
Proof Checking Technology for Satisfiability
Modulo Theories

Aaron Stump

Computer Science and Engineering
Washington University in St. Louis

St. Louis, Missouri, USA
astump@acm.org

Abstract

A common proof format for solvers for Satisfiability Modulo Theories (SMT) is
proposed, based on the Edinburgh Logical Framework (LF). Two problems arise:
checking very large proofs, and keeping proofs compact in the presence of complex
side conditions on rules. Incremental checking combines parsing and proof checking
in a single step, to avoid building in-memory representations of proof subterms. LF
with Side Conditions (LFSC) extends LF to allow side conditions to be expressed
using a simple first-order functional programming language. Experimental data
with an implementation show very good proof checking times and memory usage
on benchmarks including the important example of resolution inferences.

Key words: Edinburgh LF, incremental checking, Satisfiability
Modulo Theories, LF with Side Conditions

1 Introduction

At the heart of several current automated verification methods are auto-
mated reasoning tools for solving the problem of Satisfiability Modulo Theories
(SMT). SMT solvers combine implementations of special-purpose reasoning al-
gorithms for theories like arithmetic or arrays, with propositional (SAT) or
first-order reasoners. SMT tools are increasingly used in algorithmic verifica-
tion, where verification problems are translated into SMT formulas, often very
large, to be solved (e.g., [2]). Verification based on interactive theorem proving
relies on similar automated reasoning algorithms. Usability of SMT solvers

1 This work supported by the U.S. National Science Foundation under grant number CNS-
0551697.

Preprint submitted to Elsevier Preprint

for applications has seen a big improvement with the widespread adoption of
a standard input language [8]. This language has been devised as part of the
SMT-LIB initiative, currently coordinated by Clark Barrett, Silvio Ranise,
the author, and Cesare Tinelli.

For algorithmic verification, trustworthiness of the results of the solver
is hard to establish without producing and checking proofs. This is due to
the complexity of modern SMT solvers, with codebases often between 50k
to 100k lines of C++. These tools exhibit bugs, and are not trustworthy
enough for verification of critical systems. One approach to addressing this
problem is for SMT solvers to emit independently checkable evidence of the
results they report. For formulas reported unsatisfiable, this evidence takes
the form of a refutation proof of the formula. Since the relevant proof checking
algorithms and implementations are much simpler than those for SMT solvers,
checking a proof provides a more trustworthy confirmation of the solver’s
result. Interactive theorem proving can also benefit from proof producing SMT
solvers, as shown recently for Isabelle/HOL with the haRVey solver [4].
Complex subgoals can be discharged by the SMT solver, and the proof it
returns can be checked or reconstructed (subject to resource limitations) to
confirm the result without trusting the solver.

1.1 Using LF for SMT

Proof production is currently not widely supported among SMT solvers. One
of the main reasons for this is the lack of a common proof format. Such
a format, supported by a proof checker and defined as part of the SMT-LIB
standard, will facilitate implementation of proof production in SMT solvers by
providing a common target for proof production. A common proof format is
also a critical first step to interfacing SMT solvers with theorem provers. Such
a format will serve as an intermediate language, which can then be translated
into the formats of particular theorem provers.

The Edinburgh Logical Framework (LF) has been used in several promi-
nent projects in the domains of proof-carrying code and proof-carrying au-
thentication [3,1]. A central concern in these applications has been minimiz-
ing proof size, since the use model requires proofs to be transmitted over a
network to convince skeptical parties that certain operations are safe or per-
mitted [11,5]. In the works just cited, this is done essentially by a protocol
where the skeptical party is to be convinced not by a proof encoded in LF, but
by a logic program, where successful runs of the program can be checked (by
the skeptical party) to correspond to LF-encoded proofs of the desired safety
property.

The same qualities that make LF attractive for proof-carrying code ap-
plications make it so as a proof format for SMT solvers. These qualities are
centrally flexibility and support for higher-order abstract syntax (HOAS) [6].

2

The advantages of HOAS are well-known for encoding syntax with binding,
such as is found in SMT formulas, which can make use of first-order quanti-
fiers. Flexibility is very important for SMT, since the variety of logical theories
supported by SMT solvers, the variety of deductive systems used to describe
the solving algorithms, and the relatively early stage of development of the
field mean that it would be very difficult if not practically impossible to design
a single set of inference rules that would be a good target for all solvers. A
first step to a common logic is to have a common meta-logic in which solver
implementors can describe their axioms and rules.

But using LF for SMT solvers poses engineering challenges not encountered
in the application to proof-carrying code. Particularly, the problem is not so
much to minimize proof size for transmission over a network, but to cope with
the very large proofs (easily hundreds of megabytes, if not gigabytes) that can
be produced, even for relatively short runs of a modern SMT solver. In this
paper, we address two problems related to checking very large proofs: how to
bound memory usage (during proof checking) and how to avoid bloating infer-
ences with proofs of side conditions. This paper’s solutions to these problems
are incremental checking and LF with Side Conditions (LFSC).

1.2 Techniques for Checking Large Proofs

A very standard approach to LF checking, and to many other language pro-
cessing problems, is to parse textual input into an abstract syntax tree (AST),
and then process the AST. This approach is a non-starter for checking very
large proofs, for several reasons. First, we should not count on being able
to fit the AST into main memory. Using the experimental setup described
below, we can easily generate 100M proofs using a prototype proof-producing
SAT solver in a relatively short time, on the order of tens of minutes. Longer
runs, or runs using an SMT solver, which perform theory-specific inferences
in addition to the propositional ones recorded by the SAT solver, may easily
add a factor of 10 or 100 to the proof size. Storing proofs of this size in main
memory may then prove quite difficult. A second problem with checking very
large proofs arises when the proofs are deeply nested. In this case, a naive
recursive implementation of the proof checking algorithm, or even the parser,
can lead to stack overflow.

The solution to the first part of this problem is to interleave parsing and
proof checking, thus enabling incremental proof checking. The entire proof
need never be read into main memory. Furthermore, the proof can be checked
by the proof checker while it is being produced by the SMT solver. The SMT
solver emits the proof to its standard output channel, which is piped into the
proof checker’s standard input channel. This architecture makes effective use
of two cores (one for the solver, another for the proof checker) of modern multi-
core computers. In addition, it opens up the possibility that the proof itself

3

need never be written to disk. The proof checker is acting as an online double
checker of the results of the SMT solver. Incremental checking is complicated
by the use of dependent types in LF, and by bidirectional type checking. We
see below how these are accommodated. To solve the stack overflow problem,
we will see below how to structure proofs and slightly modify the type checking
algorithm so that tail recursion can be used in critical places.

The problems of dealing with very large proofs are exacerbated if inferences
must contain proofs of usually tacit side conditions. Consider the resolution
proof rule. This rule, which historically has a central place in automated
reasoning, is used critically in state-of-the-art SAT and SMT solvers, in par-
ticular during clause learning [13]. We consider here a relatively simple form
of (propositional) resolution, namely binary resolution with factoring. Sup-
porting more complex rules such as hyperresolution should be possible by
extending the approach here, but that must remain to future work. Binary
resolution with factoring says that from clauses C1 and C2, where C1 contains
variable v positively and C2 contains it negatively; we may conclude the resol-
vent of C1 and C2, computed as follows. Remove all the positive occurrences
of v from C1, all the negative ones from C2, and append the resulting clauses
to get the resolvent. Optionally (without affecting completeness), we may
subsequently remove other duplicate literals in the resolvent.

To encode binary propositional resolution with factoring in pure LF, we
must insist that each resolution inference comes with a proof of a side condi-
tion showing that C1 and C2 resolve as just described to give the resolvent,
which the inference proves. That proof may be a trace of the computation
of the resolvent, or perhaps evidence based on a more declarative view of the
relationship between the resolvent and C1 and C2. But there is no obvious
way to reduce its size from O(|C1|+ |C2|) to a constant. And hence, the size
of resolution proofs will be completely dominated by the size of the proofs of
their side conditions.

To deal with this problem, we adapt the solution used by previous authors
to decrease proof size [11,5]. There, checking a proof was replaced with run-
ning a verified logic program. Here, we seek a solution enabling a spectrum of
methods from completely declarative (pure LF) to completely computational
(as in the works just cited) proof checking. The proposed approach is called
LF with Side Conditions (LFSC). Encoded inference rules may stipulate side
conditions using code written in a very simple functional programming lan-
guage. Whenever the encoded inference rule is applied (to all its arguments,
as we will insist), the side condition is checked by running the given side con-
dition code. If running the code succeeds, then the side condition check does,
too. If the code fails (as it may explicitly do, or do by failure of pattern match-
ing), then the side condition check fails and the LFSC type checker rejects the
application of the rule.

4

In the rest of this paper, we present the ideas of incremental checking
(Section 2) and LF with Side Conditions (Section 3) in more detail, and
present promising empirical results, obtained with a prototype incremental
LFSC checker.

2 Incremental Checking

The central idea of incremental checking is to interleave parsing and proof
checking. We keep track of when we need to build an abstract syntax tree
(AST) for textual input. The crucial observation is that if we have determined
that we do not need to create the AST for an application (t1 t2), where t1 :
Πx : A. B, then we need to create an AST for t2 only if x ∈ FV(B). If
x 6∈ FV(B), then we just check the textual input for the argument t2 without
constructing it.

The incremental checking algorithm thus must distinguish between a mode
of operation in which ASTs must be constructed for textual input (“creating”
mode) and a mode in which the AST need not be constructed (“non-creating”
mode). In addition, we make use of bidirectional checking, as advocated
for so-called canonical forms LF [10]. Bidirectional checking also has two
modes of operation: one where an expected type is known (“checking” mode);
and another where an expected type is not known, and hence a type for
the term being checked must be computed (“synthesizing” mode). These
pairs of modes are orthogonal, and so incremental checking has four modes of
operation: creating/checking, creating/synthesizing, non-creating/checking,
and non-creating/synthesizing. Note that from the point of view of memory
usage, the non-creating/checking mode is very nice, since incremental checking
does not produce any output at all (neither a term nor its type) in that case.

2.1 Formalization

Incremental checking is formalized in Figure 1 using two judgments. The first,

Γ | I ⇒c t : T | I ′,

is intended to hold when in standard LF typing context Γ, a prefix of the
textual input I is consumed to produce a term t of synthesized type T , with
remaining suffix I ′ of the input I. If the boolean flag c is true, then we are
in (term) creating mode, and the AST for the term t is actually constructed.
If c is false, we are not, and though the term t is listed in the judgment, an
implementation of incremental checking need not actually construct it. We
model input as a list of tokens, thus abstracting away from lexical issues. We
write x, I for the list of input tokens with variable x at the head, followed by
I, and similarly for other tokens. The other tokens are λ, Π, type, kind, @ for

5

application, and : for ascription. We rely here on a simple prefix syntax for
the textual form of LF (without presenting its concrete syntax). We assume
that variables are tacitly renamed when introduced into Γ to avoid having
duplicate declarations for them there. We use a unified context Γ for both
declared constants and bound variables. As standard, we assume contexts
are well-formed in all rules, where we elide the obvious definition of well-
formedness of contexts. The second judgment, Γ | I ⇐c t : T | I ′ is similar,
except we are here in checking mode, so T is an input to the judgment, rather
than an output.

We write ∼= for standard LF definitional equality, and include it explicitly
in the rules. Note that if terms use constants c defined to be λ-abstractions,
it is not convenient to require that all input terms are in canonical form (since
we may wish to write (c a) in a term, instead of its β-short form). Hence, we
take definitional equality to be as for standard LF (i.e., α-equivalence of β-
short,η-long normal forms), and not α-equivalence, as used for canonical forms
LF. For the same reason, we also include support for explicit ascriptions. Note
that for incremental checking, it is most convenient to use ascriptions with the
prefix syntax “: T t”, where the type T comes before the term t to which
it is ascribed. This is so that the term t can be consumed from the input in
checking mode (checking against type T). Note that we can drop ascriptions
after we have parsed them, so we do not need to have ascription as a term
construct (for the terms created by incremental checking).

We incorporate our crucial observation about when we can avoid building
ASTs of arguments in applications in the application rule, using the boolean
flag of the judgment. If the variable x does not occur free in T2, then we
stipulate that the result of substituting a non-existent term t2 for x in T2 is
just T2. The reader might wonder when our boolean flag could ever be false.
An implementation of incremental checking (or any LF checking algorithm,
for that matter) should provide top-level commands for declaring and defining
constants, as well as for checking the types of terms. In a command to check
the type of a term, it is not necessary to create the term itself, and hence
in that case, we can use the incremental checking judgment with the boolean
flag initialized to false.

2.2 Correctness

We can easily establish correctness of incremental checking in two steps. First,
we define an interpretation of our two judgments:

Γ | I ⇐c t : T | I ′ 7→ Γ ⇐ t : T

Γ | I ⇒c t : T | I ′ 7→ Γ ⇒ t : T

Our rules exactly match a standard bidirectional LF checking algorithm under
this interpretation (dropping the ascription rule whose interpretation is obvi-

6

Γ | I ⇒c t : T ′ | I ′ T ′ ∼= T

Γ | I ⇐c t : T | I ′

Γ | type, I ⇒c type : kind | I

Γ(x) = T

Γ |x, I ⇒c x : T | I

Γ | I ⇒c t1 : Πx : T1. T2 | I ′ Γ | I ′ ⇐c ∨ x∈FV(T2) t2 : T1 | I ′′

Γ |@, I ⇒c (t1 t2) : [t2/x]T2 | I ′′

Γ, x : T1 | I ⇐c t : T2 | I ′

Γ |λ, x, I ⇐c λx. t : Πx : T1. T2 | I ′

Γ | I ⇐c T1 : type | I ′ Γ, x : T1 | I ′ ⇒c T2 : κ | I ′′ κ ∈ {type, kind}
Γ |Π, x, I ⇒c Πx : T1. T2 : κ | I ′′

Γ | I ⇐c T : type | I ′ Γ | I ′ ⇐c t : T | I ′′

Γ | :, I ⇒c t : T | I ′′

Fig. 1. Incremental checking rules for LF

ously admissible). The second issue is to verify that the outputs of judgments
are well-defined. This could fail to be the case if a rule required creation of
a term or type when one of its subterms had not been created or when a
meta-theoretic operation used to create the expression was undefined. We can
easily verify that whenever the boolean flag c in a judgment in the conclusion
is true, then the subterms of the term t being created in that judgment all
exist, and similarly for the type T . Of course, in the application case, as ex-
plained above, we avoid substituting a non-existent t2 for x in T2 in the case
when x 6∈ FV(T2).

2.3 Empirical Results

Figures 2 and 3 compare a prototype incremental checker (“inc”) against the
Twelf checker, version 1.5R1; and also against checkers produced by signa-
ture compilation (“sc”) [12,7]. Twelf is implemented in SML/NJ, while the
other checkers are implemented in C++. Signature compilation takes an LF
signature and generates source code for a proof checker specialized for check-

7

ing terms expressed with respect to that signature. It is included here as the
fastest LF checker of which the author is aware. Note that signature com-
pilation is an orthogonal optimization to incremental checking, and could be
applied to generate signature-specialized incremental checkers, with an addi-
tional expected speedup. This remains to be implemented, however. All times
are reported as wallclock times in seconds (to two significant digits) and are
the average of three runs on a lightly loaded Intel Core Duo CPU 1.20GHz,
2MB cache, 1.5MB main memory, running Linux 2.6.18. A timeout of 1800
seconds was imposed.

The benchmarks used in these examples are the same as considered in the
work on signature compilation, which also compares emitted checkers with a
few other high-performance checkers [12]. The EQ benchmarks are an arti-
ficial family of benchmarks using encoded congruence reasoning. The QBF
benchmarks are generated from a simple QBF (Quantified Boolean Formulae)
solver, written by the author, from some easy QBF benchmark formulas. The
benchmark proofs all use a form of implicit LF, implemented in both the incre-
mental checker and the specialized checkers emitted by signature compilation.
This form uses explicit holes (“ ”) for omitted arguments, and requires that
values for these holes be determined from the types of subsequent arguments
(in the spine form of the application including the holes). This design allows
holes to be filled in by higher-order matching (as opposed to unification) in
the higher-order pattern fragment.

The figures show substantial improvements over the custom checker emit-
ted by signature compilation, as well as a large advantage over Twelf. It
should be noted that Twelf is not designed as a high performance checker,
and has many powerful features beyond LF type checking. Twelf is included
here as a checker not written or co-written by the author. Note that other
theorem prover formats do not directly support HOAS, and so comparing with
them would require an encoding of proofs, which is outside the scope of this
evaluation. We do not consider full results for memory usage, but note that
for the biggest benchmark (toilet 02 01.3), incremental checking requires peak
memory usage of 4.1 MB to check the proof, which is less than the proof’s
size in ASCII text (8.2 MB). Timely and efficient reclamation of memory
is achieved using manual increments and decrements of expression reference
counts. Manual reference counting is extremely error-prone and tedious to
debug. The excellent valgrind memory debugging tool provided invaluable
assistance in tracking down memory leaks and errors.

3 LF with Side Conditions

As discussed above, we must be able to handle the resolution inference rule
efficiently in our meta-logic for use with SMT solvers. These solvers inherit

8

benchmark size inc sc Twelf

gen100 20 KB 0.04 0.15 0.82

gen150 30 KB 0.05 0.29 1.6

gen200 40 KB 0.08 0.46 2.3

gen250 50 KB 0.12 0.67 3.3

gen300 60 KB 0.14 0.96 4.6

gen350 71 KB 0.18 1.2 5.9

Fig. 2. Checking times for EQ benchmarks

benchmark size inc sc Twelf

cnt01e 179 KB 0.25 0.28 4.0

tree-exa2-10 381 KB 0.35 0.50 6.1

cnt01re 267 KB 0.23 0.39 7.4

toilet 02 01.2 1.1 MB 0.92 1.3 150

1qbf-160cl.0 1.5 MB 0.98 1.1 750

tree-exa2-15 4.3 MB 3.7 5.8 timeout

toilet 02 01.3 8.2 MB 7.1 11.5 timeout

Fig. 3. Checking times for QBF benchmarks

the critical use of propositional resolution in clause learning from modern
SAT solvers, and no successful meta-logic for SAT or SMT can fail to provide
adequate support for resolution. As noted above, in pure LF, encoding the
resolution rule is problematic, due to the need to enforce, via subproofs asso-
ciated with each use of the rule, rather complex side conditions. The proposal
here is to allow the signature designer to specify side conditions for encoded
inference rules by means of programs written in a simple functional program-
ming language. Explicit proofs of the side condition are not given when the
encoded rule is applied. Rather, the type checker runs the side condition code
and confirms that it succeeds producing the expected output. LF augmented
with side conditions we call LFSC.

To support this, the syntax for Π-abstractions is augmented to allow them
also to be of the form Πx : run C t. T . The domain type expresses the
requirement that running code C should succeed producing output term t.
For example, a resolution proof system may be encoded as in Figure 4 using
side conditions. The figure uses Twelf syntax for readability, though the LFSC
checker described below uses a prefix concrete syntax. The intention here
is to use HOAS for encoding propositional variables. So the type var has
no constructors. Clauses are lists of positive and negative occurrences of

9

var : type.

lit : type.

pos : var -> lit.

neg : var -> lit.

clause : type.

cln : clause.

clc : lit -> clause -> clause.

holds : clause -> type.

R : {c1:clause} {c2:clause} {c3:clause}

(holds c1) ->

(holds c2) ->

{v:var}

{r : run (resolve c1 c2 v) c3}

(holds c3).

Fig. 4. Propositional resolution system using a side condition for R

variables. The resolution rule R states that if clauses c1 and c2 hold, then
so does clause c3 obtained by resolving c1 and c2 on variable v. For space
reasons, the code implementing resolve must be omitted. Because all three
clauses can be filled in from the types of subsequent arguments, all uses of
R are of the following form, where P1 and P2 are the proofs that the clauses
corresponding to c1 and c2 hold, and v is the variable upon which to resolve:

(R _ _ _ P1 P2 v)

No argument is given for the proof of the side condition, since the type checker
verifies that it holds without any argument. One might wish to pursue an
alternative design, where the type checker fills in a missing argument consti-
tuting a proof of the side condition. For example, as done in several of the
works cited above, we could allow side conditions to be expressed using logic
programs, and then take traces of runs of the logic programs as the proofs of
the side conditions. This design would suffer from the problem that different
runs of the logic program computing the same result would, in general, not
be definitionally equal. Hence, the system would risk losing irrelevance of the
computations used for establishing the side conditions. With no explicit proof
term given, this problem is avoided.

We next give an informal description of the functional language proposed
for use in LFSC, before turning to its syntax and informal operational seman-
tics. The design of LFSC is not sensitive to the exact design of this language,
which could easily be changed. We first note several high-level properties
of this rather restricted language. It is a first-order, monomorphic, simply

10

C ::= x || c || N || (� C1 · · · Cn+1) || (c C1 · · · Cn+1)

|| (match C (P1 C1) · · · (Pn+1 Cn+1)) || (do C1 · · · Cn+1)

|| (let x C1 C2) || (markvar C) || (ifmarked C1 C2 C3) || (fail T)

P ::= (c x1 · · · xn+1) || c

Fig. 5. Syntax for code (C) and patterns (P).

typed functional programming language with pattern matching. Programs
are mostly without mutable state, although there is a feature for marking LF
variables. This feature enables efficient implementation of resolution. Addi-
tionally, code can fail, either explicitly using fail, or by failing to match a
piece of inductively defined data against any of the patterns in a match ex-
pression. Programs may not operate on dependently typed data. Data must
be at least weak head normalized (to remove LF λ-abstractions) before at-
tempting to take a step of program evaluation. Programs are type checked,
but are not statically checked for termination or coverage. There are also no
facilities for proving properties about programs. The latter would generally
require induction, which would begin to take us too far from the core ideas of
LF. As part of the trusted computing base, programs must be trusted in any
event. Finally, we currently do not support derived rules with side conditions.
Side conditions may only be stipulated for declared (primitive) rules. This
restriction fits well with the decision to avoid verification of side condition
programs, since without induction to reason about program behavior, derived
rules could be supported only with simple aggregation of side conditions of
primitive rules.

3.1 Code Syntax

Figure 5 gives the syntax for code (C). We write � for arithmetic operations.
In multi-arity notation such as (C1 · · · Cn+2), the number n is a natural
number (including possibly 0); so for this example, at least two terms must
be present in the list of terms C1, . . . , Cn+2. Evaluation is call-by-value, with
earlier termination on failure.

Application. Expressions (c C1 · · · Cn+1) are either of term constants
or program constants to arguments. In the former case, the application is
constructing a new piece of inductive data. In the latter, it is invoking a
program.

Match. Expressions (match C (P1 C1) · · · (Pn+1 Cn+1)) evaluate the
scrutinee C to a piece of inductively defined data, and then seek to match
that piece of data against one of the given simple patterns P1, . . . , Pn+1 in
that order. Successfully matching against a pattern Pi binds the appropriate
subdata to the variables in the pattern. The body Ci of the match is then

11

evaluated and its result returned for the result of the match expression.

Do. Expressions (do C1 · · · Cn+1) evaluate each of C1, . . . , Cn+1 in turn,
and return the value of the last. This is useful for checking that several
conditions in a row do not fail.

Let. Expressions (let x C1 C2) are as standard in functional languages.
The value (if any) of C1 is substituted for x before evaluating C2.

Markvar. The code (markvar C) first evaluates C. If the result is an LF
variable, then this toggles a mark on that variable, and then returns the vari-
able. These marks are useful in implementing resolution. We support marking
just LF variables instead of marking arbitrary LF terms, because it is conve-
nient to map all occurrences of the same (as determined by scoping) variable
to the same in-memory representation. The same is not true for arbitrary
terms, particularly in the presence of a non-trivial definitional equality (even
that of just canonical forms LF, let alone that of the original LF): an indexing
structure would be needed, imposing extra implementation complexity and
more importantly, a runtime performance penalty.

Ifmarked. The code (ifmarked C1 C2 C3) evaluates C1. If the result is
not a variable, evaluation fails. Otherwise, if the result is marked, we evaluate
C2; otherwise, we evaluate C3.

Fail. We have (fail T) for explicitly indicating failure. The fail term is
treated as having the given type T .

3.2 Checking Proofs from a SAT Solver

One of the author’s students, Duckki Oe, has implemented a modern clause-
learning SAT solver and instrumented it to produce proofs in LFSC format.
Discussion of how this is done can be found in another paper, currently under
review [9]. From this solver we obtain large resolution proofs expressed with
respect to the LFSC signature given in Figure 4. These proofs begin with
λ-abstractions for the propositional variables and also for the clauses initially
assumed to hold. A refutation of these initial clauses then proceeds to deduce
the empty clause by resolution. It is practically necessary to structure these
proofs using lemmas, or they would otherwise explode in size. For incremental,
online checking, we cannot wait until the final inference to determine which
lemmas are relevant (and hence which must be checked). We are operating
under the assumption that proofs may be too large to fit into main memory,
and under that assumptions, we cannot defer checking proofs of lemmas. Lem-
mas can be supported with the following definition (in Twelf format), which
uses HOAS to give a name to a proof of a first clause for use in the proof of
a second:

satlem : {c1:clause}{c2:clause}

(holds c1) -> ((holds c1) -> (holds c2)) ->

12

(holds c2)

= [c1][c2][u1][u2] (u2 u1).

A standard bidirectional type checking algorithm would require that we
give the type for our large refutation proof, since that proof is a λ-abstraction.
This type would be a Π-abstraction listing all the propositional clauses and
assumptions of our initial clauses. Unfortunately, that Π-abstraction is too
large to construct easily. The SAT benchmarks we are checking have sizes
ranging from 1453 variables and 12531 clauses to 204664 variables and 609478
clauses. The latter would result in a Π-abstraction with nesting depth 814142.
The C++ implementation of a prototype incremental LFSC checker (used
also for the pure LF experiments above) compiles to assembly code allocating
rather large stack frames of size 1404, which would thus require 1GB of stack
(stack frame size times nesting depth) to parse and check. This seems to be
prohibited on the author’s test machine. Crafting the checker to be iterative
instead of recursive would help control the memory usage, but we opt for a
different approach.

We allow λ-abstractions to include the type for the bound variable if they
occur in a synthesizing position. This simple idea is not sufficient to solve
our problem, since it would generally still be necessary after parsing and type
checking λx : A. M to restore any previous type declared for x in the sur-
rounding context. The straightforward implementation of this would require
saving that previous type on the stack, and thus preclude tail recursion. The
solution is essentially to arrange matters so that we do not need to restore that
previous type. The previous type does not need to be restored for a variable
if the λ-abstraction occurs in a return position in the term: i.e., at a right-
most position in the term. We may simply keep track during (incremental)
type checking of whether or not we are in such a position, and if so, we may
make a tail call for checking the body of a λ-abstraction (with a type for the
bound variable or not). Since the implementation uses a shared context for
variables and constants, we allow this behavior only in a specially designated
top-level “check” command, after which the type checker must exit (to avoid
incorrectly reporting type A for x after completing checking of λx : A. M).

The type checker cannot make tail calls when checking applications of the
resolution rule R, since after checking the two subproofs, it must run the side
condition code to compute the resolvent. But the type checker may make a tail
call for the second subproof in a use of satlem. This will be a λ-abstraction,
for whose body we may also make a tail call. Hence, if the resolution proof
is structured as a right-nested sequence of uses of satlem, where the lemmas
derived may use resolution unrestrictedly, we can use tail calls for the sequence
of lemmas. This enables checking large proofs that would certainly exceed the
allowed stack size without tail calls. Fortunately, structuring the proof as a
sequence of lemmas is quite natural for clause-learning SAT solvers, since the

13

benchmark proof size check time

manol-pipe-g6bid 32 MB 237

manol-pipe-g7n 32 MB 397

velev-eng-uns-1.0-04 34 MB 7750

velev-sss-1.0-cl 4.8 MB 319

een-tipb-sr06-par1 35 MB 24.4

een-tipb-sr06-tc6b 8.6 MB 35.2

manol-pipe-c10ni s 46 MB 79.4

manol-pipe-f6b 20 MB 1720

manol-pipe-f6n 20 MB 1810

Fig. 6. Proof checking times (in seconds) for large resolution proofs

lemmas recorded are just the clauses learned.

3.3 Empirical Results

Figure 6 presents proof checking times for an incremental LFSC checker on
proofs produced by the SAT solver mentioned above. The benchmark for-
mulas used to generate these proofs are easier formulas from SAT Race 2008
(making them still quite challenging to solve). We conjecture that variability
in checking time may be due to different lengths of derived clauses. Profiling
several large examples reveals that around 90% of the runtime of the proof
checker is going into interpreting the side condition code.

4 Conclusion

Incremental checking and LF with Side Conditions (LFSC) hold the promise of
bringing the flexibility and convenience of LF to SMT solvers. Proof checking
time still lags behind the time to generate the proof from high-performance
solvers. The next step to addressing this is to apply signature compilation
to incremental LFSC checking [12]. This will enable specialization of type
checking to the constants of the signature, as well as compiled side condition
code. Future work also includes support for conversion to clausal form and
theory reasoning.

References

[1] A. Appel. Foundational Proof-Carrying Code. In 16th Annual IEEE
Symposium on Logic in Computer Science, 2001.

14

[2] M. Barnett, B.-Y. Chang, R. DeLine, B. Jacobs, and K. Leino. Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In F. de Boer,
M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Fourth International
Symposium on Formal Methods for Components and Objects (FMCO’05), Post-
Proceedings, 2006.

[3] L. Bauer, S. Garriss, J. McCune, M. Reiter, J. Rouse, and P. Rutenbar. Device-
enabled authorization in the Grey system. In Proceedings of the 8th Information
Security Conference (ISC’05), September 2005.

[4] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and
Alwen Tiu. Expressiveness + automation + soundness: Towards combining
SMT solvers and interactive proof assistants. volume 3920 of Lecture Notes in
Computer Science, pages 167–181. Springer-Verlag, 2006.

[5] G. Necula and S. Rahul. Oracle-Based Checking of Untrusted Software.
In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages, 2001.

[6] F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIGPLAN
Symposium on Language Design and Implementation, 1988.

[7] F. Pfenning and C. Schürmann. System Description: Twelf — A Meta-
Logical Framework for Deductive Systems. In 16th International Conference
on Automated Deduction, 1999.

[8] S. Ranise and C. Tinelli. The SMT-LIB Standard, Version 1.2, 2006. Available
from the ”Documents” section of http://combination.cs.uiowa.edu/smtlib.

[9] A. Stump and D. Oe. Towards an SMT Proof Format. In C. Barrett and
L. de Moura, editors, International Workshop on Satisfiability Modulo Theories,
2008. under review.

[10] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logical
Framework I: Judgments and Properties. Technical Report CMU-CS-02-101,
Carnegie Mellon University, 2002.

[11] D. Wu, A. Appel, and A. Stump. Foundational Proof Checkers with Small
Witnesses. In D. Miller, editor, 5th ACM-SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pages 264–274, 2003.

[12] M. Zeller, A. Stump, and M. Deters. Signature Compilation for the Edinburgh
Logical Framework. In C. Schürmann, editor, Workshop on Logical Frameworks
and Meta-Languages: Theory and Practice (LFMTP), 2007.

[13] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict Driven
Learning in Boolean Satisfiability Solver. In International Conference on
Computer Aided Design, pages 279–285, 2001.

15

	Introduction
	Using LF for SMT
	Techniques for Checking Large Proofs

	Incremental Checking
	Formalization
	Correctness
	Empirical Results

	LF with Side Conditions
	Code Syntax
	Checking Proofs from a SAT Solver
	Empirical Results

	Conclusion
	References

