definition of Rec in Figure 12 expresses the intersection of the set of all F -closed

types. This Rec corresponds to r in the proof of Theorem 6. Semantically, we are taking

C. Jenkins and A. Stump 24

the intersection of all those sets X which are F -closed. So the greatest lower bound of

the set of all f -closed elements in the context of a partial order is translated to the415

intersection of all F -closed types, where X being F -closed means there is a cast from

F ⋅X to X. We require just an erased argument of type Cast ⋅ (F ⋅X) ⋅X. By making the

argument erased, we express the idea that we are taking the intersection of sets of terms

satisfying a property, and not a set of functions that take the property as an argument.

Theorem 8. Rec is the greatest lower bound of the set of all types X for which there420

exists a cast from F ⋅X to X.

Proof. In Figure 12, definition recLB establishes that Rec is a lower bound of this set

and recGLB establishes that for any other lower bound Y , there is a cast from Y to Rec.

For the first, assume we have an F -closed type X and some x ∶ Rec. It suffices to give a

term of type X that is intensionally equal to x. Instantiate the type argument of x to X425

and use the proof that X is F -closed as an erased argument.

For recGLB , assume we have some Y which is a lower bound of the set of all F -closed

types, witnessed by u, and a term y ∶ Y . It suffices to give a term of type Rec intensionally

equal to y. Unfolding the type of Rec, we assume an arbitrary type X that is F -closed,

witnessed by c, and must produce a term of type X. Use the assumption u and c to cast430

y to the type X, noting that abstraction over X and c is erased.

In Figure 12, recRoll implements part 1 of the proof of Theorem 6, and recUnroll

implements part 2. In recRoll , we invoke the property that Rec contains any other lower

bound of the set of F -closed types in order to show Rec contains F ⋅Rec, and must show

that F ⋅Rec is included into any arbitrary F -closed type X. We do so using the fact that435

Rec is also a lower bound of this set and so is contained in X, monotonicity of F , and

transitivity of Cast with the assumption that F ⋅X is contained in X. In recUnroll , we

use recRoll and monotonicity of F to obtain that F ⋅Rec is F -closed, then use recLB to

Recursive Types and Data Representations in CDLE 25

roll ◁ Mono ⋅F ⇒ F ⋅Rec → Rec

= Λ m. elimCast -(recRoll -m) .

unroll ◁ Mono ⋅F ⇒ Rec → F ⋅Rec

= Λ m. elimCast -(recUnroll -m) .

_ ◁ { roll ≃ λ x. x } = β.

_ ◁ { unroll ≃ λ x. x } = β.

recIso1 ◁ { λ x. roll (unroll x) ≃ λ x. x} = β.

recIso2 ◁ { λ x. unroll (roll x) ≃ λ x. x} = β.

Fig. 13. Operators roll and unroll (recType.ced)

conclude. It is here we see the impredicativity noted earlier: in recLB , we instantiate the

type argument of the Rec ⋅F argument to the given type X; in recUnroll , the given type440

is F ⋅ (Rec ⋅ F). This would not be possible in a predicative type theory.

3.5. Operational semantics for Rec

We conclude this section by giving the definitions of the constant-time roll and unroll

operators for recursive types in Figure 13. The derivation of recursive types with these

operators is summarized axiomatically in Figure 14.445

Operations roll and unroll are implemented simply by using the elimination form for

casts on resp. recRoll and recUnroll , assuming a proof m that F is monotonic. By erasure,

this means both operations erase to (λx.x) λx.x, and thus they are both definitionally

equal to λx.x. This is show in Figure 13 with two anonymous proofs (indicated by) of

equality types that hold by β alone. This fact makes trivial the proof that these operators450

for recursive types satisfy the desired computational laws.

Theorem 9. For all F ∶ ⋆ → ⋆ and monotonicity witnesses m ∶ Mono ⋅ F , function

roll ⋅F -m ∶ F ⋅(Rec ⋅F) → Rec ⋅F has a two-sided inverse unroll ⋅F -m ∶ Rec ⋅F → F ⋅(Rec ⋅F).

Proof. By definitional equality; see recIso1 and recIso2 in Figure 13.

C. Jenkins and A. Stump 26

Γ ⊢ F
→

∈ ⋆ → ⋆

Γ ⊢ Rec ⋅ F
→

∈ ⋆

Γ ⊢ F
→

∈ ⋆ → ⋆ Γ ⊢ t
←

∈ Mono ⋅ F

Γ ⊢ roll ⋅ F -t
→

∈ Rec → F ⋅Rec ⋅ F

Γ ⊢ F
→

∈ ⋆ → ⋆ Γ ⊢ t
←

∈ Mono ⋅ F

Γ ⊢ unroll ⋅ F -t
→

∈ Rec ⋅ F → F ⋅ (Rec ⋅ F)

∣roll ∣ = (λx.x) λx.x

∣unroll ∣ = (λx.x) λx.x

Fig. 14. Monotone recursive types, axiomatically

We remark that, given the erasures of roll and unroll , the classification of Rec as either455

being iso-recursive or equi-recursive is unclear. On the one hand, Rec ⋅F and its one-step

unrolling are not definitionally equal types and require explicit operations to pass between

the two. On the other hand, their denotations as sets of βη-equivalence classes of untyped

lambda terms are equal, and in intensional type theories with iso-recursive types it is not

usual that the η-law roll (unroll t) = t holds by the operational semantics (however, the460

β-law unroll (roll t) = t should, unless one is satisfied with Church encodings). Rec is,

instead, a synthesis of these two formulations of recursive types.

4. Datatypes and recursion schemes

Before we proceed with the application of derived recursive types to encodings of datatypes

with induction in Cedille, we first elaborate on the close connection between datatypes,465

structured recursion schemes, and impredicative encodings. An inductive datatype D can

be understood semantically as the least fixpoint of a signature functor F . Together with

D comes a generic constructor inD ∶ F ⋅D → D, which we can understand as construct-

ing a new value of D from an “F -collection” of predecessors. For example, the datatype

Nat of natural numbers has the signature λX ∶⋆.1+X, where + is the binary coproduct470

type constructor and 1 is the unitary type. The more familiar constructors zero ∶ Nat and

suc ∶ Nat → Nat can be merged together into a single constructor inNat ∶ (1+Nat) → Nat .

Recursive Types and Data Representations in CDLE 27

What separates our derived monotone recursive types (which also constructs a fixpoint

of F) and inductive datatypes is, essentially, the difference between preorder theory and

category theory: proof relevance. In moving from the first setting to the second, we observe475

the following correspondences.

— The ordering corresponds to morphisms. Here, this means working with functions

S → T , not type inclusions Cast ⋅ S ⋅ T , and while there is at most one witness of an

inclusion from one type to another there of course may be multiple functions.

— Monotonicity corresponds to functorality. Here, this means that a type scheme F480

comes with an operation fmap that lifts, for all types S and T , functions S → T to

functions F ⋅S → F ⋅T , and this lifting respects identity and composition of functions.

We give a formal definition in Cedille of functors later in Section 6.2.

— Where we had F -closed sets, we now have F -algebras. Here, this means a type T

together with a function t ∶ F ⋅ T → T .485

Carrying the correspondence further, in Section 3.4 we proved that Rec ⋅ F is a lower

bound of the set of F -closed types. The related property for a datatype D with signature

functor F is the existence of a iteration operator, foldD , satisfying both a typing and

(because of the proof-relevant setting) a computation law. This is shown in Figure 15.

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t
←

∈ F ⋅ T → T

Γ ⊢ foldD ⋅ T t
→

∈ D → T

∣foldD t (inF t′)∣ ↝ ∣t (fmap (foldD t) t′)∣

Fig. 15. Generic iteration scheme

For the typing law, we read T as the type of results we wish to iteratively compute and490

t as a function that constructs a result from an F -collection of previous results recursively

computed from predecessors. This reading is confirmed by the computation law, which

states that for all T , t, and t′, the function foldD t acts on inD t′ by first making recursive

C. Jenkins and A. Stump 28

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t1
←

∈ T Γ ⊢ t2
←

∈ T → T

Γ ⊢ foldNat ⋅ T t1 t2
→

∈ Nat → T

∣foldNat t1 t2 zero∣ ↝ ∣t1∣

∣foldNat t1 t2 (suc t)∣ ↝ ∣t2 (foldNat ⋅ T t1 t2 t)∣

Fig. 16. Iteration scheme for Nat

calls on the subdata of t′ (accessed using fmap) then using t to compute a result from this.

Instantiating F with the signature for Nat , and working through standard isomorphisms,495

we can specialize the typing and computation laws of the generic iteration scheme to the

usual laws for iteration over Nat , shown in Figure 16.

Following the approach of Geuvers (2014), we present lambda encodings as solutions to

structured recursion schemes over datatypes and evaluate them by how well they simulate

the computation laws for these schemes. Read Figure 15 as a collection of constraints500

with unknowns D, foldD , and inD . From these constraints, we can calculate an encoding

of D in System F that is a variant of the Church encoding. For comparison, the figure

also shows the familiar Church encoding of naturals, which we may similarly read from

the iteration scheme for Nat .

D = ∀X. ⋆ (F ⋅X →X) →X

foldD = ΛX.λa.λx. x ⋅X a

inD = λx.ΛX.λa. a (fmap ⋅D ⋅X (foldD ⋅X a) x)

Nat = ∀X ∶⋆.X → (X →X) →X

foldNat = ΛX.λz. λ s. λn.n ⋅X z s

zero = ΛX.λz. λ s. z

suc = λn.ΛX.λz. λ s. s (foldNat ⋅X z s n)

Fig. 17. Church encoding of D and Nat

For the typing law to hold, we let D be the type of functions, polymorphic in X, that505

take functions of type F ⋅X →X to a result of type X. For the iterator foldD , we simply

provide its argument t ∶ F ⋅X →X to the given encoding. Finally, we use the right-hand

Recursive Types and Data Representations in CDLE 29

side of the computation law to give a definition for constructor inD , and we can confirm

that inD has type F ⋅D → D. Thus, the Church encoding arises as a direct solution to

the iteration scheme in (impredicative) polymorphic lambda calculi.510

Notice that with the definitions of inD and foldD , we simulate the computation law

for iteration in a constant number of β-reduction steps. For call-by-name operational

semantics, we see that

∣foldD t (inD t′)∣ ↝ (λy. y ∣t∣) ∣inD t′∣ ↝ ∣inD t′ t∣

↝ (λx.x ∣(fmap (foldD x) t′)∣) ∣t∣ ↝ ∣t (fmap (foldD t) t′)∣

For call-by-value semantics, we would assume that t and t′ are values value and first

reduce inD t′.515

The issue of inefficiency in computing predecessor for Church naturals has an analogue

for an arbitrary datatype D supporting only the iteration scheme. The destructor for

datatype D is a function outD ∶D → F ⋅D which satisfies the following computation law

for all t ∶ F ⋅D.

∣outD (inD t)∣ ↝ ∣t∣

With foldD , we can define a candidate for the destructor that satisfies the desired typing.520

outD = foldD (fmap inD)

However, this definition of outD does not efficiently simulate the computation law. By

definitional equality alone, we have only

∣outD (inD t)∣ ↝∗ fmap inD (fmap outD t)

which means we recursively destruct predecessors of t only to reconstruct them with inD .

In particular, if t is a variable the recursive call becomes stuck, and we cannot reduce

further to obtain a right-hand side of t.525

C. Jenkins and A. Stump 30

4.1. Characterizing datatype encodings

Throughout the remainder of this paper, we will give thorough characterization of both

the computational and extensional properties of the datatype encodings we present. We

now detail the criteria we shall use, and the corresponding Cedille definitions, for the

iteration scheme. This begins with Figure 18, which takes as a module parameter a type530

scheme F ∶ ⋆ → ⋆ and gives type definitions for the typing law of the iteration scheme.

Type family Alg gives the shape of the types of functions used in iteration, and family

Iter gives the shape of the type of the combinator foldD itself.

module data-char/iter-typing (F: ⋆ → ⋆) .

Alg ◁ ⋆ → ⋆ = λ X: ⋆. F ⋅X → X .

Iter ◁ ⋆ → ⋆ = λ D: ⋆. ∀ X: ⋆. Alg ⋅X → D → X .

Fig. 18. Iteration typing (data-char/iter-typing.ced)

module data-char/iter

(F: ⋆ → ⋆) (fmap: ∀ X: ⋆. ∀ Y: ⋆. (X → Y) → F ⋅X → F ⋅Y)

(D: ⋆) (inD: F ⋅D → D).

import data-char/iter-typing ⋅F .

AlgHom ◁ Π X: ⋆. Alg ⋅X → (D → X) → ⋆

= λ X: ⋆. λ a: Alg ⋅X. λ h: D → X.

∀ xs: F ⋅D. { h (inD xs) ≃ a (fmap h xs) } .

IterBeta ◁ Iter ⋅D → ⋆

= λ iter: Iter ⋅D.

∀ X: ⋆. ∀ a: Alg ⋅X. AlgHom ⋅X a (iter a) .

IterEta ◁ Iter ⋅D → ⋆

= λ iter: Iter ⋅D.

∀ X: ⋆. ∀ a: Alg ⋅X. ∀ h: D → X. AlgHom ⋅X a h →

Π x: D. { h x ≃ iter a x } .

Fig. 19. Iteration characterization (data-char/iter.ced)

Recursive Types and Data Representations in CDLE 31

Iteration scheme. Figure 19 lists the computation and extensionality laws for the it-

eration scheme. For the module parameters, read fmap as the functorial operation lifting535

functions over type scheme F , D as the datatype, and inD as the constructor. IterBeta

expresses the computation law using the auxiliary definition AlgHom (the category-

theoretic notion of an F -algebra homomorphism from inD): for all xs ∶ F ⋅D, X, and

a ∶ Alg ⋅X, foldD a (inD x) is propositionally equal to a (fmap (foldD a) xs). For all

datatype encodings and recursion schemes, we will be careful to note whether the compu-540

tation law is efficiently simulated by the encoding under call-by-name and call-by-value

operational semantics.

The extensionality law, given by IterEta, gives the property that the combinator foldD

for iteration is a unique solution to the computation law. More precisely, if there is

any other function h ∶ D → X that satisfies the computation law with respect to some545

a ∶ Alg ⋅X, then foldD a and h are equal up to function extensionality. Extensionality

laws are proved with induction.

module data-char/destruct (F: ⋆ → ⋆) (D: ⋆) (inD : F ⋅D → D) .

Destructor ◁ ⋆ = D → F ⋅D .

Lambek1 ◁ Destructor → ⋆

= λ outD: Destructor. Π xs: F ⋅D. { outD (inD xs) ≃ xs } .

Lambek2 ◁ Destructor → ⋆

= λ outD: Destructor. Π x: D. { inD (outD x) ≃ x } .

Fig. 20. Laws for the datatype destructor (data-char/destruct.ced)

Destructor. In Figure 20, Destructor gives the type of the generic data destructor,

and Lambek1 and Lambek2 together state that the property that the destructor outD is

a two-sided inverse of the constructor inD . The names for these properties come from550

Lambek’s lemma Lambek (1968) which states that the action of the initial algebra is an

isomorphism. For all encodings of datatypes, we will be careful to note whether Lambek1

C. Jenkins and A. Stump 32

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t1
←

∈ T Γ ⊢ t2
←

∈ Nat → T

Γ ⊢ caseNat ⋅ T t1 t2
→

∈ Nat → T

∣caseNat ⋅ T t1 t2 zero∣ ↝ ∣t1∣

∣caseNat ⋅ T t1 t2 (suc n)∣ ↝ ∣t2 n∣

Fig. 21. Typing and computation laws for case distinction on Nat

(the computation law) is efficiently simulated by the encoding under call-by-name and

call-by-value operational semantics. As we noted earlier, for the generic Church encoding

the solution for outD is not an efficient one.555

5. Scott encoding

The Scott encoding was first described in unpublished lecture notes by Scott (1962), and

appears also in the work of Parigot (1989, 1992). Unlike Church naturals, an efficient

predecessor function is definable for Scott naturals (Parigot, 1989), but it is not known

how to express the type of Scott-encoded data in System F (Splawski and Urzyczyn, 1999,560

point towards a negative result). Furthermore, it is not obvious how to define recursive

functions over Scott naturals without a general fixpoint mechanism for terms.

As a first application of monotone recursive types in Cedille – and as a warm-up for the

generic derivations to come – we show how to derive Scott-encoded natural numbers with

a weak form of induction. By weak, we mean that this form of induction does not provide565

an inductive hypothesis, only a mechanism for proof by case analysis. In Section 7, we

will derive both primitive recursion and standard induction for Scott encodings.

Scott encodings can be seen as a solution to the case-distinction scheme in polymorphic

lambda calculi with recursive types. For the datatype Nat , the typing and computation

laws for this scheme are given in Figure 21. Unlike the iteration scheme, in the successor570

case the case-distinction scheme provides direct access to the predecessor itself but no

apparent form of recursion.

Recursive Types and Data Representations in CDLE 33

Nat = µN.∀X.X → (N →X) →X

caseNat = ΛX.λz. λ s. λx. x ⋅X z s

zero = ΛX.λz. λ s. z

suc = λx.ΛX.λz. λ s. s x

Fig. 22. Scott naturals

Using caseNat , we can define the predecessor function pred for naturals.

pred = caseNat zero λ x . x

Function pred then computes as follows over the constructors of Nat .

∣pred zero∣ ↝ ∣zero∣

∣pred (suc t)∣ ↝ ∣(λx.x) t∣ ↝ ∣t∣

Thus we see that with an efficient simulation of caseNat , we have an efficient implemen-575

tation of the predecessor function.

Using the same method as discussed in Section 4.1, from the typing and computation

laws we obtain the solutions for Nat , caseNat , zero, and suc given in Figure 22. It is then

a mechanical exercise to confirm that the computation laws are efficiently simulated by

these term definitions. For the definition of Nat , the premises of the typing law mention580

Nat itself, so a direct solution requires monotone recursive types.

5.1. Scott-encoded naturals, concretely

Our construction of Scott-encoded naturals supporting weak induction consists of three

stages. In Figure 23 we give the definition of the non-inductive datatype signature NatF

with its constructors. In Figure 24 we define a predicate WkIndNatF over types N and585

terms n of type NatF ⋅N that says a certain form of weak induction suffices to prove

properties about n. Finally, in Figure 25 the type Nat is given using recursive types and

weak induction is derived.

C. Jenkins and A. Stump 34

module scott/concrete/nat .

import view .

import cast .

import mono .

import recType .

NatF ◁ ⋆ → ⋆ = λ N: ⋆. ∀ X: ⋆. X → (N → X) → X.

zeroF ◁ ∀ N: ⋆. NatF ⋅N

= Λ N. Λ X. λ z. λ s. z.

sucF ◁ ∀ N: ⋆. N → NatF ⋅N

= Λ N. λ n. Λ X. λ z. λ s. s n.

monoNatF ◁ Mono ⋅NatF

= <..>

Fig. 23. Scott naturals (part 1) (scott/concrete/nat.ced)

Signature NatF . In Figure 23, type scheme NatF is the usual impredicative encoding

of the signature functor for natural numbers. Terms zeroF and sucF are its constructors,590

quantifying over the parameter N ; using the erasure rules (Figure 4) we can confirm that

these have the same erasure as would the solutions for zero and suc given in Figure 22.

The proof that NatF is monotone is omitted, indicated by <..> in the figure (we detailed

the proof in Section 3.3.2).

WkIndNatF ◁ Π N: ⋆. NatF ⋅N → ⋆

= λ N: ⋆. λ n: NatF ⋅N.

∀ P: NatF ⋅N → ⋆. P (zeroF ⋅N) → (Π m: N. P (sucF m)) → P n .

zeroWkIndNatF ◁ ∀ N: ⋆. WkIndNatF ⋅N (zeroF ⋅N)

= Λ N. Λ P. λ z. λ s. z .

sucWkIndNatF ◁ ∀ N: ⋆. Π n: N. WkIndNatF ⋅N (sucF n)

= Λ N. λ n. Λ P. λ z. λ s. s n .

Fig. 24. Scott naturals (part 2) (scott/concrete/nat.ced)

Recursive Types and Data Representations in CDLE 35

Predicate WkIndNatF . We next define a predicate, parametrized by a type N , over595

terms of type NatF ⋅N . For such a term n, WkIndNat ⋅N n is the property that, to prove

P n for arbitrary P ∶ NatF ⋅N → ⋆, it suffices to show certain cases for zeroF and sucF .

— In the base case, we must show that P holds for zeroF .

— In the step case, we must show that for arbitrary m ∶ N that P holds for sucF m.

Next in Figure 24 are proofs zeroWkIndNatF and sucWkIndNatF , which show resp.600

that zeroF satisfies the predicate WkIndNatF and sucF n satisfies this predicate for all

n. Notice that zeroWkIndNatF is definitionally equal to zeroF and sucWkIndNatF is

definitionally equal to sucF . We can confirm this fact by having Cedille check that β

proves they are propositionally equal (denotes an anonymous proof):

_ ◁ { zeroF ≃ zeroWkIndNatF } = β .605

_ ◁ { sucF ≃ sucWkIndNatF } = β .

This correspondence, first observed for Church encodings by Leivant (1983), between

lambda-encoded data and the proofs these satisfy the datatype’s typing laws, is an es-

sential part of the recipe described by Stump (2018a) for deriving inductive types in

CDLE.610

Nat, the type of Scott naturals. Figure 25 gives the third and final phase of the

derivation of Scott naturals. The datatype signature NatFI is defined using a dependent

intersection, producing the subset of those terms of type NatF ⋅N that are definitionally

equal to some proof that they satisfy the predicate WkIndNatF ⋅ N . Monotonicity of

NatFI is given by monoNatFI (proof omitted).615

Using the recursive type former Rec derived in Section 3, we define Nat as the least

fixpoint of NatFI , and specialize the rolling and unrolling operators to NatFI , ob-

taining rollNat and unrollNat . The operators, along with the facts that ∣zeroF ∣ =βη

C. Jenkins and A. Stump 36

NatFI ◁ ⋆ → ⋆ = λ N: ⋆. ι x: NatF ⋅N. WkIndNatF ⋅N x .

monoNatFI ◁ Mono ⋅NatFI

= <..>

Nat ◁ ⋆ = Rec ⋅NatFI .

rollNat ◁ NatFI ⋅Nat → Nat = roll -monoNatFI .

unrollNat ◁ Nat → NatFI ⋅Nat = unroll -monoNatFI .

zero ◁ Nat

= rollNat [zeroF ⋅Nat , zeroWkIndNatF ⋅Nat] .

suc ◁ Nat → Nat

= λ m. rollNat [sucF m , sucWkIndNatF m] .

LiftNat ◁ (Nat → ⋆) → NatF ⋅Nat → ⋆

= λ P: Nat → ⋆. λ x: NatF ⋅Nat.

∀ v: View ⋅Nat β{ x }. P (elimView β{ x } -v) .

wkIndNat ◁ ∀ P: Nat → ⋆. P zero → (Π x: Nat. P (suc x)) → Π n: Nat. P n

= Λ P. λ z. λ s. λ n.

(unrollNat n).2 ⋅(LiftNat ⋅P) (Λ v. z) (λ m. Λ v. s m) -(selfView n) .

Fig. 25. Scott naturals (part 3) (scott/concrete/nat.ced)

∣zeroWkIndNatF ∣ and ∣sucF ∣ =βη ∣sucWkIndNatF ∣, are then used to define the construc-

tors zero and suc.620

From the fact that ∣rollNat ∣ =βη λx.x, and by the erasure of dependent intersection

introductions, we see that the constructors for Nat are in fact definitionally equal to the

corresponding constructors for NatF . We can again confirm by using Cedille to check

that β proves they are propositionally equal.

_ ◁ { zero ≃ zeroF } = β .625

_ ◁ { suc ≃ sucF } = β .

Weak induction for Nat. Weak induction for Nat , given by wkIndNat in Figure 25,

allows us to prove P n for arbitrary n ∶ Nat and P ∶ Nat → ⋆ if we can show that P holds

of zero and that for arbitrary m we can construct a proof of P (suc m). However, there

is a gap between this proof principle and the proof principle WkIndNatF ⋅Nat associated630

Recursive Types and Data Representations in CDLE 37

to n — the latter allows us to prove properties over terms of type NatF ⋅Nat , not terms

of type Nat ! To bridge this gap, we introduce a predicate transformer LiftNat that takes

properties of kind Nat → ⋆ to properties of kind NatF ⋅Nat → ⋆. For any t ∶ NatF ⋅Nat ,

the new property LiftNat ⋅P t states that P holds for t if we have a way of viewing t at

type Nat (View , Figure 6).635

The key to the proof of weak induction for Nat is that by using View , the retyping

operation of terms of type NatF ⋅Nat is definitionally equal toλx.x, and the fact that the

constructors for NatF are definitionally equal to the constructors for Nat . We elaborate

further on this point. Let z and s be resp. the assumed proofs of the base and inductive

cases. From the second projection of the unrolling of n we have a proof of WkIndNatF ⋅640

Nat (unroll n).1. Instantiate the predicate argument of this with LiftNat ⋅P . This gives

us three subgoals:

— LiftNat ⋅ P (zeroF ⋅Nat)

Assuming v ∶ View ⋅Nat β{zeroF}, we wish to give a proof of P (elimView β{zeroF} -v).

This is convertible with the type P zero of z, since ∣elimView β{zeroF} -v∣ =βη ∣zero∣.645

— Πm ∶Nat .LiftNat ⋅ P (sucF m)

Assume we have such an m, and that v is a proof of View ⋅Nat β{sucF m}. We are

expected to give a proof of P (elimView β{sucF m.1} -v). The expression s m has

type P (suc m), which is convertible with that expected type.

— View ⋅Nat β{(unrollNat n).1}650

This holds by selfView n of type View ⋅Nat β{n}, since ∣β{n}∣ =βη ∣β{(unrollNat n).1}∣.

5.1.1. Computational and extensional character. As mentioned at the outset of this sec-

tion, one of the crucial characteristics of Scott-encoded naturals is that they may be

used to efficiently simulate the computation laws for the case-distinction scheme. We

now demonstrate this is the case for the Scott naturals we have derived. Additionally,655

we prove using weak induction that the solution we give for the combinator for case dis-

C. Jenkins and A. Stump 38

caseNat ◁ ∀ X: ⋆. X → (Nat → X) → Nat → X

= Λ X. λ z. λ s. λ n. (unrollNat n).1 z s .

caseNatBeta1 ◁ ∀ X: ⋆. ∀ z: X. ∀ s: Nat → X. { caseNat z s zero ≃ z }

= Λ X. Λ z. Λ s. β .

caseNatBeta2

◁ ∀ X: ⋆. ∀ z: X. ∀ s: Nat → X. ∀ n: Nat. { caseNat z s (suc n) ≃ s n }

= Λ X. Λ z. Λ s. Λ n. β .

pred ◁ Nat → Nat = caseNat zero λ p. p .

predBeta1 ◁ { pred zero ≃ zero } = β .

predBeta2 ◁ ∀ n: Nat. { pred (suc n) ≃ n }

= Λ n. β .

wkIndNatComp ◁ { caseNat ≃ wkIndNat } = β .

Fig. 26. Computation laws for case distinction and predecessor

(scott/concrete/nat.ced)

tinction satisfies the corresponding extensionality law, i.e., it is the unique such solution

up to function extensionality.

Computational laws. The definition of the operator caseNat for case distinction is

given in Figure 26, along with predecessor pred (defined using caseNat) and proofs for660

both that they satisfy the desired computation laws (or β-laws) by definition. Com-

pared to the solutions given in Figure 22, we have introduced an additional application

unrollNat in caseNat and additional applications of rollNat in the constructors. However,

both rollNat and unrollNat erase to (λx.x) (λx.x) (Figure 14), so this introduces only

a constant number of reductions in the simulation of case distinction. With an efficient665

operation for case distinction, we obtain an efficient predecessor pred .

To confirm the efficiency of this simulation, we consider the erasure of the right-hand

Recursive Types and Data Representations in CDLE 39

side of the computation law for case distinction for the successor case (caseNatBeta2).

(λz. λ s. λn. (λx.x) (λx.x)
´¹¹¸¹¹¹¶

unrollNat

n z s)

´¹¹¹¸¹¹¹¶
caseNat

z s ((λn. (λx.x) (λx.x)
´¹¹¸¹¹¹¶

rollNat

((λn.λ z. λ s. s n)
´¹¹¸¹¹¹¶

sucF

n))

´¹¹¸¹¹¹¶
suc

n)

This both call-by-name and (under the assumption that n is a value) call-by-value reduces

to s n in a constant number of steps.670

Additionally, it is satisfying to note that the computational content underlying the

weak induction principle is precisely the same as that underlying the case-distinction

scheme caseNat . This is proven by wkIndComp, which shows not just that they satisfy

the same computation laws, but in fact that the two terms are definitionally equal.

caseNatEta

◁ ∀ X: ⋆. ∀ z: X. ∀ s: Nat → X.

∀ h: Nat → X. { h zero ≃ z } ⇒ (Π n: Nat. { h (suc n) ≃ s n }) ⇒

Π n: Nat. { caseNat z s n ≃ h n }

= Λ X. Λ z. Λ s. Λ h. Λ hBeta1. Λ hBeta2.

wkIndNat ⋅(λ x: Nat. { caseNat z s x ≃ h x })

(ρ hBeta1 @x.{ z ≃ x } - β)

(λ m. ρ (hBeta2 m) @x.{ s m ≃ x } - β) .

reflectNat ◁ Π n: Nat. { caseNat zero suc n ≃ n }

= caseNatEta ⋅Nat -zero -suc -(λ x. x) -β -(λ m. β) .

Fig. 27. Extensional laws for case distinction (scott/concrete/nat.ced)

Extensional laws. Using weak induction, we can prove the extensionality law (or η-law)675

of the case-distinction scheme. This is caseNatEta in Figure 27. The precise statement

of uniqueness is that, for every type X and terms z ∶ X and s ∶ Nat → X, if there exists

a function h ∶ Nat → X satisfying the computation laws of the case-distinction scheme

with respect to z and s, then h is extensionally equal to caseNat z s.

From uniqueness, we can obtain the proof reflectNat that using case distinction with680

the constructors themselves reconstructs the given number. The name for this is taken

from the reflection law (Uustalu and Vene, 1999) of the iteration scheme for datatypes.

C. Jenkins and A. Stump 40

The standard formulation of the reflection law, and the variation given by reflectNat , both

express that the only elements of a datatype are those generated by its constructors. This

idea plays a crucial role in the future derivations of (full) induction for both the Parigot685

and Scott encodings.

5.2. Scott-encoded data, generically

For the generic Scott encoding, we begin our discussion by phrasing the case-distinction

scheme generically (meaning parametrically) in a signature F ∶ ⋆ → ⋆. Let D be the

datatype whose signature is F and whose constructor is inDF ⋅ D → D. Datatype D690

satisfies the case-distinction scheme if there exists a definition of caseD satisfying the

typing and computation laws listed in Figure 28.

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t
←

∈ F ⋅D → T

Γ ⊢ caseD ⋅ T t
→

∈ T

∣caseD ⋅ T t (inD t′)∣ ↝ ∣t t′∣

Fig. 28. Generic case-distinction scheme

We understand the computation law as saying that when acting on data constructed

with inD , the case-distinction scheme gives to its function argument t the revealed sub-

data t′ ∶ F ⋅D directly. Notice that unlike the iteration scheme, we do not require that F695

comes together with an operation fmap as there is no recursive call to be made on the

predecessors.

From these typing and computation laws, we can define the generic destructor outD ∶

D = µD.∀X. (F ⋅D →X) →X

caseD = ΛX.λa.λx. x ⋅X a

inD = λx.ΛX.λa. a x

Fig. 29. Generic Scott encoding of D

Recursive Types and Data Representations in CDLE 41

module data-char/case-typing (F: ⋆ → ⋆) .

AlgCase ◁ ⋆ → ⋆ → ⋆

= λ D: ⋆. λ X: ⋆. F ⋅D → X .

Case ◁ ⋆ → ⋆

= λ D: ⋆. ∀ X: ⋆. AlgCase ⋅D ⋅X → D → X .

Fig. 30. Case distinction typing (data-char/case-typing.ced)

D → F ⋅D that reveals the F -collection of predecessors from which a term of type D was

constructed.700

outD = caseD (λx.x)

This satisfies the expected computation law for the destructor in a number of steps that

is constant with respect to t.

Reading an encoding directly from these laws results in the solutions for D, caseD ,

and inD given in Figure 29. This is the generic Scott encoding, and is the basis for the

developments in Section 5.2.2. Notice once again that the premises make reference to the705

datatype D itself, so in order to read the impredicative encoding of D directly from the

typing law we require some form of recursive types.

5.2.1. Characterization criteria. We formalize in Cedille the above description of the

generic case-distinction scheme in Figures 30 and 31. Definitions for the typing law of

case distinction for datatype D are given in Figure 30, where the module is parametrized710

by a type scheme F which gives the datatype signature. The type family AlgCase gives

the shape of the types of functions used for case distinction, and Case gives the shape of

the type of operator caseD itself.

In Figure 31, we now take the signature F as well as the datatype D and its constructor

inD as parameters. For a candidate case ∶ Case ⋅D for the operator for case distinction,715

the property CaseBeta case states that it satisfies the desired computation law, where

the shape of the computation law is given by AlgCaseHom. CaseEta case is the property

C. Jenkins and A. Stump 42

module data-char/case

(F: ⋆ → ⋆) (D: ⋆) (inD: F ⋅D → D).

import data-char/case-typing ⋅F .

AlgCaseHom ◁ Π X: ⋆. AlgCase ⋅D ⋅X → (D → X) → ⋆

= λ X: ⋆. λ a: AlgCase ⋅D ⋅X. λ h: D → X.

∀ xs: F ⋅D. { h (inD xs) ≃ a xs } .

CaseBeta ◁ Case ⋅D → ⋆

= λ case: Case ⋅D.

∀ X: ⋆. ∀ a: AlgCase ⋅D ⋅X. AlgCaseHom ⋅X a (case a) .

CaseEta ◁ Case ⋅D → ⋆

= λ case: Case ⋅D.

∀ X: ⋆. ∀ a: AlgCase ⋅D ⋅X. ∀ h: D → X. AlgCaseHom ⋅X a h →

Π x: D. { h x ≃ case a x } .

Fig. 31. Case distinction characterization (data-char/case.ced)

that case satisfies the extensionality law, i.e., any other function h ∶D →X that satisfies

the computation law with respect to a ∶ AlgCase ⋅D ⋅X is extensionally equal to case a.

5.2.2. Generic Scott encoding. We now detail the generic derivation of Scott-encoded720

data supporting a weak induction principle. The developments in this section are parametrized

by a type scheme F ∶ ⋆ → ⋆ that is monotonic (the curly braces around mono indicate

that it is an erased module parameter). As we did for the concrete derivation of naturals,

the construction is separated into several phases. In Figure 32, we give the unrefined

signature DF for Scott-encoded data and its constructor. In Figure 33, we define the725

predicate WkIndDF expressing that DF terms satisfy a weak induction principle, and

show that the constructor satisfies this predicate. In Figure 34, we take the fixpoint of

the refined signature, defining the datatype D with its constructor, and prove the weak

induction principle for D.

Signature DF In Figure 32, DF is the type whose fixpoint is solution to the equation730

for D in Figure 29. Definition inDF is the polymorphic constructor for signature DF , i.e.,

Recursive Types and Data Representations in CDLE 43

import mono .

module scott/encoding (F: ⋆ → ⋆) {mono: Mono ⋅F} .

import view .

import cast .

import recType .

import utils .

import data-char/typing ⋅F .

DF ◁ ⋆ → ⋆ = λ D: ⋆. ∀ X: ⋆. AlgCase ⋅D ⋅X → X .

inDF ◁ ∀ D: ⋆. AlgCase ⋅D ⋅(DF ⋅D)

= Λ D. λ xs. Λ X. λ a. a xs .

monoDF ◁ Mono ⋅DF

= <..>

Fig. 32. Generic Scott encoding (part 1) (scott/generic/encoding.ced)

the generic grouping together of the collection of constructors for the datatype signature

(e.g., zeroF and sucF , Figure 23). Notice that the erasure of inDF is α-equivalent to

what would be the erasure of inD in Figure 29. Finally, monoDF is a proof that type

scheme DF is monotonic (definition omitted, indicated by <..>).735

WkPrfAlg ◁ Π D: ⋆. (DF ⋅D → ⋆) → ⋆

= λ D: ⋆. λ P: DF ⋅D → ⋆. Π xs: F ⋅D. P (inDF xs) .

WkIndDF ◁ Π D: ⋆. DF ⋅D → ⋆

= λ D: ⋆. λ x: DF ⋅D.

∀ P: DF ⋅D → ⋆. WkPrfAlg ⋅D ⋅P → P x .

inWkIndDF ◁ ∀ D: ⋆. WkPrfAlg ⋅D ⋅(WkIndDF ⋅D)

= Λ D. λ xs. Λ P. λ a. a xs .

Fig. 33. Generic Scott encoding (part 2) (scott/generic/encoding.ced)

Predicate WkIndDF . In Figure 33, we give the definition of WkIndDF , the property

(parametrized by type D) that terms of type DF ⋅D satisfy a certain weak induction

principle. More precisely, WkIndDF ⋅ D t is the type of proofs that, for all properties

C. Jenkins and A. Stump 44

P ∶ DF ⋅D → ⋆, P holds for t if a weak inductive proof can be given for P . The type

of weak inductive proofs is WkPrfAlg ⋅D ⋅P , to be read “weak (F,D)-proof-algebras for740

P”. A term a of this type takes an F -collection of D values and produces a proof that

P holds for the value constructed from this using inDF .

In the concrete derivation of Scott naturals, the predicate WkIndNatF (Figure 24)

required terms of the following types be given for proofs by weak induction:

P (zeroF ⋅N)

Πm ∶N.P (sucF m)

We can understand WkPrfAlg as combing these types together into a single type, parametrized745

by the signature F :

Π xs ∶F ⋅D.P (inDF xs)

Next in the figure is inWkIndDF , which is for all types D a weak (F,D)-proof-algebra

for WkIndDF ⋅D. Put more concretely, it is a proof that every term of type DF ⋅D that

was constructed by inDF admits the weak induction principle given by WkIndDF ⋅D.

The corresponding definitions from Section 5.2 are zeroWkIndNatF and sucWkIndNatF .750

Observe that the proof inWkIndDF is definitionally equal to inDF .

_ ◁ { inDF ≃ inWkIndDF } = β .

The Scott-encoded datatype D. With the inductivity predicate WkIndDF and weak

proof algebra inWkIndDF for it, we are now able to form a refinement of signature DF

whose fixpoint supports weak induction (proof by cases). This is DFI in Figure 34, which755

uses dependent intersections to map types D to the subset of DF ⋅D which are also proofs

that they satisfy WkIndDF ⋅D. Since DFI is monotonic (proof omitted), we can form

the datatype D as the fixpoint of DFI using Rec, with rolling and unrolling operations

rollD and unrollD that are definitionally equal to λx.x.

The constructor inD for D takes an F -collection of D predecessors xs, and constructs760

Recursive Types and Data Representations in CDLE 45

DFI ◁ ⋆ → ⋆ = λ D: ⋆. ι x: DF ⋅D. WkIndDF ⋅D x .

monoDFI ◁ Mono ⋅DFI = <..>

D ◁ ⋆ = Rec ⋅DFI .

rollD ◁ DFI ⋅D → D = roll -monoDFI .

unrollD ◁ D → DFI ⋅D = unroll -monoDFI .

inD ◁ AlgCase ⋅D ⋅D

= λ xs. rollD [inDF xs , inWkIndDF xs] .

LiftD ◁ (D → ⋆) → DF ⋅D → ⋆

= λ P: D → ⋆. λ x: DF ⋅D.

∀ v: View ⋅D β{ x }. P (elimView β{ x } -v) .

wkIndD ◁ ∀ P: D → ⋆. (Π xs: F ⋅D. P (inD xs)) → Π x: D. P x

= Λ P. λ a. λ x.

(unrollD x).2 ⋅(LiftD ⋅P) (λ xs. Λ v. a xs) -(selfView x) .

Fig. 34. Generic Scott encoding (part 3) (scott/generic/encoding.ced)

a value of type D using the fixpoint rolling operator, the constructor inDF , and the proof

inWkIndDF . Note again that, by the erasure of dependent intersections, we have that

inD and inDF are definitionally equal.

Weak induction for D. As was the case for the concrete encoding of Scott naturals,

we must now bridge the gap between the desired weak induction principle, where we wish765

to prove properties of kind D → ⋆, and what we are given by WkIndDF (the ability to

prove properties of kind DF ⋅D → ⋆). This is achieved using the predicate transformer

LiftD that maps predicates over D to predicates over DF ⋅D by requiring an additional

assumption that the given x ∶ DF ⋅D can be viewed as having type D.

The weak induction principle wkIndD for D states that the property P holds for term770

t ∶ D if we can provide a function a which, when given an arbitrary F -collection of D

predecessors, produces a proof that P holds for the successor of this collection constructed

from inD . In the body of wkIndD , we invoke the proof principle WkIndDF ⋅D (unroll x).1,

given by (unroll x).2, on the lifting of P . For the weak proof algebra, we apply the

C. Jenkins and A. Stump 46

assumption a to the revealed predecessors xs. This expression has type P (inD xs), and775

the expected type is P (elimView β{inDF xs} -v). These two types are convertible, since

the two terms in question are definitionally equal:

∣elimView β{inDF xs} -v∣ =βη ∣inD xs ∣

since in particular ∣inDF ∣ =βη ∣inD ∣.

5.2.3. Computational and extensional character. We now analyze the properties of our

generic Scott encoding. In particular, we give the normalization guarantee for terms of780

type D and confirm that we can give definitions for the case-distinction scheme and

destructor that both efficiently simulate their expected computation laws and provably

satisfy their expected extensionality laws.

Normalization guarantee. Recall that Proposition 3 guarantees call-by-name normal-

ization for closed terms whose type can be included into some function type. The proof785

normD of Figure 35 establishes the existence of a cast from D to AlgCase ⋅D ⋅D → D,

meaning that closed terms of type D satisfy this criterion.

Case-distinction scheme. We next bring into scope the definitions for characterizing

the case-distinction scheme (Figure 31). For our solution caseD in Figure 35, caseDBeta

proves it satisfies the computation law and caseDEta proves it satisfies extensional law. As790

we saw for the concrete example of Scott naturals in Section 5.1.1, the proof caseDBeta

of the computation law holds by definitional equality, not just propositional equality,

since the propositional equality is proved by β. By inspecting the definitions of inD

and caseD , and the erasures of roll and unroll (Figure 14), we can confirm that in fact

caseD t (inD t′) reduces to t in a number of steps that is constant with respect to t′ under795

both call-by-name and call-by-value operational semantics (for call-by-value semantics,

we would first assume t′ is a value).

Recursive Types and Data Representations in CDLE 47

import cast .

import mono .

import recType .

import utils .

module scott/generic/props

(F: ⋆ → ⋆) {mono: Mono ⋅F} .

import data-char/case-typing ⋅F .

import scott/generic/encoding ⋅F -mono .

normD ◁ Cast ⋅D ⋅(AlgCase ⋅D ⋅D → D)

= intrCast -(λ x. (unrollD x).1 ⋅D) -(λ x. β) .

import data-char/case ⋅F ⋅D inD .

caseD ◁ Case ⋅D

= Λ X. λ a. λ x. (unrollD x).1 a .

caseDBeta ◁ CaseBeta caseD

= Λ X. Λ a. Λ xs. β .

caseDEta ◁ CaseEta caseD

= Λ X. Λ a. Λ h. λ hBeta.

wkIndD ⋅(λ x: D. { h x ≃ caseD a x })

(λ xs. ρ (hBeta -xs) @x.{ x ≃ a xs } - β) .

reflectD ◁ Π x: D. { caseD inD x ≃ x }

= λ x. ρ ς (caseDEta ⋅D -inD -(id ⋅D) (Λ xs. β) x) @y.{ y ≃ x } - β .

Fig. 35. Characterization of caseD (scott/generic/props.ced)

For caseDEta, We proceed by weak induction where we must show that h (inD xs)

is propositionally equal to caseD a (inD xs). This follows from the assumption that h

satisfies the computation law with respect to a ∶ AlgCase ⋅D ⋅X. As an expected result of800

uniqueness, reflectD shows that applying caseD to the constructor produces a function

extensionally equal to the identity function.

Destructor. In Figure 36, we give the definition proposed earlier in this section for

the datatype destructor outD . The proof lambek1D establishes that ∣outD (inD t)∣ is

definitionally equal to ∣t∣ for all terms t ∶ F ⋅ D. As caseD is an efficient simulation805

C. Jenkins and A. Stump 48

import data-char/destruct ⋅F ⋅D inD .

outD ◁ Destructor

= caseD (λ xs. xs) .

lambek1D ◁ Lambek1 outD

= λ xs. β .

lambek2D ◁ Lambek2 outD

= wkIndD ⋅(λ x: D. { inD (outD x) ≃ x }) (λ xs. β) .

Fig. 36. Characterization of outD (scott/generic/props.ced)

of the case-distinction scheme, we know that outD is an efficient destructor. The proof

lambek2D establishes the other side of the isomorphism between D and F ⋅D, and follows

by weak induction on D.

6. Parigot encoding

In this section we derive inductive Parigot-encoded data, illustrating with a concrete810

example in Section 6.1 the main techniques we use before proceeding with the generic

derivation in Section 6.3. The Parigot encoding was first described by Parigot (1988,

1992) for natural numbers and later for a more general class of datatypes by Geuvers

(2014) (wherein it is called the Church-Scott encoding). This encoding is a combination

of the Church and Scott encoding, directly supporting access to previously computed815

results as well as to predecessors. For the inductive versions we derive in this section,

this means that unlike the inductive Scott encoding of Section 5 we have access to an

inductive hypothesis. However, for the Parigot encoding this additional power comes at

a cost: the space complexity of the encoding of natural number n is exponential in n.

The Parigot encoding can be seen as a solution to the primitive recursion scheme820

in polymorphic lambda calculi with recursive types. For natural numbers, the typing

and computation laws for this scheme are given in Figure 37. The significant feature of

Recursive Types and Data Representations in CDLE 49

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t1
←

∈ T Γ ⊢ t2
←

∈ Nat → T → T

Γ ⊢ recNat ⋅ T t1 t2
→

∈ Nat → T

∣recNat ⋅ T t1 t2 zero∣ ↝ ∣t1∣

∣recNat ⋅ T t1 t2 (suc n)∣ ↝ ∣t2 n (recNat ⋅ T t1 t2 n)∣

Fig. 37. Typing and computation laws for primitive recursion on Nat

Nat = µN.∀X.X → (N →X →X) →X

recNat = ΛX.λz. λ s. λx. x ⋅X z s

zero = λX.λz. λ s. z

suc = λn.ΛX.λz. λ s. s n (recNat ⋅X z s n)

Fig. 38. Parigot naturals

primitive recursion is that in the successor case, the user-supplied function t2 has access

both to the predecessor n and the result recursively computed from n.

With primitive recursion, we can give the following implementation of the predecessor825

function pred .

pred = recNat ⋅Nat zero (λx.λy. x)

The efficiency of this definition of pred depends on the operational semantics of the

language. Under call-by-name semantics, we have that ∣pred (suc n)∣ reduces to n in

a constant number of steps since the recursively computed result (the predecessor of

n) is discarded before it can be further evaluated. This is not the case for call-by-value830

semantics: for closed n we would compute all predecessors of n, then discard these results.

We can obtain Parigot naturals from the typing and computation laws for primitive

recursion over naturals. The solutions for Nat , recNat , zero, and suc we acquire in this

way are shown in Figure 38. In addition to being yet another demonstration of the

application of derived recursive types in Cedille, the derivations of this section serve835

two pedagogical purposes. First, the Parigot encoding more readily supports primitive

recursion scheme than does the Scott encoding, for which the construction is rather

C. Jenkins and A. Stump 50

complex (see Section 7). Second, the derivation of induction for Parigot-encoded data

involves a very different approach than that used in Section 5, taking full advantage of

the embedding of the untyped lambda calculus in Cedille.840

We elaborate on this second point further: as observed by Geuvers (2014), there is

a deficiency in the definition of the type of Parigot-encoded data in polymorphic type

theory with recursive types. For example, the type Nat is not precise enough: it admits

the definition of the following bogus constructor.

suc′ = λn.λ z. λ s. s zero (recNat z s n)

The difficulty is that the type does not enforce that the first argument to the bound s845

is the same number that we use to compute the second argument. Put another way, this

represents a failure to secure the extensional law (uniqueness) for the primitive recursion

scheme with this encoding.

To address this, we observe that there is a purely computational characterization of

the subset of Nat that contains all and only the canonical Parigot naturals. This char-850

acterization is the reflection law : the set of closed canonical Parigot naturals is precisely

the set of closed terms n of type Nat satisfying the following definitional equality:

∣recNat ⋅Nat zero (λm. suc) n∣ =βη ∣n∣

As an example, the non-canonical Parigot natural suc′ (suc zero) does not satisfy this

criterion: rebuilding it with the constructors zero and suc produces suc (suc zero).

With Top and the Kleene trick (Section 2.3), we can express the property that a term855

satisfies the reflection law before we give a type for Parigot naturals. This is good, because

we wish to use the reflection law in the definition of the type of Parigot naturals!

Recursive Types and Data Representations in CDLE 51

import cast .

import mono .

import recType .

import view .

import utils/top .

module parigot/concrete/nat .

recNatU ◁ Top

= β{ λ z. λ s. λ n. n z s } .

zeroU ◁ Top

= β{ λ z. λ s. z } .

sucU ◁ Top → Top

= λ n. β{ λ z. λ s. s n (recNatU z s n) } .

reflectNatU ◁ Top

= β{ recNatU zeroU (λ m. sucU) } .

NatC ◁ Top → ⋆ = λ n: Top. { reflectNatU n ≃ n } .

zeroC ◁ NatC zeroU = β{ zeroU } .

sucC ◁ Π n: Top. NatC n ⇒ NatC (sucU n)

= λ n. Λ nc. ρ nc @x.{ sucU x ≃ sucU n } - β{ sucU n } .

Fig. 39. Parigot naturals (part 1) (parigot/concrete/nat.ced)

6.1. Parigot-encoded naturals, concretely

We split the derivation of inductive Parigot naturals into three parts. In Figure 39, we

define untyped operations for Parigot naturals and prove that its untyped constructors860

preserve the reflection law. In Figure 40, we define the type Nat of canonical Parigot

naturals and its constructors. Finally, in Figure 41 we define the subset of Parigot naturals

supporting induction, then show that the type Nat is included in this subset.

Reflection law. The first definitions in Figure 39 are untyped operations for Parigot

naturals. Definition recNatU is the combinator for primitive recursion, and zeroU and865

sucU are the constructors (compare these to the corresponding definitions in Figure 38).

C. Jenkins and A. Stump 52

The term reflectU is the function which rebuilds Parigot naturals with their constructors,

and the predicate NatC expresses the reflection law for untyped Parigot naturals.

The proofs zeroC and sucC show respectively that zeroU satisfies the reflection law,

and that if n satisfies the reflection law then so does sucU n. In the proof for sucU , the870

expected type reduces to an equality type whose right-hand side is convertible with:

sucU (reflectNatU n)

We finish the proof by rewriting with the assumption that n satisfies the reflection law.

Note that in addition to using the Kleene trick (Section 2.3) to define a type of untyped

terms with Top, we are also using it so that the proofs zeroC and sucC are definitionally

equal to the untyped constructors zeroU and sucU (see Figure 4 for the erasure of ρ).875

_ ◁ { zeroC ≃ zeroU } = β .

_ ◁ { sucC ≃ sucU } = β .

(where indicates an anonymous proof). This is so that we may define Parigot naturals

as an equational subset type with dependent intersection, which we will see next.

Nat, the type of Parigot naturals. In Figure 40, we first define the type scheme880

NatF ′ whose fixpoint over-approximates the type of Parigot naturals. Using dependent

intersection, we then define the type scheme NatF as mapping types N to the subset

of terms of type NatF ′ ⋅N which satisfy the reflection law. This type scheme is mono-

tonic (monoNatF , definition omitted), so we may use the recursive type former Rec to

define the type Nat with rolling and unrolling operators rollNat and unrollNat that are885

definitionally equal to λx.x (see Figure 14).

Constructors of Nat. Definitions recNat , zero, and suc are the typed versions of the

primitive recursion combinator and constructors for Parigot naturals. The definitions

of the constructors are split into two parts, with zero′ and suc′ constructing terms of

Recursive Types and Data Representations in CDLE 53

NatF’ ◁ ⋆ → ⋆

= λ N: ⋆. ∀ X: ⋆. X → (N → X → X) → X .

NatF ◁ ⋆ → ⋆

= λ N: ⋆. ι n: NatF’ ⋅N. NatC β{ n } .

monoNatF ◁ Mono ⋅NatF = <..>

Nat ◁ ⋆ = Rec ⋅NatF .

rollNat ◁ NatF ⋅Nat → Nat = roll -monoNatF .

unrollNat ◁ Nat → NatF ⋅Nat = unroll -monoNatF .

recNat ◁ ∀ X: ⋆. X → (Nat → X → X) → Nat → X

= Λ X. λ z. λ s. λ n. (unrollNat n).1 z s .

zero’ ◁ NatF’ ⋅Nat = Λ X. λ z. λ s. z .

zero ◁ Nat = rollNat [zero’ , zeroC] .

suc’ ◁ Nat → NatF’ ⋅Nat

= λ n. Λ X. λ z. λ s. s n (recNat z s n) .

suc ◁ Nat → Nat

= λ n. rollNat [suc’ n , sucC β{ n } -(unrollNat n).2] .

Fig. 40. Parigot naturals (part 2) (parigot/concrete/nat.ced)

type NatF ′ ⋅ Nat and the unprimed constructors combining their primed counterparts890

with the respective proofs that they satisfy the reflection law. For example, in suc the

second component of the dependent intersection is a proof of {reflectNatU (sucU β{n}) ≃

sucU β{n}} obtained from invoking the proof sucC with

(unrollNat n).2 ∶ {reflectNatU β{(unrollNat n).1} ≃ β{(unrollNat n).1}}

This is accepted by Cedille by virtue of the following definition equalities:

∣sucU ∣ =βη ∣suc′∣ =βη ∣sucC ∣

∣β{(unrollNat n).1}∣ =βη ∣n∣ =βη ∣β{n}∣

Finally, as expected the typed and untyped versions of each of these three operations are895

definitionally equal.

C. Jenkins and A. Stump 54

IndNat ◁ Nat → ⋆

= λ n: Nat. ∀ P: Nat → ⋆. P zero → (Π m: Nat. P m → P (suc m)) → P n .

NatI ◁ ⋆ = ι n: Nat. IndNat n .

recNatI

◁ ∀ P: Nat → ⋆. P zero → (Π m: Nat. P m → P (suc m)) → Π n: NatI. P n.1

= Λ P. λ z. λ s. λ n. n.2 z s .

indZero ◁ IndNat zero

= Λ P. λ z. λ s. z .

zeroI ◁ NatI = [zero , indZero] .

indSuc ◁ Π n: NatI. IndNat (suc n.1)

= λ n. Λ P. λ z. λ s. s n.1 (recNatI z s n) .

sucI ◁ NatI → NatI

= λ n. [suc n.1 , indSuc n] .

reflectNatI ◁ Nat → NatI

= recNat zeroI (λ _. sucI) .

toNatI ◁ Cast ⋅Nat ⋅NatI

= intrCast -reflectNatI -(λ n. (unrollNat n).2) .

indNat ◁ ∀ P: Nat → ⋆. P zero → (Π m: Nat. P m → P (suc m)) → Π n: Nat. P n

= Λ P. λ z. λ s. λ n. recNatI z s (elimCast -toNatI n) .

Fig. 41. Parigot naturals (part 3) (parigot/concrete/nat.ced)

_ ◁ { recNat ≃ recNatU } = β .

_ ◁ { zero ≃ zeroU } = β .

_ ◁ { suc ≃ sucU } = β .

NatI , the type of inductive Parigot naturals. The derivation of inductive subset of900

Parigot naturals begins in Figure 41 with the predicate IndNat over Nat , with IndNat n

being the property that in order to prove an arbitrary predicate P holds for n, it suffices

to give corresponding proofs for the constructors zero and suc. We again note that in

the successor case, we have access to both the predecessor m and a proof of P m. The

Recursive Types and Data Representations in CDLE 55

type NatI is then defined with dependent intersection as the subset of Nat for which the905

predicate IndNat holds.

Definition recNatI brings us close to the derivation of an induction principle for Nat ,

but does not quite achieve it. With an inductive proof for predicate P , we have only that

P holds for the Parigot naturals in the inductive subset. It remains to show that every

Parigot natural is in this subset. We begin this proof by defining the proofs indZero910

and indSuc stating resp. that zero satisfies IndNat and for every n in the inductive

subset NatI , suc n.1 satisfies IndNat . As ∣indZero∣ =βη ∣zero∣ and ∣indSuc∣ =βη ∣suc∣,

the constructors zeroI and sucI for NatI can be formed with dependent intersection

introduction.

Reflection and induction. We can now show that every term of type Nat also has915

type NatI , i.e., every (canonical) Parigot natural is in the inductive subset. We do this

by leveraging the fact that satisfaction of the reflection law is baked into the type Parigot

naturals. First, we define reflectNatI which uses recNat to recursively rebuild a Parigot

natural with the constructors zeroI and sucI of the inductive subset. Next, we observe

that ∣reflectNatI ∣ =βη ∣reflectNatU ∣, so we define a cast toNatI where the given proof920

(unrollNat n).2 ∶ {reflectNatU β{(unrollNat n).1} ≃ β{(unrollNat n).1}}

has a type convertible with the expected type {reflectNatI n ≃ n}.

From here, the proof indNat of the induction principle for Parigot naturals follows

from recNatI and the use of toNatI to convert the given n ∶ Nat to the type NatI .

6.1.1. Computational and extensional character. We now give a characterization of Nat .

From the code listing in Figure 40, it is clear recNat satisfies the typing law. Figure 42925

shows the proofs of the computation laws (recNatBeta1 and recNatBeta2), which hold be

definitional equality. By inspecting the definitions of recNat , zero, and suc, and from the

C. Jenkins and A. Stump 56

recNatBeta1

◁ ∀ X: ⋆. ∀ z: X. ∀ s: Nat → X → X.

{ recNat z s zero ≃ z }

= Λ X. Λ z. Λ s. β .

recNatBeta2

◁ ∀ X: ⋆. ∀ z: X. ∀ s: Nat → X → X. ∀ n: Nat.

{ recNat z s (suc n) ≃ s n (recNat z s n) }

= Λ X. Λ z. Λ s. Λ n. β .

indNatComp ◁ { indNat ≃ recNat } = β .

pred ◁ Nat → Nat

= recNat zero (λ n. λ r. n) .

predBeta1 ◁ { pred zero ≃ zero } = β .

predBeta2 ◁ ∀ n: Nat. { pred (suc n) ≃ n }

= Λ n. β .

Fig. 42. Computation laws for primitive recursion and predecessor

(parigot/concrete/nat.ced)

erasures of roll and unroll , we can confirm that these computation laws are simulated in a

constant number of reduction steps under both call-by-name and call-by-value semantics.

Figure 42 also includes indNatComp, which shows that the computational content930

underlying the induction principle is precisely the recursion scheme, and the predecessor

function pred with its expected computation laws. As mentioned earlier, we must qualify

that with an efficient simulation of recNat we only obtain an efficient solution for the

predecessor function under call-by-name operational semantics.

recNatEta

◁ ∀ X: ⋆. ∀ z: X. ∀ s: Nat → X → X.

∀ h: Nat → X. { h zero ≃ z } ⇒ (Π n: Nat. { h (suc n) ≃ s n (h n) }) ⇒

Π n: Nat. { h n ≃ recNat z s n }

= Λ X. Λ z. Λ s. Λ h. Λ hBeta1. Λ hBeta2.

indNat ⋅(λ x: Nat. { h x ≃ recNat z s x })

(ρ hBeta1 @x.{ x ≃ z } - β)

(λ m. λ ih.

ρ (hBeta2 m) @x.{ x ≃ s m (recNat z s m) }

- ρ ih @x.{ s m x ≃ s m (recNat z s m) } - β) .

Fig. 43. Extensional law for primitive recursion (parigot/concrete/nat.ced)

Recursive Types and Data Representations in CDLE 57

module functor (F : ⋆ → ⋆).

Fmap ◁ ⋆ = ∀ X: ⋆. ∀ Y: ⋆. (X → Y) → (F ⋅X → F ⋅Y).

FmapId ◁ Fmap → ⋆ = λ fmap: Fmap.

∀ X: ⋆. ∀ Y: ⋆. Π c: X → Y. (Π x: X. {c x ≃ x}) → Π x: F ⋅X . {fmap c x ≃ x}.

FmapCompose ◁ Fmap → ⋆ = λ fmap: Fmap.

∀ X: ⋆. ∀ Y: ⋆. ∀ Z: ⋆. Π f: Y → Z. Π g: X → Y. Π x: F ⋅X.

{fmap f (fmap g x) ≃ fmap (λ x. f (g x)) x}.

Fig. 44. Functors (functor.ced)

Finally, in Figure 43 we use induction to prove that for all z ∶X and s ∶ Nat →X →X,935

recNat z s is the unique solution satisfying the computation laws for primitive recursion

with respect to z and s. Unlike the analogous proof for caseNat in Section 5.1.1, in

the successor case we reach a subgoal where we must prove s m (h m) is equal to

s m (recNat z s m) for an arbitrary m ∶ Nat and function h ∶ Nat → X which satisfies

the computation laws with respect to z and s. At that point, we must use the inductive940

hypothesis, which is unavailable using weak induction, to conclude the proof.

6.2. Functor and Sigma

The statement of the generic primitive recursion scheme requires functors and pair types,

and the induction principle additionally requires dependent pair types. As we will use this

scheme to define the generic Parigot encoding, in this section we first show the definition945

of functors and the functor laws and give an axiomatic presentation of the derivation of

dependent pair types with induction in Cedille.

Functors. Functors and the associated identity and composition laws for them are given

in Figure 44. Analogous to monotonicity, functorality of a type scheme F ∶ ⋆ → ⋆ means

that F comes together with an operation fmap ∶ Fmap ⋅F lifting functions S → T to func-950

tions F ⋅S → F ⋅T , for all types S and T . Unlike monotonicity, in working with functions

C. Jenkins and A. Stump 58

import functor.

module functorThms (F: ⋆ → ⋆) (fmap: Fmap ⋅F)

{fmapId: FmapId ⋅F fmap} {fmapCompose: FmapCompose ⋅F fmap}.

import cast .

import mono .

monoFunctor ◁ Mono ⋅F

= Λ X. Λ Y. λ c.

intrCast

-(λ d. fmap (elimCast -c) d)

-(λ d. fmapId (elimCast -c) (λ x. β) d).

Fig. 45. Functors and monotonicity (functorThms)

instead of type inclusions we find ourselves in a proof-relevant setting, so we will require

that this lifting respects identity (FmapId fmap) and composition (FmapCompose fmap).

Notice also that our definition of the identity law has an extrinsic twist: the domain

and codomain of the lifted function c need not be convertible types for us to satisfy the955

constraint that c acts extensionally like the identity function. Phrasing the identity law in

this way allows us to derive a useful lemma, monoFunctor in Figure 45, that establishes

that every functor is a monotone type scheme.

Dependent pair types. Figure 46 gives an axiomatic presentation of the dependent

pair type Sigma (see the code repository for the full derivation). The constructor is960

mksigma, the first and second projections are proj1 and proj2 , and the induction principle

is indsigma. Below the type inference rules, we confirm that the projection functions and

induction principle compute as expected over pairs formed from the constructor. The type

Pair is defined in terms of Sigma for the case that the type of the second component

of a pair does not depend upon the first component. Additionally, we define a utility965

function fork for constructing non-dependent pairs to help express the computation law

of the primitive recursion scheme.

Recursive Types and Data Representations in CDLE 59

Γ ⊢ S
→

∈ ⋆ Γ ⊢ T
→

∈ S → ⋆

Γ ⊢ Sigma ⋅ S ⋅ T
→

∈ ⋆

Γ ⊢ Sigma ⋅ S ⋅ T
→

∈ ⋆ Γ ⊢ s
←

∈ S Γ ⊢ t
←

∈ T s

Γ ⊢ mksigma ⋅ S ⋅ T s t
→

∈ Sigma ⋅ S ⋅ T

Γ ⊢ p
→

∈ Sigma ⋅ S ⋅ T

Γ ⊢ proj1 p
→

∈ S

Γ ⊢ p
→

∈ Sigma ⋅ S ⋅ T

Γ ⊢ proj2 p
→

∈ T (proj1 p)

Γ ⊢ p
→

∈ Sigma ⋅ S ⋅ T Γ ⊢ P
→

∈ Sigma ⋅ S ⋅ T → ⋆ f ∶ Πx ∶A.Π y ∶B a.P (mksigma x y)

Γ ⊢ indsigma p ⋅ P f ∶
→

∈ P p

∣proj1 (mksigma s t)∣ =βη ∣s∣

∣proj2 (mksigma s t)∣ =βη ∣t∣

∣indsigma (mksigma s t) f ∣ =βη ∣f s t∣

Fig. 46. Sigma, axiomatically (utils/sigma.ced)

Pair ◁ ⋆ → ⋆ → ⋆

= λ A: ⋆. λ B: ⋆. Sigma ⋅A ⋅(λ _: A. B).

fork ◁ ∀ X: ⋆. ∀ A: ⋆. ∀ B: ⋆. (X → A) → (X → B) → X → Pair ⋅A ⋅B

= Λ X. Λ A. Λ B. λ f. λ g. λ x. mksigma (f x) (g x) .

Fig. 47. Pair (utils/sigma.ced)

6.3. Parigot-encoded data, generically

In this section we derive inductive Parigot-encoded datatypes generically. The derivation

is parametric in a signature functor F for the datatype with an operation fmap ∶ Fmap ⋅F970

that satisfies the functor identity and composition law.

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t
←

∈ F ⋅ (Pair ⋅D ⋅ T) → T

Γ ⊢ recD ⋅ T t
→

∈ D → T

∣recD t (inD t′)∣ =βη ∣t (fmap (fork id (recD t)) t′)∣

Fig. 48. Generic primitive recursion scheme

C. Jenkins and A. Stump 60

D = ∀X. (F ⋅ (Pair ⋅D ⋅X) →X) →X

recF = ΛX.λ t. λd. d ⋅X t

inF = λd.ΛX.λ t. t (fmapF (fork (id ⋅D) (recF t)) d)

Fig. 49. Generic Parigot encoding of D

The typing and computation laws for the generic primitive recursion scheme for datatype

D with signature functor F are given in Figure 48. For the typing rule, we see that

the primitive recursion scheme allows recursive functions to be defined in terms an F -

collection of tuples containing both direct predecessors and the recursive results com-975

puted from those predecessors. This reading is further affirmed by the computation law,

which states that the action of recD t over values built from inD t′ (for some t′ ∶ F ⋅D) is

to apply t to the result of tupling each predecessor (accessed with fmap) with the result

of recD t (here id is the polymorphic identity function).

With primitive recursion, we can give the following implementation of the datatype980

destructor outD .

outD = recD (fmap proj1)

This simulates the desired computation law ∣outD (inD t)∣ =βη ∣t∣ only up to the functor

identity and composition laws. With definitional equality alone, we obtain a right-hand

side of:

∣fmap proj1 (fmap (fork id outD) t)∣

Additionally, and as we saw for Parigot naturals, this is not an efficient implementation985

of the destructor under call-by-value operational semantics since the predecessors of t

are recursively destructed.

Using the typing and computation laws for primitive recursion to read an encoding

for D, we obtain a generic supertype of Parigot-encoded data (Figure 49). Similar to the

case of the Scott encoding, we find that to give the definition of D we need monotone990

Recursive Types and Data Representations in CDLE 61

import utils .

module primrec-typing (F: ⋆ → ⋆) .

AlgRec ◁ ⋆ → ⋆ → ⋆

= λ D: ⋆. λ X: ⋆. F ⋅(Pair ⋅D ⋅X) → X .

PrimRec ◁ ⋆ → ⋆

= λ D: ⋆. ∀ X: ⋆. AlgRec ⋅D ⋅X → D → X .

Fig. 50. Primitive recursion typing (data-char/primrec-typing.ced)

recursive types. For our derivation, we must further refine the type of D so that we

only include canonical Parigot encodings (i.e., those build only from inD). We use the

same approach that we took for Parigot naturals: we use Top and the Kleene trick to

express satisfaction of the reflection law for untyped terms, then use this to give a refined

definition of D.995

6.3.1. Characterization criteria. We formalize in Cedille the above description of the

generic primitive recursion scheme in Figures 50 and 51. Definitions for the typing law

of the primitive recursion scheme are given in Figure 50, where parameter F gives the

datatype signature. Type family AlgRec gives the shape of the type functions used for

primitive recursion, and PrimRec gives the shape of the type of operator recD itself.1000

In Figure 51, we now assume that F is a functor and take additional module parameters

D for the datatype and inD for its constructor. AlgRecHom gives the shape of the

computation law for primitive recursion with respect to a particular a ∶ AlgRec ⋅D ⋅X,

PrimRecBeta is a predicate on candidates for the combinator for primitive recursion

stating that it satisfies the computation law with respect to all such functions a, and1005

PrimRecEta is predicate stating that a candidate is the unique such solution up to

function extensionality.

The figure also lists PrfAlgRec, a dependent version of AlgRec. Read the type PrfAlgRec⋅

P as the type of “(F,D)-proof algebras for P”; it is the type of proofs that take an F -

C. Jenkins and A. Stump 62

import functor .

import utils .

module data-char/primrec

(F: ⋆ → ⋆) (fmap: Fmap ⋅F)

{fmapId: FmapId ⋅F fmap} {fmapCompose: FmapCompose ⋅F fmap}

(D: ⋆) (inD: F ⋅D → D).

import data-char/primrec-typing ⋅F .

AlgRecHom ◁ Π X: ⋆. AlgRec ⋅D ⋅X → (D → X) → ⋆

= λ X: ⋆. λ a: AlgRec ⋅D ⋅X. λ h: D → X.

∀ xs: F ⋅D. { h (inD xs) ≃ a (fmap (fork id h) xs) } .

PrimRecBeta ◁ PrimRec ⋅D → ⋆

= λ rec: PrimRec ⋅D.

∀ X: ⋆. ∀ a: AlgRec ⋅D ⋅X. AlgRecHom ⋅X a (rec a) .

PrimRecEta ◁ PrimRec ⋅D → ⋆

= λ rec: PrimRec ⋅D.

∀ X: ⋆. ∀ a: AlgRec ⋅D ⋅X. ∀ h: D → X. AlgRecHom ⋅X a h →

Π x: D. { h x ≃ rec a x } .

PrfAlgRec ◁ (D → ⋆) → ⋆

= λ P: D → ⋆. Π xs: F ⋅(Sigma ⋅D ⋅P). P (inD (fmap (proj1 ⋅D ⋅P) xs)) .

import data-char/iter-typing ⋅F .

import data-char/case-typing ⋅F .

fromAlgCase ◁ ∀ X: ⋆. AlgCase ⋅D ⋅X → AlgRec ⋅D ⋅X

= Λ X. λ a. λ xs. a (fmap ⋅(Pair ⋅D ⋅X) ⋅D (λ x. proj1 x) xs) .

fromAlg ◁ ∀ X: ⋆. Alg ⋅X → AlgRec ⋅D ⋅X

= Λ X. λ a. λ xs. a (fmap ⋅(Pair ⋅D ⋅X) ⋅X (λ x. proj2 x) xs) .

Fig. 51. Primitive recursion characterization (data-char/primrec.ced)

collection of D predecessors tupled with proofs that P holds for them and produces a1010

proof that P holds for the value constructed from these predecessors with inD . PrfAlgRec

will be used in the derivations of full induction for both the generic Parigot and generic

Scott encoding.

Finally, as the primitive recursion scheme can be used to subsume both the itera-

tion and case-distinction scheme, the figure lists the helper functions fromAlgCase and1015

Recursive Types and Data Representations in CDLE 63

fromAlg . Definition fromAlgCase converts a function for use in case distinction to by ig-

noring previously computed results, and fromAlg converts a function for use in iteration

by ignoring predecessors.

6.3.2. Generic Parigot encoding. We now detail the generic derivation of inductive Parigot-

encoded data. The developments of this section are parametrized by a functor F , with1020

fmap giving the lifting of functions and fmapId and fmapCompose the proofs that this lift-

ing respects identity and composition. The construction is separated into several phases:

in Figure 52 we give the computational characterization of canonical Parigot encoding as

a predicate on untyped terms satisfying the reflection law, then prove that the untyped

constructor preserves this property; in Figure 53, we define the type of Parigot encod-1025

ings, its primitive recursion combinator, and its constructors; in Figure 54 we define the

inductive subset of Parigot encodings and its constructor; finally, in Figure 55 we show

that every Parigot encoding is already in the inductive subset and prove induction.

Reflection law. The definitions recU , inU , and reflectU of Figure 52 are untyped

versions of resp. the combinator for primitive recursion, the generic constructor, and the1030

operation that builds canonical Parigot encodings by recursively rebuilding the encoding

with the constructor inU (compare to Figure 39 of Section 6.1). Predicate DC gives the

characterization of canonical Parigot encodings that reflectU behaves extensionally like

the identity function for them.

Even without having a type for Parigot-encoded data, we can still effectively reason1035

about the behaviors of these untyped programs. This is shown in the proof of inC , which

states inU xs satisfies the predicate DC if xs is an F -collection of untyped terms that

satisfy DC . In the body, the expected type is convertible with the type

{inU (fmap proj2 (fmap (fork id reflectU) xs)) ≃ inU xs}

C. Jenkins and A. Stump 64

import functor .

import utils .

import cast .

import mono .

import recType .

module parigot/generic/encoding

(F: ⋆ → ⋆) (fmap: Fmap ⋅F)

{fmapId: FmapId ⋅F fmap} {fmapCompose: FmapCompose ⋅F fmap } .

import functorThms ⋅F fmap -fmapId -fmapCompose .

recU ◁ Top

= β{ λ a. λ x. x a } .

inU ◁ Top

= β{ λ xs. λ a. a (fmap (fork id (recU a)) xs) } .

reflectU ◁ Top

= β{ recU (λ xs. inU (fmap proj2 xs)) } .

DC ◁ Top → ⋆ = λ x: Top. { reflectU x ≃ x } .

inC ◁ Π xs: F ⋅(ι x: Top. DC x). DC β{ inU xs }

= λ xs.

ρ (fmapCompose ⋅(ι x: Top. DC x) ⋅(Pair ⋅Top ⋅Top) ⋅Top

(λ x. proj2 x) (fork (λ x. x.1) (λ x. β{ reflectU x })) xs)

@x.{ inU x ≃ inU xs }

- ρ (fmapId ⋅(ι x: Top. DC x) ⋅Top (λ x. β{| reflectU x.1 |}) (λ x. x.2) xs)

@x.{ inU x ≃ inU xs }

- β{ inU xs } .

Fig. 52. Generic Parigot encoding (part 1) (parigot/generic/encoding.ced)

We rewrite by the functor composition law to fuse the mapping of proj2 with that of

fork id reflectU , and now the right-hand side of the equation is convertible (by the1040

computation law for proj2) with

inU (fmap reflectU xs)

Here we can rewrite by the functor identity law, using the assumption that on the pre-

decessors contained in xs, reflectU behaves as the identity function. Note that we use

Recursive Types and Data Representations in CDLE 65

import data-char/primrec-typing ⋅F .

DF’ ◁ ⋆ → ⋆ = λ D: ⋆. ∀ X: ⋆. AlgRec ⋅D ⋅X → X .

DF ◁ ⋆ → ⋆ = λ D: ⋆. ι x: DF’ ⋅D. DC β{ x } .

monoDF ◁ Mono ⋅DF = <..>

D ◁ ⋆ = Rec ⋅DF .

rollD ◁ DF ⋅D → D = roll -monoDF .

unrollD ◁ D → DF ⋅D = unroll -monoDF .

recD ◁ PrimRec ⋅D

= Λ X. λ a. λ x. (unrollD x).1 a .

inD’ ◁ F ⋅D → DF’ ⋅D

= λ xs. Λ X. λ a. a (fmap (fork (id ⋅D) (recD a)) xs) .

toDC ◁ Cast ⋅D ⋅(ι x: Top. DC x)

= intrCast -(λ x. [β{ x } , (unrollD x).2]) -(λ x. β) .

inD ◁ F ⋅D → D

= λ xs. rollD [inD’ xs , inC (elimCast -(monoFunctor toDC) xs)] .

Fig. 53. Generic Parigot encoding (part 2) (parigot/generic/encoding.ced)

the Kleene trick so that the proof inC is definitionally equal to the untyped constructor

inU . This permits us to use dependent intersection to form the refinement needed to1045

type only canonical Parigot encodings.

Parigot encoding D. In Figure 53, DF ′ is the type scheme whose fixpoint is the

solution to D in Figure 49, and DF is the refinement of DF ′ to those terms satisfying

the reflection law. Since DF is a monotone type scheme (monoDF , proof omitted), we

may define D as its fixpoint with rolling and unrolling operations rollD and unrollD .1050

Following this is recD , the typed combinator for primitive recursion.

The constructor inD for D is defined in two parts. First, we define inD ′ to construct a

value of type DF ′ ⋅D from xs ∶ F ⋅D, with the definition being that which we obtained in

Figure 49 from the computation law of the primitive recursion scheme. Then, with the

auxiliary proof toDC that D is included into the type of untyped terms satisfying DC , we1055

C. Jenkins and A. Stump 66

import data-char/primrec ⋅F fmap -fmapId -fmapCompose ⋅D inD .

IndD ◁ D → ⋆ = λ x: D. ∀ P: D → ⋆. PrfAlgRec ⋅P → P x .

DI ◁ ⋆ = ι x: D. IndD x .

recDI ◁ ∀ P: D → ⋆. PrfAlgRec ⋅P → Π x: DI. P x.1

= Λ P. λ a. λ x. x.2 a .

fromDI ◁ Cast ⋅DI ⋅D

= intrCast -(λ x. x.1) -(λ x. β) .

inDI’ ◁ F ⋅DI → D

= λ xs. inD (elimCast -(monoFunctor fromDI) xs) .

indInDI’ ◁ Π xs: F ⋅DI. IndD (inDI’ xs)

= λ xs. Λ P. λ a.

ρ ς (fmapId ⋅DI ⋅D (λ x. proj1 (mksigma x.1 (recDI a x))) (λ x. β) xs)

@x.(P (inD x))

- ρ ς (fmapCompose (proj1 ⋅D ⋅P) (λ x: DI. mksigma x.1 (recDI a x)) xs)

@x.(P (inD x))

- a (fmap ⋅DI ⋅(Sigma ⋅D ⋅P) (λ x. mksigma x.1 (recDI a x)) xs) .

inDI ◁ F ⋅DI → DI

= λ xs. [inDI’ xs , indInDI’ xs] .

Fig. 54. Generic Parigot encoding (part 3) (parigot/generic/encoding.ced)

define the constructor inD for D using the rolling operation and dependent intersection

introduction. The definition is accepted by virtue of the following definitional equalities:

∣inD ′∣ =βη ∣inU ∣ =βη ∣inC ∣

∣xs ∣ =βη ∣elimCast -(monoFunctor toDC) xs ∣

Finally, we can use Cedille to confirm that the typed recursion combinator and con-

structor are definitionally equal to the corresponding untyped operations.

_ ◁ { recD ≃ recU } = β .1060

_ ◁ { inD ≃ inU } = β .

Inductive Parigot encoding DI . In Figure 54 we give the definition of DI , the type of

the inductive subset of Parigot-encoded data, and inDI , its constructor. This definition

Recursive Types and Data Representations in CDLE 67

begins by bringing PrfAlgRec into scope with an import to define the predicate IndD .

For arbitrary x ∶ D, the property IndD x states that, for all properties P ∶ D → ⋆,1065

to prove P x it suffices to give an (F,D)-proof algebra for P . Then, we define the

inductive subset DI of Parigot encodings that satisfy the predicate IndD using dependent

intersections. Definition recDI is the induction principle for terms of typeD in this subset,

and corresponds to the definition recNatI for Parigot naturals in Figure 41. With recDI ,

we can obtain the desired induction scheme for D if we can show D is included into DI .1070

We begin the proof of this type inclusion by defining the constructor inDI for the in-

ductive subset. This is broken into three parts. First, inDI ′ constructs a value of type D

from an F -collection of DI predecessors using the inclusion of type DI into D (fromDI).

Next, with indInDI ′ we prove that the values constructed from inDI ′ satisfy the induc-

tivity predicate IndD using the functor identity and composition laws.1075

In the body of indInDI ′, we use equational reasoning to bridge the gap between the

expected type P (inDI ′ xs) and the type of the expression in the final line, which is:

P (inD (fmap (proj1 ⋅D ⋅P) (fmap ⋅DI ⋅ (Sigma ⋅D ⋅P)(λx.mksigma x.1 (recDI a x)))))

Observe that we can use the functor identity law to rewrite the expression inDI ′ xs so

that we introduce a use of fmap on an function of type DI → D that is definitionally

equal to the identity function1080

λx.proj1 (mksigma x.1 (recDI a x))

Applying the lifting of this function to xs results in a term of type F ⋅ D, so in the

expected type we exchange inDI ′ for inD as these two terms are definitionally equal.

After this, we use the composition law to introduce two uses of fmap, one each for proj1

and λx.mksigma x.1 (recDI a x). This makes the rewritten type convertible with the

type of the expression given. As inDI ′ and indInDI ′ are definitionally equal to each1085

C. Jenkins and A. Stump 68

reflectDI ◁ D → DI

= recD (λ xs. inDI (fmap ⋅(Pair ⋅D ⋅DI) ⋅DI (λ x. proj2 x) xs)) .

toDI ◁ Cast ⋅D ⋅DI

= intrCast -reflectDI -(λ x. (unrollD x).2) .

indD ◁ ∀ P: D → ⋆. PrfAlgRec ⋅D inD ⋅P → Π x: D. P x

= Λ P. λ a. λ x. recDI a (elimCast -toDI x) .

Fig. 55. Generic Parigot encoding (part 4) (parigot/generic/encoding/ced)

other (since ∣fork id (recD a)∣ =βη ∣λx.mksigma x.1 (recDI a x)∣), we can define the

constructor inDI using the rolling operation and dependent intersection introduction.

Reflection and induction. We can now show an inclusion of the type D into the type

DI by using the fact that terms of type D are canonical Parigot encodings, giving us

induction. This is shown in Figure 55. First, we define the operation reflectDI which1090

recursively rebuilds Parigot-encoded data with the constructor inDI for the inductive

subset, producing a value of type DI . Then, since ∣reflectDI ∣ =βη ∣reflectU ∣, we can use

reflectDI to witness the inclusion of D into DI , since every term x of type D is itself a

proof that reflectU behaves extensionally as the identity function on x. From here, the

proof indD of induction merely uses recDI in combination with this type inclusion.1095

6.3.3. Computational and extensional character. We now analyze the properties of our

generic Parigot encoding. In particular, we wish to know the normalization guarantee

for terms of type D and confirm that D admits an efficient and unique solution to the

primitive recursion scheme, which can in turn be used to simulate case distinction and

iteration. We omit the uniqueness proofs, which make heavy use of the functor laws and1100

rewriting (see the code repository for this paper).

Normalization guarantee. In Figure 56, normD establishes the inclusion of type D

into a function type AlgRec ⋅D ⋅D → D. By Proposition 3, this guarantees call-by-name

normalization of closed terms of type D.

Recursive Types and Data Representations in CDLE 69

import functor .

import cast .

import recType .

import utils .

module parigot/generic/props

(F: ⋆ → ⋆) (fmap: Fmap ⋅F)

{fmapId: FmapId ⋅F fmap} {fmapCompose: FmapCompose ⋅F fmap} .

import functorThms ⋅F fmap -fmapId -fmapCompose .

import parigot/generic/encoding ⋅F fmap -fmapId -fmapCompose .

import data-char/primrec-typing ⋅F .

normD ◁ Cast ⋅D ⋅(AlgRec ⋅D ⋅D → D)

= intrCast -(λ x. (unrollD x).1 ⋅D) -(λ x. β) .

import data-char/primrec ⋅F fmap -fmapId -fmapCompose ⋅D inD .

recDBeta ◁ PrimRecBeta recD

= Λ X. Λ a. Λ xs. β .

reflectD ◁ Π x: D. { recD (fromAlg inD) x ≃ x }

= λ x. (unrollD x).2 .

recDEta ◁ PrimRecEta recD = <..>

Fig. 56. Characterization of recD (parigot/generic/props.ced)

Primitive recursion scheme With proof recDBeta, we have that our solution recD1105

(Figure 53) satisfies the computation law by definitional equality. By inspecting the

definitions of recD and inD , and the erasures of roll and unroll (Figure 14), we can

confirm that the computation law is satisfied in a constant number of steps under both

call-by-name and call-by-value operational semantics.

Definition recDEta establishes that this solution is unique up function extensionality.1110

The proof follows from induction, the functor laws, and a non-obvious use of the Kleene

trick (Section 2.3). The reflection law is usually obtained as a consequence of uniqueness,

but as the generic Parigot encoding has been defined with satisfaction of this law baked

in, the proof reflectD proceeds by appealing to that fact directly.

C. Jenkins and A. Stump 70

import data-char/case-typing ⋅F .

import data-char/case ⋅F ⋅D inD .

caseD ◁ Case ⋅D

= Λ X. λ a. recD (fromAlgCase a) .

caseDBeta ◁ CaseBeta caseD

= Λ X. Λ a. Λ xs.

ρ (fmapCompose ⋅D ⋅(Pair ⋅D ⋅X) ⋅D

(λ x. proj1 x) (fork (id ⋅D) (caseD a)) xs)

@x.{ a x ≃ a xs }

- ρ (fmapId ⋅D ⋅D (λ x. proj1 (fork (id ⋅D) (caseD a) x)) (λ x. β) xs)

@x.{ a x ≃ a xs }

- β.

caseDEta ◁ CaseEta caseD = <..>

Fig. 57. Characterization of caseD (parigot/generic/props.ced)

Case-distinction scheme. In Figure 57, we define the candidate caseD for the opera-1115

tion giving case-distinction for D using recD and fromAlgCase (Figure 51). This defini-

tion satisfies the computation law only up to the functor laws. With definitional equality

alone, caseD a (inD xs) reduces to

a (fmap proj1 (fmap (fork id (caseD a)) xs))

meaning we have introduced another traversal over the signature with fmap. As we

have seen before, under call-by-value semantics this would also cause caseD a to be1120

needlessly computed for all predecessors. The proof of extensionality, caseDEta, follows

from recDEta.

Destructor. In Figure 58 we define the destructor outD using case distinction. As such,

the destructor inherits the caveat that the computation law, lambek1D , only holds up

to the functor laws and is not efficient under call-by-name semantics. The extensionality1125

law, lambek2D , holds by induction.

Recursive Types and Data Representations in CDLE 71

import data-char/destruct ⋅F ⋅D inD .

outD ◁ Destructor

= caseD (λ xs. xs) .

lambek1D ◁ Lambek1 outD

= λ xs. ρ (caseDBeta ⋅(F ⋅D) -(λ x. x) -xs) @x.{ x ≃ xs } - β .

lambek2D ◁ Lambek2 outD = <..>

Fig. 58. Characterization of destructor outD (parigot/generic/props.ced)

import data-char/iter-typing ⋅F .

import data-char/iter ⋅F fmap ⋅D inD .

foldD ◁ Iter ⋅D

= Λ X. λ a. recD (fromAlg a) .

foldDBeta ◁ IterBeta foldD

= Λ X. Λ a. Λ xs.

ρ (fmapCompose ⋅D ⋅(Pair ⋅D ⋅X) ⋅X

(λ x. proj2 x) (fork (id ⋅D) (foldD a)) xs)

@x.{ a x ≃ a (fmap (foldD a) xs) }

- β .

foldDEta ◁ IterEta foldD

= <..>

Fig. 59. Characterization of foldD (parigot/generic/props.ced)

Iteration. The last property we confirm is that we may use recD to give a unique

solution for the typing and computation laws of the iteration scheme. The proposed

solution is foldD , given in Figure 59. The computation law, proven with foldDBeta, only

holds by the functor laws as there are two traversals of the signature with fmap instead1130

of one. Aside from this, this solution for foldD introduces constant-time overhead with

every recursive call, since we form a tuple from the predecessor and previously computed

result only to later discard the predecessor (see Figure 46 for the computation laws for

dependent pairs).

C. Jenkins and A. Stump 72

6.3.4. Example: Rose trees. We conclude the discussion of Parigot-encoded data by using1135

the generic derivation to define rose trees with induction. Rose trees are a datatype in

which subtrees are contained within a list, meaning that nodes may have an arbitrary

number of children. In Haskell, this datatype can be defined as:

data RoseTree a = Rose a [RoseTree a]

There are two motivations for this choice of example. First, while it is true that rose1140

trees can be put into a form that reveals it is a strictly positive datatype by using

containers (Abbott et al., 2003) and nested inductive definitions, we use impredicative

encodings for datatypes and so the rose tree datatype we define is not syntactically strictly

positive. Second, the expected induction principle for rose trees is known for being tricky

to synthesize automatically: additional plugins (Ullrich, 2020) are required for Coq, and1145

in the Agda standard library (The Agda Team, 2021) the induction principle is obtained

by declaring rose trees as a size-indexed type (Abel, 2010).

The difficulty lies in giving users access to the inductive hypothesis for the sub-trees

contained within the list. One work-around to address this that is available in both

Coq and Agda is to forego reusing the list datatype and define rose trees as a mutually1150

inductive type, thereby leveraging a mutual induction principle for the auxiliary “list

of rose trees” datatype. However, this means that functionality defined for lists has to

be re-implemented for this special-purpose type. In this section, we show that we can

both reuse the list datatype in the definition of rose trees and derive a suitable induction

principle for them in the style expected of a mutual inductive definition.1155

Lists. Figure 60 shows the definition of the datatype List , and the types of the list

constructors (nil and cons) and induction principle (indList). These are defined using

the generic derivation of inductive Parigot encodings. This derivation is brought into

scope as “P”, and the definitions within that module are accessed with the prefix “P .”,

e.g., “P .D” for the datatype. This is not to be confused with the predicate P (occurring1160

Recursive Types and Data Representations in CDLE 73

import utils.

module parigot/examples/list-data (A : ⋆).

import signatures/list ⋅A .

import parigot/generic/encoding as P

⋅ListF listFmap -listFmapId -listFmapCompose .

List ◁ ⋆ = P.D .

nil ◁ List = <..>

cons ◁ A → List → List = <..>

indList

◁ ∀ P: List → ⋆. P nil → (Π hd: A. Π tl: List. P tl → P (cons hd tl)) →

Π xs: List. P xs

= <..>

recList ◁ ∀ X: ⋆. X → (A → List → X → X) → List → X

= Λ X. indList ⋅(λ x: List. X) .

Fig. 60. Lists (parigot/examples/list-data.ced)

with no dot) which is quantified over in the type of indList . Note also that code in the

figure refers to List as a datatype, not List ⋅A, since A is a parameter to the module.

For the sake of brevity, we omit the definitions of the list signature (ListF), its mapping

operation (listFmap), and the proofs this mapping satisfies the functor laws (listFmapId

and listFmapCompose). These appear in the figure as module arguments to the generic1165

derivation. We also define the primitive recursion principle recList for lists as a non-

dependent use of induction.

In Figure 61, we change module contexts (so we may consider lists with different

element types, e.g. List ⋅ B) to define the list mapping operation listMap by recursion.

We also prove with listMapId and listMapCompose that this mapping operation obeys1170

the functor laws.

Signature TreeF . Figure 62 gives the signature TreeF for a datatype of trees whose

branching factor is given by a functor F , generalizing the rose tree datatype. The proofs

C. Jenkins and A. Stump 74

import utils .

import functor .

module parigot/examples/list .

import parigot/examples/list-data .

listMap ◁ Fmap ⋅List

= Λ A. Λ B. λ f.

recList ⋅A ⋅(List ⋅B) (nil ⋅B)

(λ hd. λ tl. λ xs. cons (f hd) xs) .

listMapId ◁ FmapId ⋅List listMap = <..>

listMapCompose ◁ FmapCompose ⋅List listMap = <..>

Fig. 61. Map for lists (parigot/examples/list.ced)

import functor .

import utils .

module signatures/tree

(A: ⋆) (F: ⋆ → ⋆) (fmap: Fmap ⋅F)

{fmapId: FmapId ⋅F fmap} {fmapCompose: FmapCompose ⋅F fmap} .

TreeF ◁ ⋆ → ⋆ = λ T: ⋆. Pair ⋅A ⋅(F ⋅T) .

treeFmap ◁ Fmap ⋅TreeF

= Λ X. Λ Y. λ f. λ t. mksigma (proj1 t) (fmap f (proj2 t)) .

treeFmapId ◁ FmapId ⋅TreeF treeFmap = <..>

treeFmapCompose ◁ FmapCompose ⋅TreeF treeFmap = <..>

Fig. 62. Signature for F -branching trees (signatures/tree.ced)

that the lifting operation treeFmap respects identity and composition make use of the

corresponding proofs for the given F .1175

Rose trees. In Figure 63, we instantiate the module parameters for the signature of F -

branching trees with List and listMap, then instantiate the generic derivation of inductive

Parigot encodings with TreeF and treeFmap. We define the standard constructor rose

for rose trees using the generic constructor P .inD , and give a variant constructor rose ′

which we use in the definition of the induction principle for rose trees. This variant uses1180

Recursive Types and Data Representations in CDLE 75

import utils .

import list-data .

import list .

module parigot/examples/rosetree-data (A: ⋆) .

import signatures/tree ⋅A ⋅List listMap -listMapId -listMapCompose .

import parigot/generic/encoding as P

⋅TreeF treeFmap -treeFmapId -treeFmapCompose .

RoseTree ◁ ⋆ = P.D .

rose ◁ A → List ⋅RoseTree → RoseTree

= λ x. λ t. P.inD (mksigma x t) .

rose’ ◁ ∀ P: RoseTree → ⋆. TreeF ⋅(Sigma ⋅RoseTree ⋅P) → RoseTree

= Λ P. λ xs. P.inD (treeFmap (proj1 ⋅RoseTree ⋅P) xs) .

indRoseTree

◁ ∀ P: RoseTree → ⋆. ∀ Q: List ⋅RoseTree → ⋆.

Q (nil ⋅RoseTree) →

(Π t: RoseTree. P t → Π ts: List ⋅RoseTree. Q ts → Q (cons t ts)) →

(Π x: A. Π ts: List ⋅RoseTree. Q ts → P (rose x ts)) →

Π t: RoseTree. P t

= Λ P. Λ Q. λ n. λ c. λ r.

P.indD ⋅P (λ xs.

indsigma xs ⋅(λ x: TreeF ⋅(Sigma ⋅RoseTree ⋅P). P (rose’ x))

(λ x. λ ts.

[conv ◁ List ⋅(Sigma ⋅RoseTree ⋅P) → List ⋅RoseTree

= listMap (proj1 ⋅RoseTree ⋅P)]

- [pf ◁ Q (conv ts)

= indList ⋅(Sigma ⋅RoseTree ⋅P)

⋅(λ x: List ⋅(Sigma ⋅RoseTree ⋅P). Q (conv x))

n (λ hd. λ tl. λ ih. c (proj1 hd) (proj2 hd) (conv tl) ih) ts]

- r x (conv ts) pf)) .

Fig. 63. Rose trees (parigot/examples/rosetree-data.ced)

treeFmap to remove the tupled proofs that an inductive hypothesis holds for sub-trees

that are introduced in the generic induction principle.

Finally, we give the induction principle for rose trees as indRoseTree in the figure. This

is a mutual induction principle, with P the property one desires to show holds for all

C. Jenkins and A. Stump 76

rose trees and Q the invariant that is maintained for collections of sub-trees. We require1185

proofs that:

— P holds for rose x ts when Q holds for ts, bound as r;

— Q holds for nil , bound as n; and that

— if P holds for t and Q holds for ts then Q holds for cons t ts, bound as c.

In the body of indRoseTree, we use the induction principle P .inD for the generic Parigot1190

encoding (P .indD), then the induction principle indsigma (Figure 46) for pairs, revealing

x ∶RoseTree and ts ∶List ⋅ (Sigma ⋅RoseTree ⋅P). With auxiliary function conv to convert

ts to a list of rose trees, we use list induction on ts to prove Q holds for conv ts. With

this proved as pf , we can conclude by using r.

7. Lepigre-Raffalli encoding1195

We now revisit the issue of programming with Scott-encoded data. Neither the case-

distinction scheme nor the weak induction principle we derived in Section 5 provide an

obvious mechanism for recursion. In contrast, the Parigot encoding readily admits the

primitive recursion scheme, as it can be viewed as a solution to that scheme. So despite

its significant overhead in space representation, the Parigot encoding appears to have a1200

clear advantage over the Scott encoding in total typed lambda calculi.

Amazingly, in some settings this deficit of the Scott encoding is only apparent. Work-

ing in a logical framework, Parigot (1988) showed how to derive with “metareasoning”

a strongly normalizing recursor for Scott naturals. More recently, Lepigre and Raffalli

(2019) demonstrated a well-typed recursor for Scott naturals in a Curry-style theory fea-1205

turing a sophisticated form of subtyping utilizing “circular but well-founded” derivations.

The Lepigre-Raffalli construction involves a novel impredicative encoding of datatypes,

which we shall call the Lepigre-Raffalli encoding, that both supports recursion and is a

supertype of the Scott encoding. In Cedille, we can similarly show a type inclusion of

Recursive Types and Data Representations in CDLE 77

Scott encodings into the type of Lepigre-Raffalli encodings using weak induction and the1210

fact that our derived recursive types are least fixpoints.

We elucidate the construction of the Lepigre-Raffalli encoding by showing its rela-

tionship to the case-distinction scheme. The computation laws for case distinction over

natural numbers (Figure 21) do not form a recursive system of equations. However, hav-

ing obtained solutions for Scott naturals and caseNat , we can introduce recursion into1215

the computation laws by observing that for all n, ∣n∣ =βη ∣λz. λ s. caseNat z s n∣.

∣caseNat t1 t2 zero∣ =βη t1

∣caseNat t1 t2 (suc n)∣ =βη ∣t2 (λz. λ s. caseNat z s n)∣

Viewing the computation laws this way, we see that t2 is given a function which will

make a recursive call on n when provided a suitable base and step case. We desire that

these be the same base and step cases originally provided, i.e., that these in fact be t1 and

t2 again. To better emphasize this new interpretation, we rename caseNat to recLRNat .1220

By congruence of βη-equivalence, the two equations above give us:

∣recLRNat t1 t2 zero t1 t2∣ =βη ∣t1 t1 t2∣

∣recLRNat t1 t2 (suc n) t1 t2∣ =βη ∣t2 (λz. λ s. recLRNat z s n) t1 t2∣

To give types to the terms involved in these equations, we begin with the observation

that we can use impredicative quantification to address the self-application occurring in

the right-hand. Below, let the type T of the result we are computing be such that type

variables Z and S are fresh with respect to its free variables, and let ? be a placeholder1225

for a type.

t1 ∶ ∀Z ∶⋆.∀S ∶⋆. Z → S → T

t2 ∶ ∀Z. ⋆ ∀S ∶⋆. ?→ Z → S → T

This gives an interpretation of t1 as being a constant function that ignores its two

C. Jenkins and A. Stump 78

NatZ ⋅ T = ∀Z ∶⋆.∀S ∶⋆. Z → S → T

NatS ⋅ T = ∀Z ∶⋆.∀S ∶⋆. (Z → S → Z → S → T) → Z → S → T

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t1
←

∈ NatZ ⋅ T Γ ⊢ t2
←

∈ NatS ⋅ T

Γ ⊢ recLRNat ⋅ T t1 t2
→

∈ Nat → NatZ ⋅ T → NatS ⋅ T → T

Fig. 64. Typing law for the Lepigre-Raffalli recursion scheme on Nat

arguments and returns a result of type T . For t2, we must give a type for its first argument

λz. λ s. recLRNat z s n that matches our intended reading that t2 will instantiate the

arguments z and s with t1 and t2. Now, t2 is provided copies of t1 and t2 at the universally1230

quantified types Z and S, so we make a further refinement to its type.

∀Z ∶⋆.∀S ∶⋆. (Z → S → ?) → Z → S → T

We can complete the type of t2 by observing that in the system of recursive equations

for the computation law, recLRNat is a function of five arguments. Using η-expansion,

we can rewrite the equation for the successor case to match this usage:

∣recLRNat t1 t2 (suc n) t1 t2∣ =βη ∣t2 (λz. λ s. λ z′. λ s′. recLRNat z s n z′ s′) t1 t2∣

where we understand that, from the perspective of t2, instantiations of z and z′ should1235

have the universally quantified type Z and that instantiations of s and s′ should have

universally quantified type S. We thus obtain the complete definition of the type of t2.

∀Z ∶⋆.∀S ∶⋆. (Z → S → Z → S → T) → Z → S → T

Now we are able to construct a typing rule for our recursive combinator, shown in

Figure 64. From this, we can obtain the following solution for the type of Lepigre-Raffalli1240

Recursive Types and Data Representations in CDLE 79

import cast.

import mono.

import recType.

import scott/concrete/nat as S .

module lepigre-raffalli/concrete/nat1 .

NatRec ◁ ⋆ → ⋆ → ⋆ → ⋆

= λ X: ⋆. λ Z: ⋆. λ S: ⋆. Z → S → Z → S → X .

NatZ ◁ ⋆ → ⋆

= λ X: ⋆. ∀ Z: ⋆. ∀ S: ⋆. Z → S → X .

NatS ◁ ⋆ → ⋆

= λ X: ⋆. ∀ Z: ⋆. ∀ S: ⋆. NatRec ⋅X ⋅Z ⋅S → Z → S → X .

Nat ◁ ⋆ = ∀ X: ⋆. NatRec ⋅X ⋅(NatZ ⋅X) ⋅(NatS ⋅X) .

recLRNat ◁ ∀ X: ⋆. NatZ ⋅X → NatS ⋅X → Nat → NatZ ⋅X → NatS ⋅X → X

= Λ X. λ z. λ s. λ n. n z s .

Fig. 65. Primitive recursion for Scott naturals (part 1)

(lepigre-raffalli/concrete/nat1.ced)

naturals:

Nat = ∀X ∶⋆.NatZ ⋅X → NatS ⋅X → NatZ ⋅X → NatS ⋅X → T

The remainder of this section is structured as follows. In Section 7.1, we show that the

type of Lepigre-Raffalli encodings is a supertype of type of Scott encodings and derive the

primitive recursion scheme for Scott naturals from the Lepigre-Raffalli recursion scheme

we have just discussed. In Section 7.2, we modify the Lepigre-Raffalli encoding and derive1245

induction for Scott naturals. Finally, in Section 7.3 we generalize this modification to the

generic Lepigre-Raffalli encoding and derive induction for generic Scott encodings.

7.1. Primitive recursion for Scott naturals, concretely

Lepigre-Raffalli naturals. In Figure 65, we give in Cedille the definition for the type

of Lepigre-Raffalli encodings we previously obtained. We use a qualified import of the1250

C. Jenkins and A. Stump 80

zero ◁ Nat

= Λ X. λ z. λ s. z ⋅(NatZ ⋅X) ⋅(NatS ⋅X) .

suc ◁ Nat → Nat

= λ n. Λ X. λ z. λ s.

s ⋅(NatZ ⋅X) ⋅(NatS ⋅X) (λ z’. λ s’. recLRNat z’ s’ n) .

rollNat ◁ Cast ⋅(S.NatFI ⋅Nat) ⋅Nat

= intrCast

-(λ n. n.1 zero suc)

-(λ n. n.2 ⋅(λ x: S.NatF ⋅Nat. { x zero suc ≃ x }) β (λ m. β)) .

toNat ◁ Cast ⋅S.Nat ⋅Nat

= recLB -rollNat .

Fig. 66. Primitive recursion for Scott naturals (part 2)

(lepigre-raffalli/concrete/nat1.ced)

concrete encoding of Scott naturals (Section 5.1), so to access a definition from that

development we use “S .” as a prefix. The common shape Z → S → Z → S → X has

been refactored into the type family NatRec, used in the definitions of NatS and Nat .

We also give the definition for the recursive combinator recLRNat , which we observe is

definitionally equal to S .caseNat (Figure 26):1255

_ ◁ { recLRNat ≃ S.caseNat } = β .

where “ ” indicates an anonymous proof.

Inclusion of Scott naturals into Lepigre-Raffalli naturals. Figure 66 shows that

Scott naturals (S .Nat) are a subtype of Lepigre-Raffalli naturals. This begins with the

constructors zero and suc, whose definitions come from computation laws for recLRNat .1260

In particular, for successor the first argument to the bound s is λz′. λ s′. recLRNat z′ s′ n,

the handle for making recursive calls on the predecessor n that awaits a suitable base and

step case. Because the computation laws for recLRNat are derived from case distinction,

we have that zero and suc are definitionally equal to S .zero and S .suc.

_ ◁ { zero ≃ S.zero } = β .1265

_ ◁ { suc ≃ S.suc } = β .

Recursive Types and Data Representations in CDLE 81

Recall that in Section 5.1.1, we saw that the function which rebuilds Scott naturals

with its constructors behaves extensionally as the identity function. We can leverage

this fact to define rollNat , which establishes an inclusion of S .NatFI ⋅Nat into Nat by

rebuilding a term of the first type with the constructors zero and suc for Lepigre-Raffalli1270

naturals. The proof is given not by wkIndNat , but the even weaker pseudo-induction

principle S .WkIndNatF ⋅Nat n.1,

∀P ∶S .NatF ⋅Nat → ⋆. P (S .zeroF ⋅Nat) → (Πm ∶Nat . P (S .sucF m)) → P n

given by n.2. We saw in Section 5.1 that ∣S .zeroF ∣ =βη ∣S .zero∣ and ∣S .sucF ∣ =βη ∣S .suc∣,

so it follows that ∣S .zeroF ∣ =βη ∣zero∣ and ∣S .sucF ∣ =βη ∣suc∣.

With rollNat , we have that Nat is an S .NatFI -closed type. Since S .Nat = Rec ⋅S .NatFI1275

is the least such type with respect to type inclusion, using recLB (Figure 12) we have a

cast from Scott naturals to Lepigre-Raffalli naturals.

Primitive recursion for Scott naturals. The last step in equipping Scott naturals

with a primitive recursion scheme is to translate it to the Lepigre-Raffalli recursion

scheme. This is done in three parts, shown in Figure 67. One complication that must be1280

addressed is that the Lepigre-Raffalli recursion reinterprets the predecessor as a function

for making recursive calls, but the primitive recursion scheme enables direct access to

the predecessor. For now, we will duplicate the predecessor in order for it to serve in

both roles. This means that if X is the type of results we wish to compute with primitive

recursion, then we use Lepigre-Raffalli recursion to compute a function of type S .Nat →1285

X. In Section 7.2 we show how to avoid duplication by using intersection types.

If x ∶ X is the base case for primitive recursion, then recNatZ t is a constant poly-

morphic function that ignores its first three arguments and returns t1. For the step case

f ∶ S .Nat → X → X, recNatS f produces a step case for Lepigre-Raffalli recursion,

introducing:1290

C. Jenkins and A. Stump 82

— type variables Z and S,

— r ∶NatRec ⋅ (S .Nat →X) ⋅Z ⋅ S, the handle for making recursive calls,

— z and s, the base and step cases at the abstracted types Z and S, and

— m ∶S.Nat, which we intend to be a duplicate of r.

In the body of recNatS , f is given access to the predecessor m and the result recursively1295

computed with r, where we decrement m as we pass through the recursive call. Finally,

recNat gives us the primitive recursion scheme for Scott naturals by translating the base

and step cases to the Lepigre-Raffalli style (and duplicating them), coercing the given

Scott natural n to a Lepigre-Raffalli natural, and giving also the predecessor of n.

With recNatBeta1 and recNatBeta2 , we use Cedille to confirm that the expected com-1300

putation laws for the primitive recursion scheme hold by definition. To give a more com-

plete understanding of how recNat computes, we show some intermediate steps involved

recNatZ ◁ ∀ X: ⋆. X → NatZ ⋅(S.Nat → X)

= Λ X. λ x. Λ Z. Λ S. λ z. λ s. λ m. x .

recNatS ◁ ∀ X: ⋆. (S.Nat → X → X) → NatS ⋅(S.Nat → X)

= Λ X. λ f. Λ Z. Λ S. λ r. λ z. λ s. λ m.

f m (r z s z s (S.pred m)) .

recNat ◁ ∀ X: ⋆. X → (S.Nat → X → X) → S.Nat → X

= Λ X. λ x. λ f. λ n.

recLRNat ⋅(S.Nat → X) (recNatZ x) (recNatS f)

(elimCast -toNat n)

(recNatZ x) (recNatS f) (S.pred n) .

recNatBeta1

◁ ∀ X: ⋆. ∀ x: X. ∀ f: S.Nat → X → X. { recNat x f S.zero ≃ x }

= Λ X. Λ x. Λ f. β .

recNatBeta2

◁ ∀ X: ⋆. ∀ x: X. ∀ f: S.Nat → X → X. ∀ n: S.Nat.

{ recNat x f (S.suc n) ≃ f n (recNat x f n) }

= Λ X. Λ x. Λ f. Λ n. β .

Fig. 67. Primitive recursion for Scott naturals (part 3)

(lepigre-raffalli/concrete/nat1.ced)

Recursive Types and Data Representations in CDLE 83

recNat t1 t2 (S .suc n)

↝∗β recLRNat (recNatZ t1) (recNatS t2) (elimCast (S .suc n))

(recNatZ t1) (recNatS t2) (S .suc n)

↝∗β S .suc n (recNatZ t1) (recNatS t2) (recNatZ t1) (recNatS t2) (S .suc n)

↝∗β recNatS t2 n (recNatZ t1) (recNatS t2) (S .suc n)

↝∗β t2 (S .pred (S .suc n))

(n (recNatZ t1) (recNatS t2) (recNatZ t1) (recNatS t2) (S .pred (S .suc n)))

↝∗β t2 n (n (recNatZ t1) (recNatS t2) (recNatZ t1) (recNatS t2) n)

↜∗β t2 n (recLRNat (recNatZ t1) (recNatS t2) (elimCast n) (recNatZ t1) (recNatS t2) n)

↜∗β t2 n (recNat t1 t2 n)

Fig. 68. Reduction of recNat for the successor case

for the step case for arbitrary untyped terms t1, t2, and n in Figure 68. In the figure,

we omit types and erased arguments, and indeed it should be read as ordinary (full) β-

reduction for untyped terms. In the last two lines of the figure, we switch the direction of1305

reduction. Altogether, this shows that ∣recNat t1 t2 (S .suc n)∣ and ∣t2 n (recNat t1 t2 n)∣

are joinable in a constant number of reduction steps.

7.2. Induction for Scott naturals, concretely

In this section, we describe some modifications to the Lepigre-Raffalli encoding that allow

us to equip Scott naturals with induction. For completeness, we show the full derivation,1310

but as this development is very similar to what preceded we shall only highlight the

differences. A byproduct of this modification is that we will no longer need to duplicate

the predecessor: with dependent intersections, we can maintain the two different views

of the predecessor at once.

In Figure 69, we begin our modification by making NatRec dependent: NatRec ⋅P n ⋅Z ⋅T1315

C. Jenkins and A. Stump 84

import cast.

import mono.

import recType.

import scott/concrete/nat as S .

module lepigre-raffalli/concrete/nat2 .

NatRec ◁ (S.Nat → ⋆) → S.Nat → ⋆ → ⋆ → ⋆

= λ P: S.Nat → ⋆. λ x: S.Nat. λ Z: ⋆. λ S: ⋆.

Z → S → Z → S → P x.

NatZ ◁ (S.Nat → ⋆) → ⋆

= λ P: S.Nat → ⋆. ∀ Z: ⋆. ∀ S: ⋆. Z → S → P S.zero .

NatS ◁ (S.Nat → ⋆) → ⋆

= λ P: S.Nat → ⋆.

∀ Z: ⋆. ∀ S: ⋆. Π n: (ι x: S.Nat. NatRec ⋅P x ⋅Z ⋅S).

Z → S → P (S.suc n.1) .

Nat ◁ ⋆

= ι x: S.Nat. ∀ P: S.Nat → ⋆. NatRec ⋅P x ⋅(NatZ ⋅P) ⋅(NatS ⋅P) .

recLRNat ◁ ∀ P: S.Nat → ⋆. NatZ ⋅P → NatS ⋅P → Π n: Nat. NatZ ⋅P → NatS ⋅P → P n.1

= Λ X. λ z. λ s. λ n. n.2 z s .

zero ◁ Nat

= [S.zero , Λ X. λ z. λ s. z ⋅(NatZ ⋅X) ⋅(NatS ⋅X)] .

suc ◁ Nat → Nat

= λ n.

[S.suc n.1

, Λ P. λ z. λ s.

s ⋅(NatZ ⋅P) ⋅(NatS ⋅P) [n.1 , λ z. λ s. recLRNat z s n]] .

rollNat ◁ Cast ⋅(S.NatFI ⋅Nat) ⋅Nat

= intrCast

-(λ n. n.1 zero suc)

-(λ n. n.2 ⋅(λ x: S.NatF ⋅Nat. { x zero suc ≃ x }) β (λ m. β)) .

toNat ◁ Cast ⋅S.Nat ⋅Nat = recLB -rollNat .

Fig. 69. Induction for Scott naturals (part 1)

(lepigre-raffalli/concrete/nat2.ced)

Recursive Types and Data Representations in CDLE 85

indNatZ ◁ ∀ P: S.Nat → ⋆. P S.zero → NatZ ⋅P

= Λ X. λ x. Λ Z. Λ S. λ z. λ s. x .

indNatS ◁ ∀ P: S.Nat → ⋆. (Π n: S.Nat. P n → P (S.suc n)) → NatS ⋅P

= Λ P. λ f. Λ Z. Λ S. λ r. λ z. λ s. f r.1 (r.2 z s z s) .

indNat

◁ ∀ P: S.Nat → ⋆. P S.zero → (Π m: S.Nat. P m → P (S.suc m)) →

Π n: S.Nat. P n

= Λ P. λ x. λ f. λ n.

recLRNat ⋅P (indNatZ x) (indNatS f) (elimCast -toNat n)

(indNatZ x) (indNatS f) .

Fig. 70. Induction for Scott naturals (part 2)

(lepigre-raffalli/concrete/nat2.ced)

is the type of functions taking two arguments each of type Z and S and returning a proof

that P holds for n. The next and most significant modification is to the definition NatS .

We want that the handle n for invoking our inductive hypothesis will produce a proof

that P holds for the predecessor — which is n itself! We can express the dual role

of the predecessor as data (n) and function (λz. λ s. recLRNat z s n) with dependent1320

intersections, which recovers the view of the predecessor as a Scott natural without

requiring duplication. This duality is echoed in the definition of Nat , which is defined

with dependent intersections as the type of Scott naturals x which, for an arbitrary

predicate P , will act as a function taking two base (NatZ ⋅ P) and step (NatS ⋅ P) cases

each and produce a proof that P holds of x.1325

By its definition, the type Nat of the modified Lepigre-Raffalli encoding is a subtype of

Scott encodings. Using the same approach as in Section 7.1, we can show a type inclusion

in the other direction. We define the constructors zero and suc, noting that the innermost

intersection introduction in suc again shows the dual role of the predecessor, then show

that Nat is S .NatFI closed by rebuilding with these constructors.1330

Finally, we derive true induction for Scott naturals in Figure 70. Playing the same

roles as recNatZ and recNatS (Figure 67), indNatZ and indNatS convert the usual base

C. Jenkins and A. Stump 86

and step cases of inductive proof into forms suitable for Lepigre-Raffalli-style induction.

In particular, note that in indNatS the bound r plays the role of both predecessor (r.1)

and handle for the inductive hypothesis (r.2), avoiding duplication.1335

7.3. Induction for Scott-encoded data, generically

In this section, we formulate a generic variant of the Lepigre-Raffalli encoding and use

this to derive induction for our generic Scott encoding. To explain generic encoding, we

start by deriving a Lepigre-Raffalli recursion scheme from the observation that, for the

solution caseD for the case-distinction scheme given in Figure 35, ∣t∣ =βη λa. caseD a d for1340

all t. This allows us to introduce recursion into the computation law for case distinction.

Let D be the type of Scott-encoded data whose signature is F , and let t ∶ AlgCase ⋅D ⋅T

for some T and t′ ∶ F ⋅D. For the sake of exposition, we will for now assume that F is

a functor. Using the functor identity law, we can form the following equation from the

computation law of case distinction.1345

∣caseD t (inD t′)∣ ↝ ∣t t′∣ =FmapId ∣t (fmap (λx.λa. caseD a x) t′)∣

Renaming caseD to recLRD , we can read the above as a computational characterization

of the generic Lepigre-Raffalli recursion scheme and use this to derive a suitable typing

law. We desire that t should be a function which will be able to accept itself as a second

argument in order to make recursive calls on predecessors.

∣recLRD t (inD t′) t∣ ↝ ∣t t′ t∣ =FmapId ∣t (fmap (λx.λa. recLRD a x) t′) t∣

Under this interpretation, we are able to give the following type for terms t used in1350

generic Lepigre-Raffalli recursion to compute a value of type T .

∀Y ∶⋆. F ⋅ (Y → Y → T) → Y → T

Recursive Types and Data Representations in CDLE 87

Γ ⊢ T
→

∈ ⋆ Γ ⊢ t
←

∈ ∀Y ∶⋆. F ⋅ (Y → Y → T) → Y → T

Γ ⊢ recLRD ⋅ T t
→

∈ D → (∀Y ∶⋆. F ⋅ (Y → Y → T) → Y → T) → T

Fig. 71. Typing law for the generic Lepigre-Raffalli recursion scheme

Compare this to Lepigre-Raffalli recursion for naturals (Figure 64).

— Quantification over Y replaces quantification over Z and S for the base and step case

of naturals. Here, we intend that Y will be impredicatively instantiated with the type

∀Y ∶⋆. F ⋅ (Y → Y → T) → Y → T again.1355

— The single handle for making a recursive call on the natural number predecessor

becomes an F -collection of handles of type Y → Y → T for making recursive calls,

obtained from the F -collection of D predecessors.

This leads to the typing law for recLRD listed in Figure 71. For the computation law,

we desire it be precisely the same as that for caseD — meaning that we will not need to1360

require F to be a functor for Lepigre-Raffalli recursion (or induction) over datatype D.

Unlike the other schemes we have considered, we are unaware of any standard criteria

for characterizing Lepigre-Raffalli recursion, and the development of a categorical seman-

tics for this scheme is beyond the scope of this paper. Instead, and under the assumption

that F is a functor, we will show that from this scheme and the related induction prin-1365

ciple we can give efficient and provably unique solutions to the iteration and primitive

recursion schemes.

The derivations of this section are separated into three parts. In Figure 72, we give the

type of our generic variant of the Lepigre-Raffalli encoding for a monotone signature. In

Figure 73, we derive Lepigre-Raffalli induction for Scott encodings. Finally, in Figure 741370

we assume the stronger condition that the datatype signature is a functor and derive a

standard induction principle for Scott encodings.

C. Jenkins and A. Stump 88

import cast .

import mono .

import recType .

module scott-rec/generic/encoding

(F: ⋆ → ⋆) {mono: Mono ⋅F} .

import scott/generic/encoding as S ⋅F -mono .

import data-char/iter-typing ⋅F .

import data-char/primrec-typing ⋅F .

DRec ◁ (S.D → ⋆) → S.D → ⋆ → ⋆

= λ P: S.D → ⋆. λ x: S.D. λ Y: ⋆. Y → Y → P x .

inDRec ◁ ∀ P: S.D → ⋆. ∀ Y: ⋆. F ⋅(ι x: S.D. DRec ⋅P x ⋅Y) → S.D

= Λ P. Λ Y. λ xs.

[c ◁ Cast ⋅(ι x: S.D. DRec ⋅P x ⋅Y) ⋅S.D

= intrCast -(λ x. x.1) -(λ x. β)]

- S.inD (elimCast -(mono c) xs) .

PrfAlgLR ◁ (S.D → ⋆) → ⋆

= λ P: S.D → ⋆.

∀ Y: ⋆. Π xs: F ⋅(ι x: S.D. DRec ⋅P x ⋅Y). Y → P (inDRec xs) .

D ◁ ⋆ = ι x: S.D. ∀ P: S.D → ⋆. DRec ⋅P x ⋅(PrfAlgLR ⋅P) .

recLRD ◁ ∀ P: S.D → ⋆. PrfAlgLR ⋅P → Π x: D. PrfAlgLR ⋅P → P x.1

= Λ P. λ a. λ x. x.2 a .

Fig. 72. Generic Lepigre-Raffalli-style induction for Scott encodings (part 1)

(lepigre-raffalli/generic/encoding.ced)

Generic Lepigre-Raffalli encoding. In Figure 72, we begin by importing the generic

Scott encoding, with the prefix “S .” used to access definitions of that module. Type

family DRec gives the shape of the types of handles for invoking an inductive hypothesis1375

for a particular term x of type S .D when giving a proof of some P ∶ S .D → ⋆ w-(compare

this to NatRec in Figure 69).

Next, for all predicates P over Scott encodings S .D , PrfAlgLR ⋅P is the type of Lepigre-

Raffalli-style proof algebras for P , corresponding to NatZ ⋅ P and NatS ⋅ P together in

Figure 69. A term of this type is polymorphic in a type Y (which we interpret as standing1380

in for PrfAlgLR ⋅ P itself) and takes and F -collection xs of terms which, with the use

Recursive Types and Data Representations in CDLE 89

fromD ◁ Cast ⋅D ⋅S.D

= intrCast -(λ x. x.1) -(λ x. β) .

instDRec ◁ ∀ P: S.D → ⋆. Cast ⋅D ⋅(ι x: S.D. DRec ⋅P x ⋅(PrfAlgLR ⋅P))

= Λ P. intrCast -(λ x. [x.1 , λ a. recLRD a x]) -(λ x. β) .

inD ◁ F ⋅D → D

= λ xs.

[S.inD (elimCast -(mono fromD) xs)

, Λ P. λ a.

a ⋅(PrfAlgLR ⋅P) (elimCast -(mono (instDRec ⋅P)) xs)].

rollD ◁ Cast ⋅(S.DFI ⋅D) ⋅D

= intrCast

-(λ x. x.1 inD)

-(λ x. x.2 ⋅(λ x: S.DF ⋅D. { x inD ≃ x }) (λ xs. β)) .

toD ◁ Cast ⋅S.D ⋅D

= recLB -rollD .

indLRD ◁ ∀ P: S.D → ⋆. PrfAlgLR ⋅P → Π x: S.D. PrfAlgLR ⋅P → P x

= Λ P. λ a. λ x. recLRD a (elimCast -toD x) .

Fig. 73. Generic Lepigre-Raffalli-style induction for Scott encodings (part 2)

(lepigre-raffalli/generic/encoding.ced)

of dependent intersection types, are interpreted both as a predecessor and a handle for

accessing the inductive hypothesis for that predecessor. To state that the result should be

a proof that P holds for the value constructed from these predecessors, we need a variant

constructor inDRec that first casts the predecessors to the type S .D using monotonicity1385

of F . Note that we have ∣inDRec∣ =βη ∣S .inD ∣.

Type D is our generic Lepigre-Raffalli encoding, again defined with dependent inter-

section as the type for Scott encodings x also act as functions which, for all properties P ,

produce a proof that P holds of x when given two Lepigre-Raffalli-style proof algebras

for P . Finally, recLRD is the Lepigre-Raffalli-style induction principle restricted to those1390

Scott encodings which have type D. To obtain true Lepigre-Raffalli induction, it remains

to show that every term of type S .D has type D.

C. Jenkins and A. Stump 90

Lepigre-Raffalli induction. In Figure 73, we begin the process of demonstrating an

inclusion of the type S .D into D by defining the constructor inD for the generic Lepigre-

Raffalli encoding. This definition crucially uses the auxiliary function instDRec to pro-1395

duce the two views of a given predecessor x ∶D as subdata (x.1) and as a handle for the

inductive hypothesis associated to that predecessor (λa. recLRD a x); compare this to

the definition of suc in Figure 69. As expected, we have that inD and S .inD (and also

S .inDF) are definitionally equal.

_ ◁ { inD ≃ S.inD } = β .1400

With the constructor defined, we show with rollD that D is an S .DFI -closed type

(S .DFI is defined in Figure 34) by giving a proof that rebuilding a term of type S .DFI ⋅D

with constructor inD reproduces the same term. As S .D = Rec ⋅ S .DFI is the least such

type, we thus obtain a proof toD of an inclusion of the type S .D into D using recLB

(Figure 12). With this, we have Lepigre-Raffalli-style induction as indLRD .1405

Standard induction for Scott encodings. To derive the usual induction principle for

Scott encodings using Lepigre-Raffalli induction, we change module contexts in Figure 74

and now assume that F is a functor (see Section 6.2 for the definitions of the functor

laws). As we did for the derivation of induction for Scott naturals, our approach here is

to convert a proof algebra of the form for standard induction1410

PrfAlgRec ⋅ S .D S .inD ⋅ P = Πxs ∶F ⋅ (Sigma ⋅ S .D ⋅ P). P (S .inD (fmap proj1 xs))

into one of the form for Lepigre-Raffalli induction.

Function fromPrfAlgRec gives the conversion of proof algebras, and its body is best

read bottom-up. The bound xs is an F -collection of predecessors playing dual roles as

subdata and inductive hypotheses that require proof algebras at the universally quantified

type Y , and the bound y ∶Y is “self-handle” of the Lepigre-Raffalli proof algebra we are1415

defining that gives us access to those inductive hypotheses. With applyDRec we separate

Recursive Types and Data Representations in CDLE 91

import functor .

import cast .

import mono .

import utils .

module lepigre-raffalli/generic/induction

(F: ⋆ → ⋆) (fmap: Fmap ⋅F)

{fmapId : FmapId ⋅F fmap} {fmapCompose: FmapCompose ⋅F fmap} .

import functorThms ⋅F fmap -fmapId -fmapCompose .

import scott/generic/encoding as S ⋅F -monoFunctor .

import lepigre-raffalli/generic/encoding ⋅F -monoFunctor .

import data-char/primrec-typing ⋅F .

import data-char/primrec ⋅F fmap -fmapId -fmapCompose ⋅S.D S.inD .

applyDRec ◁ ∀ P: S.D → ⋆. ∀ Y: ⋆. Y → (ι x: S.D. DRec ⋅P x ⋅Y) → Sigma ⋅S.D ⋅P

= Λ P. Λ Y. λ y. λ x. mksigma x.1 (x.2 y y) .

fromPrfAlgRec

◁ ∀ P: S.D → ⋆. PrfAlgRec ⋅P → PrfAlgLR ⋅P

= Λ P. λ a. Λ Y. λ xs. λ y.

ρ ς (fmapId ⋅(ι x: S.D. DRec ⋅P x ⋅Y) ⋅S.D

(λ x. proj1 (applyDRec y x)) (λ x. β) xs)

@x.(P (S.inD x))

- ρ ς (fmapCompose (proj1 ⋅S.D ⋅P) (applyDRec ⋅P y) xs)

@x.(P (S.inD x))

- a (fmap (applyDRec ⋅P y) xs) .

indD ◁ ∀ P: S.D → ⋆. PrfAlgRec ⋅P → Π x: S.D. P x

= Λ P. λ a. λ x.

indLRD (fromPrfAlgRec a) x (fromPrfAlgRec a) .

Fig. 74. Generic induction for Scott encodings

(lepigre-raffalli/generic/induction.ced)

these two roles, producing a dependent pair of type Sigma ⋅ S .D ⋅ P as expected for the

usual formulation of induction.

The type of the final line of fromPrfAlgRec is:

P (S .inD (fmap proj1 (fmap (applyDRec y) xs)))

Reading bottom-up, we use the functor composition law to fuse the two separate map-1420

C. Jenkins and A. Stump 92

pings of proj1 and applyDRec y. Then, observing that this results in the mapping of a

function which is definitionally equal λx.x (by the computation law of proj1 , Figure 46),

we use the functor identity law to remove the mapping completely. The resulting type

is convertible with the expected type P (inDRec xs) (since ∣inDRec∣ =βη ∣S .inD ∣). With

the conversion complete, in indD we equip Scott encodings with the standard induction1425

principle by invoking Lepigre-Raffalli induction on two copies of the converted proof

algebra.

7.3.1. Computational and extensional character. With the standard induction principle

derived for Scott encodings, we can now show that Scott-encoded datatypes enjoy the

same characterization up to propositional equality as Parigot-encoded datatypes. Con-1430

cerning the efficiency of solutions to recursion schemes, we have already seen that Scott

encodings offer a superior simulation of case distinction. We now consider primitive re-

cursion and iteration. For the module listed in Figures 75 and 76, the generic Scott

encoding is imported without qualification, and “LR.” qualifies the definitions imported

from generic Lepigre-Raffalli encoding.1435

Primitive recursion. The solution recD in Figure 75 for the combinator for primitive

recursion is a non-dependent instance of the standard induction scheme. As we saw for

primitive recursion on Scott naturals in Section 7.1, the computation law for generic

primitive recursion, proved by recDBeta, does not hold by reduction in the operational

semantics alone, but does hold up to joinability using a constant number of β-reduction1440

Recursive Types and Data Representations in CDLE 93

import functor .

import cast .

import recType .

import utils .

module lepigre-raffalli/generic/propos

(F: ⋆ → ⋆) (fmap: Fmap ⋅F)

{fmapId: FmapId ⋅F fmap} {fmapCompose: FmapCompose ⋅F fmap} .

import functorThms ⋅F fmap -fmapId -fmapCompose .

import scott/generic/encoding ⋅F -monoFunctor .

import lepigre-raffalli/generic/encoding as LR ⋅F -monoFunctor .

import lepigre-raffalli/generic/induction ⋅F fmap -fmapId -fmapCompose .

import data-char/primrec-typing ⋅F .

import data-char/primrec ⋅F fmap -fmapId -fmapCompose ⋅D inD .

recD ◁ PrimRec ⋅D

= Λ X. λ a. indD ⋅(λ x: D. X) a .

recDBeta ◁ PrimRecBeta recD

= Λ X. Λ a. Λ xs. β .

recDEta ◁ PrimRecEta recD = <..>

Fig. 75. Characterization of recD (lepigre-raffalli/generic/props.ced)

steps. We illustrate for arbitrary (untyped) terms t and t′.

recD t (inD t′)

↝∗β indLRD (fromPrfAlgRec t) (inD t′) (fromPrfAlgRec t)

↝∗β fromPrfAlgRec t t′ (fromPrfAlgRec t)

↝∗β t (fmap (applyDRec (fromPrfAlgRec t)) t′)

↝∗β t (fmap (λx.mksigma x (x (fromPrfAlgRec t) (fromPrfAlgRec t))) t′)

↜∗β t (fmap (λx.mksigma x (recD t)) t′)

↜∗β t (fmap (fork id (recD a)) t′)

The extensionality law recDEta, whose proof is omitted in the figure, follows from in-

duction.

C. Jenkins and A. Stump 94

import data-char/iter-typing ⋅F .

import data-char/iter ⋅F fmap ⋅D inD .

lrFromAlg ◁ ∀ X: ⋆. Alg ⋅X → LR.PrfAlgLR ⋅(λ x: D. X)

= Λ X. λ a. Λ Y. λ xs. λ y.

a (fmap ⋅(ι x: D. LR.DRec ⋅(λ x: D. X) x ⋅Y) ⋅X (λ x. x.2 y y) xs) .

foldD ◁ Iter ⋅D

= Λ X. λ a. λ x. LR.indLRD ⋅(λ x: D. X) (lrFromAlg a) x (lrFromAlg a) .

foldDBeta ◁ IterBeta foldD

= Λ X. Λ a. Λ xs. β .

algHomLemma

◁ ∀ X: ⋆. ∀ a: Alg ⋅X. ∀ h: D → X. AlgHom ⋅X a h → AlgRecHom ⋅X (fromAlg a) h

= <..>

foldDEta ◁ IterEta foldD = <..>

Fig. 76. Characterization of foldD (lepigre-raffalli/generic/props.ced)

Iteration. While primitive recursion can be used to simulate iteration, we saw in Sec-

tion 6.3.3 that this results in a definition of foldD that obeys the expected computation1445

law only up to the functor laws. We now show in Figure 76 that with Lepigre-Raffalli

recursion, we can do better and obtain a solution obeying the computation law by defini-

tional equality alone. The first definition, lrFromAlg , converts a function of type Alg ⋅X

(used in iteration) to a function for use in Lepigre-Raffalli recursion. It maps over the

F -collection of predecessors having dual roles, applying each to two copies of the han-1450

dle y specifying the next step of recursion. For the solution foldD for iteration, we use

Lepigre-Raffalli recursion on two copies of the converted a ∶ Alg ⋅X.

As was the case for recD , with foldD the left-hand and right-hand sides of the compu-

tation law for iteration are joinable using a constant number of full β-reductions. This

means that the proof foldDBeta holds by definitional equality alone. The proof of the1455

extensionality law, foldDEta, follows as a consequence of recDEta and a lemma that any

function h ∶ D → X which satisfies the computation law for iteration with respect to

Recursive Types and Data Representations in CDLE 95

some a ∶ Alg ⋅X also satisfies the computation law for primitive recursion with respect to

fromAlg a (Figure 51).

7.3.2. Scott encoding vs. Parigot encoding. Satisfaction of the above properties by the1460

Scott and Parigot encoding establishes that both are adequate representations of induc-

tive datatypes in Cedille. However, there are compelling reasons for preferring the Scott

encoding. First, and as mentioned before, the Parigot encoding suffers from significant

space overhead: Parigot naturals require exponential space compared to the linear-space

Scott naturals. Second, efficiency of the destructor for Scott encodings does not depend1465

on the choice of evaluation strategy and the computation law for iteration is satisfied

by definitional equality. Finally, not all monotone type schemes in Cedille are functors.

For such a type scheme F , we cannot use F as a datatype signature for the generic

Parigot encoding. However, we can use F in this way for the generic Scott encoding, and

although we cannot obtain the standard induction principle for the resulting datatype,1470

we still may still use Lepigre-Raffalli-style induction.

How significant a limitation for the Parigot encoding is this in practice? Consider a

datatype for infinitely branching trees, which in Haskell would be defined as follows.

data ITree = Leaf | Node (Nat -> ITree)

ITree is a positive datatype, however in the presence of the δ axiom (see Figure 3), we1475

can in fact prove that the usual mapping operation for the signature of infinitary trees

does not satisfy the functor laws as we formulated them in Figure 44.

In Figure 77, we give an axiomatic summary of derivable sum (coproduct) types with

induction in Cedille. The constructors are in1 and in2 , and the induction principle is

indsum and follows the expected computation laws. In Figure 78 we define ITreeF , the1480

signature for infinitely branching trees, and itreeFmap, its corresponding mapping oper-

ation (here Unit is an alias for the type of the polymorphic identity function). Following

this, we prove with monoITreeF that this type scheme is monotonic. The function from

C. Jenkins and A. Stump 96

Γ ⊢ S
→

∈ ⋆ Γ ⊢ T
→

∈ ⋆

Γ ⊢ Sum ⋅ S ⋅ T
→

∈ ⋆

Γ ⊢ Sum ⋅ S ⋅ T
→

∈ ⋆ Γ ⊢ s
←

∈ S

Γ ⊢ in1 ⋅ S ⋅ T s
→

∈ Sum ⋅ S ⋅ T

Γ ⊢ Sum ⋅ S ⋅ T
→

∈ ⋆ Γ ⊢ t
←

∈ T

Γ ⊢ in2 ⋅ S ⋅ T t
→

∈ Sum ⋅ S ⋅ T

Γ ⊢ s
→

∈ Sum ⋅ S ⋅ T Γ ⊢ P
→

∈ Sum ⋅ S ⋅ T → ⋆

Γ ⊢ t1
←

∈ Πx ∶T.P (in1 x) Γ ⊢ t2
←

∈ Πx ∶S.P (in2 x)

Γ ⊢ indsum s ⋅ P t1 t2
→

∈ P s

∣indsum (in1 s) t1 t2∣ =βη ∣t1 t∣

∣indsum (in2 t) t1 t2∣ =βη ∣t2 t∣

Fig. 77. Sum, axiomatically (utils/sum.ced)

ITreeF ⋅X to ITreeF ⋅ Y that realizes the type inclusion is itreeFmap (elimCast -c), and

the proof that it behaves as the identity function follows by induction on Sum.1485

For the counterexample itreeFmapIdAbsurd , we consider two terms of type ITreeF ⋅Nat:

the first, t1, is defined using the second coproduct injection on the identity function for

Nat , and the first, t2, is the result of mapping caseNat zero suc over t1. From reflectNat

(Section 5.1.1), we know that caseNat zero suc behaves as the identity function on Nat .

If itreeFmap satisfied the functor identity law, we would thus obtain a proof that t1 and1490

t2 are propositionally equal. However, the erasures of t1 and t2 are closed untyped terms

which are βη-inequivalent, so we use δ to derive a contradiction. This establishes that our

generic derivation of Scott-encoded data, together with Lepigre-Raffalli-style recursion

and induction, allow for programming with a strictly larger set of inductive datatypes

than does our generic derivation of Parigot-encoded data.1495

8. Related Work

Monotone inductive types. Matthes (2002) employs Tarski’s fixpoint theorem to

motivate the construction of a typed lambda calculus with monotone recursive types. The

Recursive Types and Data Representations in CDLE 97

module signatures/itree .

import functor .

import cast .

import mono .

import utils .

import scott/concrete/nat .

ITreeF ◁ ⋆ → ⋆ = λ X: ⋆. Sum ⋅Unit ⋅(Nat → X) .

itreeFmap ◁ Fmap ⋅ITreeF

= Λ X. Λ Y. λ f. λ t.

indsum t ⋅(λ _: ITreeF ⋅X. ITreeF ⋅Y)

(λ u. in1 u) (λ x. in2 (λ n. f (x n))) .

monoITreeF ◁ Mono ⋅ITreeF

= Λ X. Λ Y. λ c.

intrCast

-(itreeFmap (elimCast -c))

-(λ t. indsum t ⋅(λ x: ITreeF ⋅X. { itreeFmap (elimCast -c) x ≃ x })

(λ u. β) (λ x. β)) .

t1 ◁ ITreeF ⋅Nat = in2 (λ x. x) .

t2 ◁ ITreeF ⋅Nat = itreeFmap (caseNat zero suc) t1 .

itreeFmapIdAbsurd ◁ FmapId ⋅ITreeF itreeFmap → ∀ X: ⋆. X

= λ fid. Λ X.

[pf ◁ { t2 ≃ t1 } = fid (caseNat zero suc) (caseNatEta) t1]

- δ - pf .

Fig. 78. Counter-example: a monotone type scheme which is not a functor

(signatures/itree.ced)

gap between this order-theoretic result and type theory is bridged using category theory,

with evidence that a type scheme is monotonic corresponding to the morphism-mapping1500

rule of a functor. Matthes shows that as long as the reduction rule eliminating an unroll

of a roll incorporates the monotonicity witness in a certain way, strong normalization

of System F is preserved by extension with monotone iso-recursive types. Otherwise, he

shows a counterexample to normalization.

In contrast, we establish that type inclusions (zero-cost casts) induce a preorder within1505

the type theory of Cedille, and carry out a modification of Tarski’s order-theoretic result

C. Jenkins and A. Stump 98

directly within it. Evidence of monotonicity is given by an operation lifting type inclu-

sions, not arbitrary functions, over a type scheme. As mentioned in the introduction,

deriving monotone recursive types within the type theory of Cedille has the benefit of

guaranteeing that they enjoy precisely the same meta-theoretic properties as enjoyed by1510

Cedille itself – no additional work is required.

Impredicative encodings and datatype recursion schemes. Our use of casts in

deriving recursive types guarantees that the rolling and unrolling operations take con-

stant time, permitting the definition of efficient data accessors for inductive datatypes

defined with them. However, when using recursive types to encode datatypes one usu-1515

ally desires efficient solutions to recursion schemes for datatypes, and the derivation in

Section 3.4 does not on its own provide this.

Independently, Mendler (1991) and Geuvers (1992) developed the category-theoretic

notion of recursive F -algebras to give the semantics of the primitive recursion scheme for

inductive datatypes, and Geuvers (1992) and Matthes (2002) use this notion in extending1520

a typed lambda calculus with typing and reduction rules for an efficient primitive recur-

sion scheme for inductive datatypes. The process of using a particular recursion scheme to

directly obtain an impredicative encoding is folklore knowledge (c.f. Abel et al., 2005, Sec-

tion 3.6). Geuvers (2014) used this process to examine the close connection between the

(co)case-distinction (resp. primitive (co)recursion) scheme and the Scott (resp. Parigot)1525

encoding for (co)inductive types in a theory with primitive positive recursive types. Us-

ing derived monotone recursive types in Cedille, we follow the same approach but for

encodings of datatypes with induction principles, allowing us to establish within Cedille

that the solution to the primitive recursion scheme is unique (i.e., that we obtain initial

recursive F -algebras).1530

Recursive Types and Data Representations in CDLE 99

Recursor for Scott-encoded data. The non-dependent impredicative encoding we

used to equip Scott-encoded naturals with primitive recursion in Section 7.1 is based on

a result by Lepigre and Raffalli (2019). We thus dub it the Lepigre-Raffalli encoding,

though they report that the encoding is in fact due to Parigot. In earlier work, Parigot

(1988) demonstrated the lambda term that realizes the primitive recursion scheme for1535

Scott naturals, but the typing of this term involved reasoning outside of the logical

framework being used. The type system in which Lepigre and Raffalli (2019) carry out this

construction has built-in notions of least and greatest type fixpoints and a sophisticated

form of subtyping that utilizes ordinals and well-founded circular typing derivations based

on cyclic proof theory (Santocanale, 2002). Roughly, the correspondence between their1540

type system and that of Cedille’s is so: both theories are Curry-style, enabling a rich

subtyping relation which in Cedille is internalized as Cast ; and in defining recursor for

Scott naturals, we replace the circular subtyping derivation with an internally realized

proof of the fact that our derived recursive types are least fixpoints of type schemes.

Our two-fold generalization of the Lepigre-Raffalli encoding (making it both generic1545

and dependent) is novel. To the best of our knowledge, the observation that the Lepigre-

Raffalli-style recursion scheme associated to this encoding can be understood as intro-

ducing recursion into the computation laws for the case-distinction scheme is also novel.

This characterization informs both our minor modification to the encoding in Section 7.1

for natural numbers (we quantify over types for both base and step cases of recursion,1550

instead of quantifying over only the latter as done by Lepigre and Raffalli (2019)) and

the generic formulation. Presently, this connection between Lepigre-Raffalli recursion and

the case-distinction scheme serves a pedagogical role; we leave as future work the task

of providing a more semantic (e.g., category-theoretic) account of the Lepigre-Raffalli

recursion scheme.1555

C. Jenkins and A. Stump 100

Lambda encodings in Cedille. Work prior to ours describes the generic derivation

of induction for lambda-encoded data in Cedille. This was first accomplished by Firsov

and Stump (2018) for the Church and Mendler encodings, which do not require recursive

types as derived in this paper. The approach used for the Mendler encoding by was

then further refined by Firsov et al. (2018) to enable efficient data accessors, resulting1560

in the first-ever example of a lambda encoding in type theory with derivable induction,

constant-time destructor, and whose representation requires only linear space. To the

best of our knowledge, this paper establishes that the Scott encoding is the second-ever

example of a lambda encoding enjoying these same properties. Firsov and Stump (2018)

and Firsov et al. (2018) also provide a computational characterization for their encodings,1565

limited to Lambek’s lemma and the computation law for Mendler-style iteration. For the

Parigot and Scott encodings we have presented, we showed Lambek’s lemma and both

the computation and extensionality laws for the case-distinction, iteration, and primitive

recursion schemes.

Conclusion and Future Work1570

We have shown how to derive monotone recursive types with constant-time roll and unroll

operations within the type theory of Cedille by applying Tarski’s least fixpoint theorem

to a preorder on types induced by an internalized notion of type inclusion. By deriving

recursive types within a theory, rather than extending it, we do not need to rework

existing meta-theoretic results to ensure logical consistency or provide a normalization1575

guarantee. As applications, we use the derived monotone recursive types to derive two

recursive representations of data in lambda calculus, the Parigot and Scott encoding,

generically in a signature functor F . For both encodings, we derived induction and gave

a thorough characterization of the solutions they admit for case distinction, iteration,

and primitive recursion. In particular, we showed that with the Scott encoding all three1580

Recursive Types and Data Representations in CDLE 101

of these schemes can be efficiently simulated. This derivation, which builds on a result

described by Lepigre and Raffalli (2019), crucially uses the fact that recursive types in

Cedille provide least fixpoints of type schemes.

In the authors’ opinion, we have demonstrated that lambda encodings in Cedille pro-

vide an adequate basis for programming with inductive datatypes. Building from this1585

basis to a convenient surface language requires the generation of monotonicity witnesses

from datatype declarations. Our experience coding such proofs in Cedille leads us to

believe they can be readily mechanized for a large class of nonstrictly positive datatypes,

including infinitary trees and the usual formulation of rose trees. However, more care is

needed for checking monotonicity of nested datatypes (Bird and Meertens, 1998; Abel1590

et al., 2005).

Finally, we believe our developments have raised two interesting questions for fu-

ture investigation. The first of these is the development of a categorical semantics for

Lepigre-Raffalli recursion, allowing us to complete the characterization of Scott-encoded

datatypes whose signatures are positive but non-functorial. Second, in the derivation of1595

primitive recursion for Scott encodings leastness of the fixpoint formed from our derived

recursive type operator plays a similar role to the cyclic subtyping rules of Lepigre and

Raffalli (2019). If this correspondence generalizes, some subset of their type system might

be translatable to Cedille, opening the way to a surface language with a rich notion of

subtyping in the presence of recursive types that is based on internalized type inclusions.1600

Financial Aid

We gratefully acknowledge NSF support under award 1524519, and DoD support under

award FA9550-16-1-0082 (MURI program).

C. Jenkins and A. Stump 102

References

Abbott, M. G., Altenkirch, T., and Ghani, N. (2003). Categories of containers. In1605

Gordon, A. D., editor, Foundations of Software Science and Computational Structures,

6th International Conference, FOSSACS 2003 Held as Part of the Joint European

Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April

7-11, 2003, Proceedings, volume 2620 of Lecture Notes in Computer Science, pages

23–38. Springer.1610

Abel, A. (2010). MiniAgda: Integrating sized and dependent types. In Komendantskaya,

E., Bove, A., and Niqui, M., editors, Partiality and Recursion in Interactive Theorem

Provers, PAR@ITP 2010, Edinburgh, UK, July 15, 2010, volume 5 of EPiC Series,

pages 18–33. EasyChair.

Abel, A., Matthes, R., and Uustalu, T. (2005). Iteration and coiteration schemes for1615

higher-order and nested datatypes. Theor. Comput. Sci., 333(1-2):3–66.

Allen, S. F., Bickford, M., Constable, R. L., Eaton, R., Kreitz, C., Lorigo, L., and Moran,

E. (2006). Innovations in computational type theory using Nuprl. J. Applied Logic,

4(4):428–469.

Atkey, R. (2018). Syntax and semantics of quantitative type theory. In Dawar, A. and1620

Grädel, E., editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic

in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM.

Bird, R. S. and Meertens, L. G. L. T. (1998). Nested datatypes. In Mathematics of

Program Construction, MPC’98, Marstrand, Sweden, June 15-17, 1998, Proceedings,

pages 52–67.1625

Breitner, J., Eisenberg, R. A., Jones, S. P., and Weirich, S. (2016). Safe zero-cost coercions

for Haskell. J. Funct. Program., 26:e15.

Böhm, C., Dezani-Ciancaglini, M., Peretti, P., and Rocca, S. D. (1979). A discrimination

algorithm inside λ-β-calculus. Theoretical Computer Science, 8(3):271 – 291.

Recursive Types and Data Representations in CDLE 103

Crary, K., Harper, R., and Puri, S. (1999). What is a Recursive Module? In Proceed-1630

ings of the ACM SIGPLAN 1999 Conference on Programming Language Design and

Implementation (PLDI), pages 50–63, New York, NY, USA. ACM.

Dybjer, P. and Palmgren, E. (2016). Intuitionistic Type Theory. In Zalta, E. N., ed-

itor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

University, winter 2016 edition.1635

Firsov, D., Blair, R., and Stump, A. (2018). Efficient Mendler-Style Lambda-Encodings

in Cedille. In Avigad, J. and Mahboubi, A., editors, Interactive Theorem Proving - 9th

International Conference, ITP 2018, Held as Part of the Federated Logic Conference,

FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10895 of Lecture Notes

in Computer Science, pages 235–252. Springer.1640

Firsov, D. and Stump, A. (2018). Generic Derivation of Induction for Impredicative

Encodings in Cedille. In Andronick, J. and Felty, A., editors, Certified Programs and

Proofs (CPP).

Geuvers, H. (1992). Inductive and coinductive types with iteration and recursion. In

WORKSHOP ON. Bastad, Chalmers University of Technology.1645

Geuvers, H. (2001). Induction Is Not Derivable in Second Order Dependent Type Theory.

In Abramsky, S., editor, Typed Lambda Calculi and Applications (TLCA), volume 2044

of Lecture Notes in Computer Science, pages 166–181. Springer.

Geuvers, H. (2014). The Church-Scott representation of inductive and coinductive data.

Unpublished manuscript.1650

Jenkins, C. and Stump, A. (2018). Spine-local Type Inference. CoRR, abs/1805.10383.

Accepted for post-proceedings of Implementation of Functional Languages (IFL) 2018.

Kleene, S. (1965). Classical Extensions of Intuitionistic Mathematics. In Bar-Hillel, Y.,

editor, LMPS 2, pages 31–44. North-Holland Publishing Company.

Kopylov, A. (2003). Dependent intersection: A new way of defining records in type1655

theory. In 18th IEEE Symposium on Logic in Computer Science (LICS), pages 86–95.

C. Jenkins and A. Stump 104

Lambek, J. (1968). A fixpoint theorem for complete categories. Mathematische

Zeitschrift, 103(2):151–161.

Lassez, J.-L., Nguyen, V., and Sonenberg, E. (1982). Fixed point theorems and semantics:

a folk tale. Information Processing Letters, 14(3):112 – 116.1660

Leivant, D. (1983). Reasoning about functional programs and complexity classes associ-

ated with type disciplines. In 24th Annual Symposium on Foundations of Computer

Science (FOCS), pages 460–469. IEEE Computer Society.

Lepigre, R. and Raffalli, C. (2019). Practical subtyping for Curry-style languages. ACM

Trans. Program. Lang. Syst., 41(1):5:1–5:58.1665

Matthes, R. (1999). Monotone Fixed-Point Types and Strong Normalization. In Gottlob,

G., Grandjean, E., and Seyr, K., editors, Computer Science Logic, 12th International

Workshop, CSL ’98, Annual Conference of the EACSL, Brno, Czech Republic, August

24-28, 1998, Proceedings, volume 1584 of Lecture Notes in Computer Science, pages

298–312. Springer.1670

Matthes, R. (2002). Tarski’s fixed-point theorem and lambda calculi with monotone

inductive types. Synthese, 133(1-2):107–129.

The Coq development team (2018). The Coq proof assistant reference manual. LogiCal

Project. Version 8.7.2.

Mendler, N. P. (1991). Predictive type universes and primitive recursion. In [1991]1675

Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science, pages 173–

184.

Miquel, A. (2001). The Implicit Calculus of Constructions Extending Pure Type Systems

with an Intersection Type Binder and Subtyping. In Abramsky, S., editor, Typed

Lambda Calculi and Applications, volume 2044 of Lecture Notes in Computer Science,1680

pages 344–359. Springer.

Parigot, M. (1988). Programming with proofs: a second order type theory. In Ganzinger,

Recursive Types and Data Representations in CDLE 105

H., editor, European Symposium On Programming (ESOP), volume 300 of Lecture

Notes in Computer Science, pages 145–159. Springer.

Parigot, M. (1989). On the representation of data in lambda-calculus. In Börger, E.,1685

Büning, H., and Richter, M., editors, Computer Science Logic (CSL), volume 440 of

Lecture Notes in Computer Science, pages 309–321. Springer.

Parigot, M. (1992). Recursive programming with proofs. Theoretical Computer Science,

94(2):335–356.

Pierce, B. C. (2002). Types and programming languages. MIT Press.1690

Pierce, B. C. and Turner, D. N. (2000). Local type inference. ACM Trans. Program.

Lang. Syst., 22(1):1–44.

Santocanale, L. (2002). A calculus of circular proofs and its categorical semantics. In

Nielsen, M. and Engberg, U., editors, Foundations of Software Science and Compu-

tation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the1695

Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Greno-

ble, France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer

Science, pages 357–371. Springer.

Scott, D. (1962). A system of functional abstraction. Lectures delivered at University of

California, Berkeley.1700

Sørensen, M. H. and Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism,

Volume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science

Inc., New York, NY, USA.

Splawski, Z. and Urzyczyn, P. (1999). Type fixpoints: Iteration vs. recursion. In ICFP.

Stump, A. (2017). The Calculus of Dependent Lambda Eliminations. J. Funct. Program.,1705

27:e14.

Stump, A. (2018a). From realizability to induction via dependent intersection. Ann.

Pure Appl. Logic, 169(7):637–655.

Stump, A. (2018b). Syntax and typing for Cedille core. CoRR, abs/1811.01318.

C. Jenkins and A. Stump 106

Stump, A. and Fu, P. (2016). Efficiency of lambda-encodings in total type theory. J.1710

Funct. Program., 26:e3.

Stump, A. and Jenkins, C. (2018). Syntax and semantics of Cedille. CoRR,

abs/1806.04709.

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5(2):285–309.1715

The Agda Team (2021). The Agda standard library, v1.5. https://github.com/agda/

agda-stdlib.

Ullrich, M. (2020). Generating induction principles for nested inductive types in metacoq.

Bachelor’s thesis.

Uustalu, T. and Vene, V. (1999). Primitive (co)recursion and course-of-value1720

(co)iteration, categorically. Informatica, 10(1):5–26.

Wadler, P. (1990). Recursive types for free! Unpublished manuscript.

https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib

	Introduction
	Background: the Calculus of Dependent Lambda Eliminations
	Type and kind constructs
	Term constructs
	The Kleene trick
	Meta-theory

	Deriving Recursive Types in Cedille
	Tarski's Theorem
	Views
	Casts
	Translating the proof of Theorem 6 to Cedille
	Operational semantics for Rec

	Datatypes and recursion schemes
	Characterizing datatype encodings

	Scott encoding
	Scott-encoded naturals, concretely
	Scott-encoded data, generically

	Parigot encoding
	Parigot-encoded naturals, concretely
	Functor and Sigma
	Parigot-encoded data, generically

	Lepigre-Raffalli encoding
	Primitive recursion for Scott naturals, concretely
	Induction for Scott naturals, concretely
	Induction for Scott-encoded data, generically

	Related Work

