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Abstract

GADTs are a modest extension to datatypes which support static
typing of a larger class of programs than those possible with stan-
dard datatypes. However, programming languages like OCAML
lack native support for GADTSs, which has impeded their adop-
tion. In this pearl, we investigate a flexible encoding of GADTs in
the second-order polymorphic lambda calculus, and demonstrate
how to implement this encoding to capture the power of GADTs in
OCAML.

1. Introduction

GADTs, or Generalized Abstract Datatypes, have recently gained
popularity within the functional programming community as a
modest extension to the concept of datatypes that permits static
typing of a number of useful paradigms which were previously
thought to require individual, and often complex, language exten-
sions. Common examples include generic programming, indexed
lists and staged computation, although many more have been illus-
trated in the literature. In general, GADTs allow the user to stati-
cally track more information about their datatypes. This extended
static checking allows both for more careful checking of existing
paradigms (e.g. indexed lists) and static checking of previously
uncheckable paradigms (e.g. typed printf).

Unfortunately, because of the need to extend a language in
order to support GADTs, they have yet to be implemented in
many languages. A traditional way of dealing with such a problem
is to find an encoding of the desired feature in terms of more
primitive and, hopefully, available language features. Indeed, a
number of other language concepts which can be captured with
GADTs have been independently shown to be encodeable; most
notably, intensional polymorphism (Weirich 2001, 2006), generic
programming (Yang 1998; Hinze 2004; Ferndndez et al. 2008), and
tagless, staged interpreters (Carette et al. 2007).

In this paper, we generalize those results by describing a
straightforward recipe for encoding GADTs in System F extended
with recursion and second-order, impredicative polymorphism
(alternatively known as higher-rank, first-class polymorphism)'.
Moreover, we choose an encoding that is subtly different than those

!'This system is sometimes referred to as F.
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chosen in most previous works. Generally, the essence of each en-
coding is a Church-style encoding of some GADT. In contrast, we
use Dana Scott’s lesser-known 1963 encoding of datatypes (Curry
etal. 1972, page 504). We choose this encoding because it supports
a more natural form of programming in some of the more complex
examples. In Section 2, we give a more detailed comparison of
Church and Scott encodings.

Finding an appropriate encoding of GADTs is, in essence, a
two-part problem. The first part is to find an appropriate computa-
tional encoding of GADTs. The second challenge is to find an ap-
propriate encoding of GADT types. Of course, the two challenges
are related as the type must suit the computational representation
and vice-versa. Indeed, we will show how we can start from ei-
ther direction (the types or the terms) and still arrive in the same
place. Specifically, we will start with Scott-encoded data and give
it appropriate types, and then we will sketch how to translate the
GADTs in Xi et al’s A2 g, into our encoding and arrive at the
same types and terms.

We aim to accomplish two things with this pearl: first, to provide
the reader with a clear list of sufficient language features for cap-
turing the power of GADTs. We hope these “sufficient conditions”
will be useful to end-user and language implementer alike. Sec-
ond, we describe a concrete realization of the encoding in OCAML,
which weaves together the core language, the module system, type
abstraction and a safe use of unsafe cast.

We will begin in Section 2 by discussing the Church and Scott
encodings of datatypes in the lambda calculus. We choose to work
with the Scott encoding, and, in Section 3, we show how to ef-
fectively translate a polymorphic, recursive datatype into a corre-
sponding (second-order) polymorphic lambda calculus type. Next,
we discuss the restricted class of datatypes represented by GADTs
and derive an appropriate type for them as well. Then, in Section 5,
we turn around and approach the problem from the other direc-
tion. We start with Xi et al. (2003)’s calculus of guarded recursive
datatype constructors (GADTSs by another name), specifically the
specification of the GADT types. We then show how, using the fa-
miliar trick of encoding of existential types based on their elimina-
tion rule, we can arrive at the same type encoding as earlier. The
Scott encoding then falls out as obvious inhabitant of that type.

In Section 6, encoding in hand, we tackle the problem of realiz-
ing the encoding in OCAML, whose core language lacks support for
one of the crucial ingredients of the encoding. We then demonstrate
use of the encoded GADTs with a number of examples in Section 7.
We discuss related work and suggestions for further reading in Sec-
tion 8 and conclude in secrefsec:conclusion.

2. Datatype Encodings

Inductive datatypes can be represented in untyped lambda calcu-
lus using either the Church or the Scott encoding (this section is



based on a longer discussion in (Stump 2008)). The Church en-
coding represents the n constructors of an inductive datatype as
follows (Church 1941, Chapter 3). For a simple example, consider
the following datatype of unary natural numbers:

type nat = Z | S of nat

We Church-encode numerals built with these constructors as fol-
lows:

AS 2.z

NS 2.8z

As z. 5 (s z)

= MAsz.s(s(s2))

The numeral N is encoded as a A-abstraction that takes two terms,
s and z, and applies iteratively applies s N times to z. Each
numeral can be thought of as its own interpretation function: given
interpretations of the constructors, the numeral will compute its
interpretation. For example, given a suitable definition for .S’ (just
below), we can add two numerals n and m with the term (n .S m).
This will interpret iteratively apply S n times to m, which indeed
adds n and m. Suitable definitions of S and Z are:

S Azi. As z. s (x1 8 2)
Z = Asz.z

wN = o

More generally speaking, suppose we have a datatype with n con-
structors, where the 7’th constructor C; has arity a(z). We encode
C; by the following lambda term, where we write ¢ for c1 ... cp:

AT ... Za(i)- AC1 ... Cpn. Ci (Jil 5) .. (a:a(i) 5)

This term takes in the a(¢) arguments to constructor C; as 1, . . .,
Zq(i)- It then returns a lambda abstraction (call it M) which accepts
n arguments ci, . . . , cn, one for each constructor of the datatype.
In contrast, the Scott encoding encodes constructor C; by the fol-
lowing lambda term (Curry et al. 1972, page 504):

)\55'1 xa(i). )\Cl . Cp.Ci 1 ... xa(i)

The crucial difference between this term and the corresponding
term from the Church encoding is that here, the inputs x1, . . . , Ta(s)
are not interpreted using the constructor interpretations. For the
natural number datatype, the definition specializes as follows:

S = Ari.Asz.sx1

Z = Asz.z

With this encoding, we may obtain the first few numerals by call-
by-value reduction using S and Z. We here write | ., for joinability
using a call-by-value operational semantics:

0 = Xsz.z leww Z

1 = Asz.50 |aw SZ

2 = AXsz.sl law S(SZ2)

3 = Xsz.82 law S(S(S2))

We finish with two more examples:

type data = Num of int | String of string
type ty = Int | Arrow of ty * ty

become
Num = XN.\ns.ni
String = Az.Ans.sz
Int = Mia.i
Arrow = Mits. Ma. atits

2.1 Comparison

The Church encoding seems to be more widely known in Computer
Science than the Scott encoding. For example, the Church encoding

is presented in detail in standard programming languages textbooks
like Pierce’s, while the Scott encoding is not mentioned (Pierce
2002). The main advantage of the Church encoding is that Church-
encoded data and many common operations on them are typable
in System F, and hence strongly normalizing (Girard et al. 1990).
Scott-encoded data are typable in System F (M.Abadi et al. 1993).
It is not clear how to represent operations on them in System F,
however, since those seem to require recursion instead of iteration
for Scott encodings.

An advantage of Scott encodings is that constructor terms eval-
uate to their intended encodings in call-by-value lambda calculus.
This is not true for the Church encoding, where reduction inside
the bodies of \-abstractions is needed to reduce them to the desired
normal forms. For example, call-by-value reduction of Church-
encoded 1 yields As z. (s (Z s z)), not As z. (s z). Similarly,
operations like addition on Church-encoded numerals evaluate with
call-by-value reduction to terms which will carry out the addition
when applied to interpretations of successor and zero, but which
are not themselves identical to the desired resulting numeral.

Constant-time selector functions are easily definable for the
Scott encoding, while with the Church encoding, known imple-
mentations of operations like predecessor are rather complicated,
and run in linear time. A final advantage of Scott encodings over
Church encodings is that with Church encodings, to invoke an in-
terpretation f from within the definition of another interpretation
g, one must write g so that each piece of data d is interpreted as a
pair (d,v), where v is the desired resulting value. Otherwise, the
data d itself is not available within the definition of g to give to f.
Scott encodings do not suffer from this aesthetic limitation.

3. Typed Scott Encodings

We now turn to the question of the appropriate type for Scott
encoded data. More specifically, we will be looking for an encoding
of a datatype T" with the following typed constructors:

Cym7—T

Cn iTn — T

where T = x1 . .. xx (for some k).

We will begin by considering the datatype data of the previous
section. Suppose we want to write a function that will convert
values of type data to strings. Using native datatypes with pattern
matching, we could write:

let print_data data =
case data of

Num i -> string_of_int i
| String s -> s

assuming a built-in function string_of_int. Using the Scott en-
coding, we could write:

let print_data data =

data
(Ai. string_of_int i)
(As. s)

Notice the "active” role of the value data, which is a function that
is applied to the match cases.

What is the type of values data? Let’s start by finding types to
its arguments:

Ai. string_of_int i : int -> string
As. s : string -> string

So,

data : (int -> string) -> (string -> string) -> string



Generalizing to any datatype, we would specify
T = (71 — string) — --- — (T, — string) — string

Yet, while this type for data is fine in the context of a function
for converting instances to strings, it is insufficient for other return
types. To generalize to any result type, we can generalize 1" by
replacing string with a type variable p (for “result”).

= (T —p)—p

But how is p bound? Is 7" a type constructor with argument «
(T = Ap. ...), in which case every application of 7" is monomor-
phic, or is T" a type, universally quantified over a (' = V p. ...), in
which case our language would require first-class polymorphism to
support members of 7" as first-class values?

To decide, let’s see what we need in order to type print_data
if data is a type constructor:

type pdata = (int — p) — (string — p) — p
print_data: string data — string

So, we can successfully type print_data if data is a type con-
structor, but is this enough? Notice that the type of print_data
requires a value of type string data. Is this too specific?

The answer depends on the intended use of elements of data.
For limited uses of data, specifically, where we only intend to use
datatype elements with an apriori fixed result type (i.e. monomor-
phically), as in print_data, then it is sufficient. However, if the
user intends to eliminate elements of the datatype with different re-
sult types at different parts of the program, than the element must
be universally quantified over the result type a. For example, con-
sider two functions, £ and g, which both take data as an argument,
but match against the value with different result types:

val f: string data — string
val g: int data — int

What happens if we want to use £ and g together, in a new function
h?

let h data = (f data, g data)

What is the type of h? More specifically, what is the type of its
argument data? The function f requires that it be string data,
while the function g requires that it be int data, and we’re stuck.
In order to satisfy both functions, the data type must be universally
quantified over its return type. The intuition is that a given data
value doesn’t care how it will be ultimately be used, so its type
should work for any result, and not be tied to a specific one.
Therefore, the general form of an encoded datatype is:

T=Vp(ri—p) —: = (Tn—p —p
Returning to our example,
type data = V p.(int — p) — (string — p) — p

3.1 Polymorphic and Recursive Datatypes

At this point, we are nearly done the exercise of encoding ordinary
datatypes. We have specified an encoding of datatypes that works
for all result types and allows for arbitrary mixing and match-
ing of functions over datatype values. However, “true” ML-style
datatypes can be both polymorphic and recursive, so we have not
finished our job until we show an encoding that can support both of
these paradigms. Fortunately, supporting them is a straightforward
extension of the current encoding.

We change the encoded type just as we would an ordinary
datatype — we simply parameterize over the argument type. For
example, the classic option type

type « option = None | Some of «

can be encoded
a option = AaVp.p — (o — p) —p

Recursion is similarly straighforward. For example, the datatype
of unary natural numbers

type nat = Zero | Succ of nat
becomes
nat = ur.VNp.p — (1 — p) —p

We can encode both polymorphism and recursion simultane-
ously as well. For example, the standard list datatype

type a list = Empty | Cons of a * «a list
becomes
alist = da.purVp.p— (a—T7—p)—p
or, potentially supporting polymorphic recursion:
alist = prdaVp.p — (@ = Ta0 — p) — p
Generalizing to any polymorphic, recursive datatype, we have:

(@) T = pr.XaNp.(71 = p) = - = (Tu = p) = p

3.2 Simplifying with Record Types

There is one remaining step we’d like to take before declaring us
done, with respect to ordinary datatypes. This step is optional, but
can lead to somewhat more readable types. We bundle all of the
match-case functions together in a record, and give that record
type a name. We choose records instead of ordinary tuples because
they allow us to give a name to each match case, providing further

(helpful) annotations.
(@) T =pt XavVp{c1i:T1T—p;...;iCn:Tn = p}—p

Notice that the general definition of each constructor, for con-
structors C' and projection function 7, is
arity(C;) =n

Ci=Az1...xnm. (7w, m) T

4. Encoding GADTs

We now turn to the challenge of encoding generalized datatypes.
We first note that GADTs are only meaningful when the datatype
has at least one type parameter. Otherwise, they are regular, old
datatypes. The essential generalization of GADTs is that different
constructors for the datatype are free to instantiate the type argu-
ment(s) as they please. Furthermore, they can each specify their
own set of type arguments, for use in instantiating the parameter(s).
For example, we can revisit the ty type from Section 2.

type ty = Int | Arrow of ty * ty

We can restrict the set of values that can inhabit this type by
adding a type parameter to ty and then instantiating that parameter
selectively, based on the particular constructor. Notice that we
now explicitly annotate each alternative with the instance of ty
constructed.

type a ty =
Int: int ty

| Arrow of a ty * B ty : (o — ) ty

How can our encoding support this added precision? Each con-
structor must be allowed to parameterize over its own set of type
parameters. Since constructors in our encoding are expressed in
terms of their corresponding match case — a function — we must as-
sign those match-case functions first-class polymorphic types. The



example above therefore becomes

type ty = Aa.Vp.{
int : p;
arrow : Vo, 5. a ty * B ty — p;
}—=p

We’re half-way there — each constructor can choose its own
parameters, but they are unable to involve those parameters in their
result type. This deficiency is clearest in the definition of ty, where
the type parameter o goes unused.

The second step is to generalize the result type p, changing it
from a type to a type constructor®. Then, for each case, we instan-
tiate p with types appropriate to that case (and, usually, constructed
from that case’s type arguments). Revising our example, then, we
have:

type ty = ptdaVp ik — x{
int : int p;
arrow: Vo, 8. atx 3t — (o — B3) p;
}—ap
Notice that we’ve annotated p with its kind, * — *, read "a
function from type to type”. Two examples of such functions are
the type signatures for type-indexed marshalling and unmarshalling
functions:
p=Aa.a — bits
p=Aabits — «

Furthermore, the types of the ty constructor functions are now:

int : int ty
arrow : Va,B8. a ty — Bty — (o — 3) ty

For example,

arrow int int : (int — int) ty

where
(int — int) ty =Vp:* — . {...} — (int — int) p
Once again, we generalize our results to any datatype:

T=pt avVp:x—x*x{...c; :Vao.7i — (G7) p;...} — (@)p

where, forall 7, the &; types are functions of the a; parameters.
Notice that the one-line definition above provides a succint
specification of “sufficient conditions” for GADT types:

recursive types

type constructors
second-order polymorphism
impredicative polymorphism
record types (optional)

If your language has all of these features, then you are all set.
Unfortunately, it would seem that the one well-known language
which has all these features, already has native support for GADTs
(yes, GHC Haskell). But, what can you do if your language has
some, but not all of these features? In Section 6, we discuss how
to encode GADTSs in OCAML, which has most, but not quite all, of
these features in its core language. However, before jumping on to
practical matters, we will consider an alternative way of arriving at
the definition presented above.

5. From Types to Terms

In the previous section, we started with a set of terms and devised
types for those terms capable of capturing the features of GADTs.
However, we can actually start from the other direction — GADT

2 This parameterization over type constructors is what is variously referred
to as higher-order polymorphism or higher kinds.

types — and arrive at the same place. We’ll also find an interesting
alternative encoding along the way.

What is the type of a GADT (@)7T? Xi et al. (2003) provide an
account which we will use here:

(@)T = pt. xa.(Jar, o1 =a].n + -+ + [, 00 = @) 70)

where every occurence of 7" in the body of the fixpoint is replaced
with ¢. We can see from this definition that the key novelty of
GADTs over standard datatypes is that their branches are individu-
ally existentially quantified and constrained in relation to the type
parameters of the GADT.

In order to encode this type in a language without existentials,
we use the familiar trick of converting existentials to universals by
reifying their elimination rule. The elimination rule specified by Xi
et al. for these existentials is:

A;THer :dA1n AJA T, e:mibes: 7

A;T + unpack e as (JAq],e2) inez : 7

(3—elim)

assuming a typing judgment of the form A;I" + e : 7, where
A contains bound type variables and type constraints, and |A|
is the set of bound variables from A (that is, the erasure of the
constraints).

In essence, we can encode an existential as a function from
the remaining hypothesis in its elimination rule to its result. To do
so, we must first find a term which captures the conditions of the
hypothesis. We do so in two steps, using standard System F typing
rules. Starting with the hypothesis, we apply a X introduction rule:

A,A1;F7CL‘:7’1 |—62:7'2
AALTHEAM :me2:m1 — 7

Next, we apply a polymorphic-function introduction rule:

AALGTEAT :Tea i1 — T2
A;THAA L2 - Tex : VAL — T2

Note that none of the type variables in A; are free in 72. Now, since
the result type of (3—elim) is 7, we have

J[A]l.r = (V[A]l.T — 72) = T2

We now have a type which is familiar, except for the type con-
straints in A. We could attempt to eliminate those constraints, by
defining a substitution 6 and using it to substitute every occurence
of a; in 7 — 72 with the corresponding o;:

38,7 =a].7 = (V[B].7]0] — 7=[0]) — T2

However, this definition is incomplete, because 7> is left open. Yet,
we cannot simply quantify the definition by all 72, because we
would then need to include the substitution explicitly in the type
itself, which would violate the syntax of System F types. Instead,
rather than quantifying over a fype T2, we can abstract over a type
constructor p, whose arity is that of 7. Then, we can instantiate p
in the nested result type according to the constraints specified in the
existential:

36,7 =al.t =Vp: ¥ — x.(VB.7[0] — (@)p) — (@)p

We note two things. First, the application of 6 to 7 is not a concern,
because T is a concrete type specified in the existential, and € can
therefore be applied as part of the encoding process. Equivalently,
we could restrict & from appearing in 7, and thereyby drop the need
for 0, because any appearance of an «; can simply be replaced
by a fresh type variable [3; and a corresponding constraint 3; =
;. Second, notice that p is instantiated differently in the nested
function type as in the top-level function type. This difference
implicitly captures the constraints which appear explicitly in the
existential.

With this encoding in hand, we now have an interesting choice
which we did not encounter in Section 4. One potential next step



is to eliminate sums from the definition of 7" using the same tech-
nique as we did for existentials. We would then arrive at the same
definition of 7" as the one we constructed in Section 4. The Scott
encoding falls out as an intuitive inhabitant of that type.

An alternative step would be to stop here and present an encod-
ing which relies upon regular datatypes for the sum and the encod-
ing for the existentials:

(@)T = pt.)\a.
(Vp.(¥Br.1 — (@1)p) — (@)p)
+...
+ (Vp.(VBn-7n — (@n)p) — (@)p)
(omitting the kind of p to reduce clutter). The encoding of the data
itself would then be datatypes where each branch is a polymorphic

function. The ty example of the previous section would look some-
thing like this (where p has kind * — x*):

datatype o ty =
Int of Vp.int p — a p

| Arrow of Vp.(Va,B.a ty * Bty — (a — B) p) — ap

While this latter choice seems appealling in that it would give
GADTs a somewhat more natural feel, in practice it complicates
matters because any patttern-match code will need to handle in-
stantiating a second-order polymorphic value in each branch, rather
than dealing with it once, as is the case with the other encoding.

6. OCAML Implementation

OCAML, along with other dialects of ML, does not support higher
kinds in its core language. So, core-language types and functions
cannot be parametrized by type constructors. However, ML’s rich
module system does support higher-kinds, after a fashion®. Specif-
ically, an ML module can be parametrized by another module con-
taining type constructors (among other things). Therefore, one can
use the module system to manually parametrize the necessary types
and functions and then manually instantiate them. Given that type
inference for first-class polymorphism and higher kinds is, in gen-
eral, undecidable, any system supporting both will require some
amount of manual effort. The question is only how much.

Unfortunately, using the module system has a number of signifi-
cant drawbacks. First, the ML module system was hardly designed
for this (lightweight) use, and the syntax overhead is rather high.
Second, the module system does not mix freely with the core lan-
guage — modules are not first-class values and most, if not all, uses
of the module system must occur outside of core language expres-
sions.

We’ll try an example — our familiar type ty — to get a concrete
sense of the effort involved in using the module system, and its lim-
itations. Note that we are using actual OCAML syntax here, includ-
ing its support for first-class polymorphic record fields. In addition,
we have separated the record type into its own (mutually recursive)
definition, because OCAML does not support nested record types.

module F(R: sig type ’a r end) = struct
type ty_match = {
int: int R.r ;
arrow: ’a ’b. ’a ty -> ’b ty -> (’a -> ’b) R.r;
}
and ’a ty = ty_match -> ’a R.r
end

We have defined a functor — a function from modules to mod-
ules, F, which takes a single argument, the module R. This mod-
ule, in turn, has only a single element: a type constructor r, whose

3We are eliding the fact that OCAML and SML have different module
systems — for the purposes of this discussion, they are the same.

kind is (implicitly) specified as * -> *. The body of F defines
two types, familiar to us from above. The key difference is that,
now, the universal quantification over type constructor ’r has been
lifted above the definitions of both types and recast as a quantifi-
cation over all modules with the signature sig type ’a r end.
This transformation, as it were, leaves us with a choice to make in
formulating the type combinators in OCAML. If we want to remain
faithful to the type signature we started with, where the result of
each combinator — the encoding — is a higher-kinded polymorphic
value, then each combinator must itself be a functor, rather than
a function. Otherwise, there is no way for the argument or result
of any given combinator to have a type with higher kind. Unfor-
tunately, this would force all use of combinators to occur within
the module system, not the core language, which would prohibit
first-class type encodings.

An alternative is to perform a similar transformation to our
type combinators as we applied to the matches. Previously, the
quantification over the result type-constructor was bundled up in
the definition of ty, and therefore hidden from the types of the
combinators. Now, though, we must lift the quantification out of
ty and over the type combinators. The result is another functor:

module F(R: sig type ’a r end) = struct

val int : int F(R).ty
val arrow : ’a F(R).ty -> ’b F(R).ty
-> (’a -> ’b) F(R).ty
end

This solution, though, is really a compromise: yes, int and arrow
are core-language values, but their type has already been special-
ized to a particular choice of r. So, the type encodings can be first-
class, but only after they’ve lost their flexibility to be instantiated
at any match type. This alternative, then, apparently buys us little
over the previous one.

Let’s take a step back and consider what is preventing us from
implementing the desired solution. We can write the expressions
we desire; we can even “prove” them to be higher-kinded by encod-
ing them as well-typed functors. What we cannot do, however, is
present that proof to OCAML’s core language type checker, because
the core language type checker has no support for checking or using
higher-kinded polymorphic values. So, we’re in an interesting bind
— we have a value which is provably safe for our purposes (accord-
ing to the OCAML module system) but cannot be used for our pur-
poses (according to the OCAML core language). Well, what you do
in a typed language when the type system isn’t quite good enough?
Following in a long tradition of seasoned programmers, you very
cautiously use unsafe cast! We know that our encodings our higher-
kinded polymorphic, so can we safely cast them between different
instances of the result type r.

At this point you might be wondering: but isn’t unsafe cast, well,
unsafe? The answer is a resounding Yes! — except when it is safe. In
other words, “unsafe” in this context only means that the OCAML
type checker cannot prove it to be safe. But, if we prove it safe
ourselves, then we can still be assured of the safety of our program.
Indeed Coq does this all the time when extracting OCAML code
from Coq proofs. Still, we must be very careful when using unsafe
cast, so we will be methodical. First, we will present the encoding
and discuss where we use the unsafe cast. Then, we will show how
to use parametricity to ensure that the cast is safe.

For the encoding, we return to the examples in the preceding
section, although we join the two functors presented there into one.



module F(R: sig type ’a r end) = struct
type ty_match = {
int: int R.r ;
arrow: ’a ’b. ’a ty -> ’b ty -> (’a -> ’b) R.r;

}

and ’a ty = ty_match -> ’a R.r

val int : int ty

val arrow : ’a ty -> ’b ty -> (’a -> ’b) ty
end

With this encoding, we can cast between values by defining a
Cast functor:

module Cast(R1l: sig type ’a r end)
(R2: sig type ’a r end)

sig

val cast :
end =
struct

let cast = 0Obj.magic
end

’a F(R1) .ty -> ’a F(R2).ty

where Obj.magic is OCAML’s (undocumented) unsafe cast, with
type ’a —-> ’b. The signature on the Cast functor restricts the
generality of the unsafe cast to specifically casting between dif-
ferent instantiations of the ty type.

The question, now, is whether the cast function is safe? The
answer is “no.” The problem is that, while using combinators int
and arrow are the recommended methods for creating values with
type ty (or instantiations thereof), it is not the only way. Since the
ty type is defined transparently, we can create values inhabiting ty
that are not valid constructor encodings, and, therefore, not safe to
cast. For example,

fun m = "ERROR"

has type
int F(struct ’a r = string end).ty

but is most certainly not a valid type encoding, which, for this type,
is fun m -> m.int. The solution, then, is twofold: first, make
type-constructor ty abstract, which will ensure that constructors
can only be created with the provided combinators, and, second,
prove that all values constructed with the combinators are safe to
cast.

Below is the new formulation of our GADT encoding, again
using our ty example. The key things to notice are that ty is now
abstract and that all universal quantification is once again hidden.
The situation for the match type is somewhat different, in that we
still need to parameterize using a functor. However, the functor
this time simply encodes a higher-kinded type constructor, rather
than a higher-kinded polymorphic value. Since no values inhabit
type constructors (only types!), there is no issue of restricting a
value’s ability to be first class like there was with the constructor
encodings.

type ’a ty
val int : int ty
val arrow : ’a ty -> ’b ty -> (’a -> ’b) ty

module F(R: sig type ’a r end) : sig
type ty_match =
int_c: int R.r ;
arrow_c: ’a ’b. ’a ty -> ’b ty -> (’a -> ’b) R.r;

val gmatch :
end

’a ty -> (ty_match -> ’a R.r)

In addition to the match type, we include a gmatch function
which takes the abstract encoding and a match and returns the re-
sult. It can also be used (curry-style) as a cast function, which

takes an opaque encoding and returns an encoding specialized to
R.r. The function gmatch is implemented essentially as the iden-
tity function: it takes an *a ty and returns it. This makes sense,
because ’a ty is essentially equivalent to ty_match -> ’a R.r.
‘We cannot prove that equivalence to the OCAML type checker, how-
ever, so gmatch must use Obj .magic to make the cast.

This new interface dispatches the first requirement for safe
casting: control over the inhabitants of ’a ty. Next, let’s take a
look at the implementation of the combinators to be sure that they
are truly polymorphic over the result type r. Below is the entire
implementation of the ty GADT.

module AbstractR
struct

type ’a r = int
end

: sig type ’a r end =

type ty_match = {
int_c: int AbstractR.r;
arrow_c: ’a ’b. ’a ty -> ’b ty
-> (’a -> ’b) AbstractR.r;
3
and ’a ty = ty_match -> ’a AbstractR.r

let int m = m.int_c
let arrow tyl ty2 m = m.arrow_c tyl ty2

module F(R: sig type ’a r end) = struct
type ty_match = {
int_c: int R.r ;
arrow_c: ’a ’b. ’a ty -> ’b ty -> (’a -> ’b) R.r;
}
let gmatch : ’a ty -> (ty_match -> ’a R.r)
= 0Obj.magic
end

The key to ensuring the safety of gmatch lies in the module
AbstractR. This module contains a single element — a type con-
structor *a r — and hides the definition of that element from the
remainder of the code shown. That is, r is an abstract type con-
struct. Parametricity therefore guarantees us that any code which
uses r will in fact be parametric in t’s definition. That is, it will be
a higher-order polymorphic value.

Next, we define the types ty_match and ty in terms of
AbstractR.r and then define the constructors int and arrow
in terms of the ty_match record type. Finally, we define the func-
tor F which creates versions of ty_match and gmatch based on a
user-specified type constructor R.r.

There is one last detail to attend to. The astute OCAML program-
mer will note that OCAML record types are generative — that is, if
two record types are structurally identical, and differ only by name,
they are still different types. Therefore, even though the type ty is
parametric in r, each instantiation is in fact a different type, which
raises the question whether their representation differs in any way.
The answer, according to the OCAML manual (Leroy et al. 2008),
Section 18.3, is that they are not. This sections discusses the repre-
sentation of OCAML values for use in interfacing with C. To quote
the particular section of relevance:

18.3.2 Tuples and records ... Records are also represented
by zero-tagged blocks. The ordering of labels in the record
type declaration determines the layout of the record fields:
the value associated to the label declared first is stored in
field O of the block, the value associated to the label declared
next goes in field 1, and so on. ...

Notice that the representation of records depends only on the
types and labels of the fields, and not on the particular declared
record type.



type (’a,’b) sum = Left of ’a | Right of ’b

type ’r ty_rep

val int . int ty_rep

val unit : unit ty_rep

val tuple : ’a ty_rep -> ’b ty_rep -> (’a * ’b) ty_rep
val sum ’a ty_rep -> ’b ty_rep -> (’a,’b) sum ty_rep
val list ’a ty_rep -> ’a list ty_rep

module type Result = sig type ’r tycon end
module MakeTys(R : Result) : sig
type ’r result = ’r R.tycon
type type_case = {
int_c : int result;

unit_c : unit result;
tuple_c : ’a ty_rep -> ’b ty_rep -> (’a * ’b) result;
sum_c : ’a ty_rep -> ’b ty_rep -> (’a,’b) sum result;
list_c ’a ty_rep —> ’a list result;
}
val gmatch : ’a ty_rep -> type_case -> ’a result
end

Figure 1. Interface to Type module

7. OCaml Examples

An encoding is only valuable so long as it is usable. In this section,
we present some extended examples demonstrating the usability of
GADTs. However, because recursing over a GADT element will
normally require polymorphic recursion, we begin with a simple
demonstration of how to use polymorphic recursion in OCAML,
before getting to the examples.

7.1 Polymorphic Recursion

Polymorphic recursion means recursion within a polymorphic
function for which the recursive occurrences of the function are
instantiated at different types than that of surrounding invoca-
tion. Hinze (2000) presents a data structure for perfectly bal-
anced, binary leaf trees, which uses so-called nested types (Bird
and Meertens 1998):

type ’a perfect = Zerop of ’a
| Succp of (’a * ’a) perfect

Now, if we want to recurse on such a datatype we’ll need to use
polymorphic recursion, because the recursive reference to perfect
in the Succp branch instantiates the datatype argument at a type
other than ’a. So, we declare a record with a single, polymorphic
field, whose type is the signature of the function we wish to write.
Then, we create a recursive record with the field set to the recursive
function we are writing. The recursive call then goes through the
record (pcount . v), rather than through a function name.

type pcount_sig = {v: ’a. ’a perfect -> int}
let rec pcount ={v= function
Zerop(x) -> 0
| Succp(x) -> 1 + pcount.v x}

That’s it. This function will count the depth of the perfect tree.

7.2 Example: Run-time Type Encodings

As our first example, we’ll extend the ty GADT from Section 4
and present two generic functions: an S-expression printer, and a
query function, which makes use of the printer, demonstrating the
flexibility of the encoding.

Figure 1 shows the interface to the Types module. Figure 2
shows a client of the module which implements a generic query-
ing function. The query specifies a path from the root of the data
structure to a particular element, where each path component is an

module Q = Type.MakeTys(struct type ’a r = ’a -> string)

type to_string_sig = v: ’a. ’a ty_rep -> a’ -> string
let rec gen_to_string r ={v= fun ty q x ->
Q.gmatch ty {Q.
tuple_c = (fun tya tyb (a,b) ->
"(tuple " " gen_to_string.v tyaa = " " °
gen_to_string.v tyb b ~ ")"

}
}

let gen_to_string = gen_to_string r.v

type query = string list

type query_sig = {v: ’a. ’a ty_rep -> query -> a’ -> string}

let rec gen_query_r ={v= fun ty q x ->
match q with
[1 -> gen_to_string ty x
| n::qs ->
let x_to_string = Q.gmatch ty {Q.

tuple_c = (fun tya tyb (a,b) ->
match n with
1 -> gen_query.v tya a gs
| 2 -> gen_query.v tyb b gs
| _ -> throw (Failure "query")
list_c = (fun ty_elt xs —>
gen_query.v ty_elt (List.nth xs n) gs);
} in
x_to_string x

Figure 2. Code fragment implementing generic query

type (’a,’b) eq
type zero

type ’a succ

type (’m,’n) plus

type one = zero succ
val plus_zero_x : (’a, (zero, ’a) plus) eq
val plus_succ_comm : ((’x,’y) plus succ,

(°x succ, ’y) plus) eq

Figure 3. Interface of natural-number arithmetic module
NatArith

integer specifying the nth subcomponent. In the figure, we show a
base case, where the query has ended, and the cases for tuples and
lists. Notice the use of gen_to_string in the base case, which
demonstrates the convenience of the Scott encoding. If we had cho-
sen the Church encoding, either gen_query and gen_to_string
would need to be defined together, and paired in their definitions,
or gen_query would need to return as its result the both the real re-
sult and the type representation from which the result was derived.
Interestingly, it is just this sort of added convenience that motivated
dependency-style generic Haskell (Loh et al. 2003).

7.3 Example: Indexed Lists

For our second example, we present a GADT encoding lists with
statically tracked length. Since OCAML does not natively provide
support for natural numbers at the type level, we provide a unary
encoding of natural numbers through abstract types in an natural-
number arithmetic module, shown in Figure 3. The module in-
cludes an equational theory of the natural numbers, which we elide.

Using the NatArith module we can declare indexed lists as
shown in Figure 4. The interface follows the pattern described
in Section 6, with two differences. First, we have changed the



open NatArith
type (’r,’i) ilist

(’a, zero) ilist

’a => (Pa, ’m) ilist

-> (’a, ’m succ) ilist
(’m,’n) eq -> (’a,’m) ilist
-> (’a,’n) ilist

val nil
val cons

val coerce

module type Result = sig type (’a,’i,’s) tycon end

module MakeTys(R :
sig
type (’a,’i,’s) result = (’a,’i,’s) R.tycon
type (’a,’s) ilist_case = {

Result)

nil_c : (’a, zero, ’s) result;
cons_c : ’i. ’a -> (Pa,’i) ilist
-> (’a,’i succ, ’s) result;
}
val gmatch : (’a,’i) ilist -> (’a,’s) ilist_case

-> (’a,’i,’s) result
end

Figure 4. Interface of IndexedList module

module App_match = struct

type (’a, ’i, ’c) tycon = (’a,(’i, ’c) plus) ilist
end
module Am = MakeTys(App_match)

type (’a,’j) psig2 = {v: ’i.(’a,’i) ilist -> (’a,’j) ilist

-> (’a,(’i,’j) plus) ilist}
let rec iappendr ={v=fun 11 12 ->
Am.gmatch 11 {Am.

nil_c = (coerce plus_zero_x 12);
cons_c = (x xs =
let xs2 = cons x (iappendr.v xs 12) in

coerce plus_succ_commute xs2);
}
}
let iappend = iappendr.v

Figure 5. Interface and implementation of append for indexed
lists. The function plus_succ_comm is a lemma that plus and
succ commute.

result type constructor to take three arguments, instead of one: the
type of the list element, the length of the list and another variable
(’s) whose value will be inferred by the type checker. This added
variable allows the result to depend on a type from the environment,
which would otherwise be impossible. Second, we add a coerce
function, which provides a way to coerce a list whose length is
expressed with type-level natural number ’m to one with length ’n,
based on a proof that m and ’n are equivalent. This function is
needed to convince the type checker of type equivalence over lists
— its implementation is essentially the identity function.

In Figure 5, we show the list-append function. Each case is
coded as normal, but with an added coercion. In the case of nil
we need to prove that 0 4 7 is equivalent to j, which we do with
an axiom provided in the NatArith module (plus_zero_x). The
case of cons requires us to prove that Succ(i + j) — the result of
cons’ing after an append — is equivalent to Succ(i) 4 j, which is
the declared result of the cons case. We achieve this with the axiom
that plus and succ commute.

8. Related Work

There is a lot of work on encoding various datatypes into vari-
ous high-level languages. Bohm and Berarducci (1985) is a classic
work on a Church-style encoding of datatypes (called term alge-
bras) into System F. M.Abadi et al. (1993) is a short note on en-
coding Scott numerals in System F. However, they do not address
the issue of how to use the encodings without recursion. Also, as
folklore would have it, early versions of Coq used a Church-like
encoding for inductive datatypes in which each piece of data was
interpreted as a pair consisting of the data itself and a value com-
puted for that data. These inductive datatypes were in fact more
powerful than GADTs.

Berarducci (Bohm and Berarducci 1985).

An alternative path of research has been to create formalisms
for natively integrating GADTSs into existing languages. Cheney
and Hinze (2003) investigated their integration into a Haskell-
like setting, while, concurrently, Xi et al. (2003) investigated their
integration into an ML-like setting. While Cheney and Hinze’s
formalism is somewhat more general than Xi et al.’s, we focused
on the latter because of our interest in an encoding appropriate for
OCAML. Sulzmann and Wang (2004) also investigate integration of
GADT functionality within the setting of Haskell.

In addition to this general work, there has been a great deal of
work on encoding particular GADTs*. Pfenning and Lee (1991)
present one of the first encodings of a GADT for typed abstract
syntax trees. Carette et al. (2007) present related results, focus-
ing on tagless, staged interpretation. They include implementations
in Haskell and ML. However, their ML encoding is strictly lim-
ited to the module system. Weirich presents a number of encod-
ings related to polytypic programming (Weirich 2001, 2006). In
essence, these are Church-style encodings of a type GADT. She
also presents implementations in Haskell. Hinze (2004), inspired
by Weirich’s Haskell encoding, shows how the encoding can be re-
alized in Haskell using only type classes. He offers two different
encodings, which offer a tradeoff between convenience and flexi-
bility. Interestingly, although Hinze does not note this himself, his
first encoding uses the Scott encoding, while his second uses the
Church encoding.

Of particular relevance to this paper are encodings of generic
programing in ML, which all are essentially encodings of the type
GADT in ML. The essential reference is Yang’s work (Yang 1998),
in which he showed how to encode the type GADT entirely in
ML’s module system. However, because of the difficulty of pro-
gramming with the module system, he also shows an alternative
encoding based on projection/injection functions. Karvonen (2007)
generalizes Yang’s results. However, his work is still limited to
ML’s module system. Finally, Ferniandez et al. (2008) combine
Yeng’s and Hinze’s work, to encode the type GADT in OCAML.
This pearl is a generalization of that encoding to any GADT and
provides a more flexible mechanism for instantiating match result
types based on the safe use of OCAML’s unsafe cast.

Related ideas have also appeared in the object-oriented world.
We mention only two, although there are likely many more.
Buchlovsky and Thielecke (2005) provide a type-theoretic account
of the visitor pattern, which is quite similar to both the Scott and
Church encodings. Kennedy and Russo (2005) discuss how GADTs
can be encoded in C#, and propose language extensions which
would make the encoding more efficient.

For readers looking for more leads on GADTSs, we recom-
mend Tim Sheard’s home page (Sheard), which lists a large col-
llection of relevant works. Finally, for readers intrigued by the use
of indexed-lists in OCAML, but put off by the need to manually
prove equalities between integer expressions, we recommend Con-

4 That is, paradigms which can be captured with GADTs.



coqtion, which presents a simple and elegant integration of OCAML
with Coq (Fogarty et al. 2007). Along the same lines, the Omega
language aims to provide language/compiler support for paradigms
of this sort (Sheard).

9. Conclusion

We have seen how GADTs may be encoded in polymorphic lambda
calculus using a typed version of the Scott encoding of inductive
datatypes. We have also seen how OCAML’s module system can be
used to implement this encoding, even though the term language of
OCAML lacks first-class polymorphism. We hope that this encoding
will make GADTs more accessible to OCAML programmers, and
lead to native implementation of GADTs in OCAML. If that goal
is achieved, the need for this encoding will disappear, much like
Scott-encoded data themselves, in their applications.

Acknowledgments. Thanks to David Walker on comments on
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