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Program testing can be used to show the presence of bugs, but never to show their
absence!

~Dijkstra (1970)
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ABSTRACT

We live in a time where computing devices power essential systems of our so-
ciety: our automobiles, our airplanes and even our medical services. In these safety-
critical systems, bugs do not just cost money to fix; they have a potential to cause
harm, even death. Therefore, software correctness is of paramount importance. FEx-
isting mainstream programming languages do not support software verification as
part of their design, but rely on testing, and thus cannot completely rule out the
possibility of bugs during software development. To fix this problem we must reshape
the very foundation on which programming languages are based. Programming lan-
guages must support the ability to verify the correctness of the software developed
in them, and this software verification must be possible using the same language the
software is developed in. In the first half of this dissertation we introduce three new
programming languages: Freedom of Speech, Separation of Proof from Program, and
Dualized Type Theory. The Freedom of Speech language separates a logical fragment
from of a general recursive programming language, but still allowing for the types
of the logical fragment to depend on general recursive programs while maintaining
logical consistency. Thus, obtaining the ability to verify properties of general recur-
sion programs. Separation of Proof from Program builds on the Freedom of Speech
language by relieving several restrictions, and adding a number of extensions. Fi-
nally, Dualized Type Theory is a terminating functional programming language rich

in constructive duality, and shows promise of being a logical foundation of induction
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and coninduction. These languages have the ability to verify properties of software,
but how can we trust this verification? To be able to put our trust in these languages
requires that the language be rigorously and mathematically defined so that the pro-
gramming language itself can be studied as a mathematical object. Then we must
show one very important property, logical consistency of the fragment of the program-
ming language used to verify mathematical properties of the software. In the second
half of this dissertation we introduce a well-known proof technique for showing logical
consistency called hereditary substitution. Hereditary substitution shows promise of
being less complex than existing proof techniques like the Tait-Girard Reducibility
method. However, we are unsure which programming languages can be proved ter-
minating using hereditary substitution. Our contribution to this line of work is the
application of the hereditary substitution technique to predicative polymorphic pro-
gramming languages, and the first proof of termination using hereditary substitution

for a classical type theory.

vil



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . e xi
INTRODUCTION . . . . . e 1
PART A. BACKGROUND . . . . . . .. . 6
CHAPTER 1. A BRIEF HISTORY OF TYPE THEORY . ... .. .. 7

1.1  The Early Days (1900 - 1960) . . . . . ... ... ... ... .. 7

1.2 Modern Type Theory . . . . . . . . . .. . . o 10
CHAPTER 2. THE COMPUTATIONAL TRINITY . ... ... .... 32
2.1 Logic . . . . . . . 33

2.2 Category Theory . . . . . . .. .. ... ... .. 36

2.3 Impact . . . . . ... 40
CHAPTER 3. CLASSICAL TYPE THEORY . . .. ... .. ... ... 42
3.1 The Au-Calculus . . . . . .o oo 42

3.2 The NA-Calculus . . . . .. .. ... 47

3.3 Beautiful Dualities . . . . . . . . . ... 0o 51

3.3.1 The Duality of Computation . . . . . . ... ... ... ... 52

3.3.2 The Dual Calculus . . . . ... ... ... ... .. ..... 59
CHAPTER 4. DEPENDENT TYPE THEORY . . . ... ... ..... 64
4.1 Martin-Lof’s Type Theory . . . . . . . . .. ... .. ... ... 64

4.2 The Calculus of Constructions . . . . . . ... ... ... .... 74
CHAPTER 5. DEPENDENT TYPES IN PRACTICE . . .. ... ... 80
CHAPTER 6. METATHEORY OF TYPE THEORIES . ... ... .. 86

6.1 Hereditary Substitution. . . . . . . . .. .. ... ... .. ... 88

6.2 Hereditary Substitution for STLC . . . . .. .. ... ... ... 89

6.3  Tait-Girard Reducibility . . . . .. ... ... ... ... ... 97

6.4 Logical Relations . . . . .. .. ... ... ... ... .. ... 102

6.4.1 Step-Indexed Logical Relations . . . . . ... ... ... ... 103

viil



PART B. DESIGN . . . . . 113

CHAPTER 7. FREEDOM OF SPEECH . .. ... ... ... .. ... 114
7.1 Syntax and Reduction Relation . . . . . ... ... ... .. ... 119
7.2 TypeSystem . . . . .. ... 125

CHAPTER 8.  SEPARATION OF PROOF FROM PROGRAM . . . .. 135

CHAPTER 9. DUALIZED LOGIC AND TYPE THEORY . .. .. .. 150
9.1 Pinto and Uustalu’s L. . . . ... ... ... .. ... ..., 154
9.2 Dualized Intuitionistic Logic . . . . . . . .. ... .. ... ... 156
9.3  Dualized Type Theory . . . . .. .. ... ... ... .... 159

PART C. BASIC SYNTACTIC ANALYSIS . .. ... .. ... ... .... 166

CHAPTER 10. FREEDOM OF SPEECH . . . . .. .. ... ... ... 167
10.1 Basic Results . . . . . . . .. .. 168
10.2  Type Preservation . . . . . . .. .. ... ... oL 174
10.3 Logical consistency . . . . . .. .. ... .o 177

CHAPTER 11. DUALIZED LOGIC AND TYPE THEORY . . . . . .. 201
11.1  Consistency of DIL . . . . . ... ... ... .. ... 201
11.2  Completeness of DIL . . . . . . . ... .. ... ... .. .... 204
11.3  Metatheory of DTT . . . . . . . .. ... . L. 230

PART D. NORMALIZATION BY HEREDITARY SUBSTITUTION . ... 252

CHAPTER 12. STRATIFIED SYSTEM F AND BEYOND . . ... .. 253

12.1  Stratified System F' . . . . ..o o000 254
12.1.1 Basic Syntactic Lemmas . . . . . .. ... ... L. 257
12.1.2 Ordering on Types . . . . . . . . . . .. ... ... ... .. 266
12.1.3 Hereditary Substitution . . . . . . .. .. ... ... ... .. 269
12.1.4 Main Properties . . . . . . . . . . ... .. 272
12.1.5 The Main Substitution Lemma . . . . . .. . .. ... ... 281
12.1.6 Concluding Normalization . . . . .. .. ... .. ... ... 284

12.2  Stratified System F™ . . . . . ... 287
12.2.1 Ordering on Types . . . . . . . . . . .. ... ... ... .. 290
12.2.2 Hereditary Substitution . . . . . . . . .. ... ... .. ... 292
12.2.3 Main Properties . . . . . . . . . ... oL 294

1X



12.2.4 Concluding Normalization . . . . .. .. ... .. ... ... 322

12.3  Dependent Stratified System F= . . . . . . ... ..o 324

12.3.1 Basic Syntactic Results . . . . . . .. ... ... ... ... 325

12.3.2 Hereditary Substitution . . . . . . .. ... .. ... .. ... 334

12.3.3 Concluding Normalization . . . . . ... .. ... ... ... 339
CHAPTER 13. THE AA-CALCULUS . . ... ... ... ... ..... 344
13.1  Basic Syntactic Lemmas . . . . . . . ... ... .. ... ... 344

13.2 An Extension . . . . . . .. ... 346

13.2.1 Problems with a Naive Extension . . . . ... .. .. .. .. 346

13.2.2 A Correct Extension . . . . . . ... ... ... ... .. .. 347

13.2.3 Main Properties . . . . . . . ... oo 351

13.3  Concluding Normalization . . . . . .. ... .. ... ... ... 366

13.4  Related Work . . . . . . . ... 368
CONCLUSION . . .o 372
APPENDIX . . . . . 374
REFERENCES . . . . . . 484
INDEX . . 497



Figure

10
11
12
13
14
15
16
17
18

19

LIST OF FIGURES

Syntax and reduction rules for the Church-style simply-typed A-calculus 12
Typing Relation for the Church-style simply typed A-calculus . . . . . 12

Syntax and reduction rules for the Curry-style simply-typed A-calculus 16

Typing relation for the Curry-style simply typed A-calculus . . . . . . 16
Syntax and reduction rules for Godel’s system T . . . . . . . . . . .. 17
Typing Relation for the Godel’s system T . . . . .. ... ... ... 17
Syntax and reduction rules for system F . . . .. ... ... 22
Typing relation for the system F. . . . . ... .. ... ... ... .. 22
Syntax and reduction rules for SSF . . . . . .. ... 25
Kinding relation for the SSF . . . . . . . ... ... ... 26
Typing relation for the SSF . . . . . .. ... ... ... ... ... 27
Syntax and reduction rules for system F“ . . . . . ... ... 29
Kinding rules of system F“ . . . . . . . . ... ... 30
Typing relation for the system F* . . . . . ... ... ... ... ... 30
Syntax and reduction rules for the Au-calculus . . . . . .. ... ... 43
Type-checking algorithm for the A\u-calculus . . . . . .. ... .. .. 44
Syntax and reduction rules for the AA-calculus . . . . . . . ... ... 48
Type-checking algorithm for the AA-calculus . . . . . ... ... ... 49
The Syntax and Reduction Rules for the Apji-Calculus . . . . . . . . 57

x1



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

The Typing Rules for the Apji-Calculus . . . . . . .. ... ... ... o7

Syntax of the Dual Calculus . . . . ... .. ... ... ........ 59
Reduction Rules for the Dual Calculus . . . . . ... ... ... ... 61
Typing Rules for the Dual Calculus . . . . . ... ... ... ... .. 62
The syntax of Martin-Lof’s Type Theory . . . . . .. ... ... ... 65
Kinding for Martin-Lof’s Type Theory . . . . . .. .. .. ... ... 68
Validity for Martin-Lof’s Type Theory . . . . . . .. ... ... ... 68
Typing Rules for Martin Lof’s Type Theory . . . . . . .. . ... .. 69
Equality for Martin-Lof’s Type Theory . . . . . .. .. .. ... ... 70
Syntax for the Separated Calculus of Constructions . . . .. . .. .. 7
Sorting Rules for the Separated Calculus of Constructions . . . . .. 7
Kinding Rules for the Separated Calculus of Constructions . . . . . . 78
Typing Rules for the Separated Calculus of Constructions. . . . . . . 78
The Equality for the Separated Calculus of Constructions . . . . . . . 79
Syntax and reduction rules for freedom of speech . . . . . . ... .. 120
Type-checking Rules for Logical Kinds . . . .. ... ... ... ... 142
Type-checking Rules for Predicates . . . . . ... ... ... ... .. 142
Type-checking Rules for Proofs . . . .. .. ... ... ... .. ... 143
Type-checking Rules for Proofs Continued . . . . . .. .. ... ... 144
Semantic Values . . . . . . . ... oL 146
Syntax of L. . . . . . .. 154
Inference Rules for L. . . . . . . .. ... ..o 155

xii



42

43

44

45

46

47

48

49

50

51

52

93

54

95

56

57

o8

29

60

61

Syntax for DIL. . . . . . . . ... o 157

Inference Rules for DIL. . . . . . . . .. ... ... ... ... .... 158
Reachability Judgment for DIL. . . . . . . ... ... ... ... ... 159
Syntax for DTT. . . . . . . . ... 160
Type-Assignment Rules for DTT. . . . .. ... ... ... ... ... 161
Reduction Rules for DTT. . . . . . ... ... ... ... ... ... 162
Well-formed substitutions . . . . .. .. ..o 179
Classical typing of DTT terms . . . . . . . . . .. ... ... ..... 240
Interpretations of types . . . . . . . ... 242
Syntax, Reduction Rules, and Commuting Conversions for SSF™ . . . 288
Well-formedness of Contexts for SSF*. . . . . ... ... ... ... . 288
SSF* Kinding Rules . . . . . . . ... ... ... ... ........ 289
SSFT Type-Assignment Rules . . . . . .. ... ... ... ...... 289
Hereditary Substitution Function for Stratified System F™ . . . . . . 292
Hereditary Substitution Function for Stratified System F* Continued 293

Syntax of Terms, Types, and Kinds and Reduction Rules for DSSF~ . 325

DSSF~ Kinding Rules . . . . . .. ... ... ... . 325
DSSF~ Type-Assignment Rules . . . . . .. ... ... ... ..... 326
DSSF~ Type Syntactic Equality . . . . . .. ... ... .. ... ... 326
Hereditary Substitution Function for Stratified System F= . . . . .. 338

xiil



INTRODUCTION

There are two major problems growing in two areas. The first is in Computer
Science, in particular software engineering. Software is becoming more and more
complex, and hence more susceptible to software defects. Software bugs have two
critical repercussions: they cost companies lots of money and time to fix, and they
have the potential to cause harm.

The National Institute of Standards and Technology estimated that software
errors cost the United State’s economy approximately sixty billion dollars annually,
while the Federal Bureau of Investigations estimated in a 2005 report that software
bugs cost U.S. companies approximately sixty-seven billion a year [113, 136].

Software bugs have the potential to cause harm. In 2010 there were a approxi-
mately a hundred reports made to the National Highway Traffic Safety Administration
of potential problems with the braking system of the 2010 Toyota Prius [25]. The
problem was that the anti-lock braking system would experience a “short delay” when
the brakes where pressed by the driver of the vehicle [134]. This actually caused some
crashes. Toyota found that this short delay was the result of a software bug, and was
able to repair the the vehicles using a software update [114]. Another incident where
substantial harm was caused was in 2002 where two planes collided over Uberlingen
in Germany. A cargo plane operated by DHL collided with a passenger flight holding
fifty-one passengers. Air-traffic control did not notice the intersecting traffic until

less than a minute before the collision occurred. Furthermore, the on-board collision



detection system did not alert the pilots until seconds before the collision. It was of-
ficially ruled by the German Federal Bureau of Aircraft Accidents Investigation that
the on-board collision detection was indeed faulty [98].

The second major problem affects all of science. Scientific publications are
riddled with errors. A portion of these errors are mathematical. In 2012 Casey
Klein et al. wused specialized computer software to verify the correctness of nine
papers published in the proceedings of the International Conference on Functional
Programming (ICFP). Two of the papers where used as a control which where known
to have been formally verified before. In their paper [76] they show that all nine papers
contained mathematical errors. This is disconcerting especially since most researchers
trust published work and base their own work off of these papers. Kline’s work shows
that trusting published work might result in wasted time for the researchers basing
their work off of these error prone publications. Faulty research hinders scientific
progress.

Both problems outlined above have been the focus of a large body of research
over the course of the last forty years. These challenges have yet to be completed
successfully. The work we present here makes up the foundations of one side of the
programs leading the initiative to build theory and tools which can be used to verify
the correctness of software and mathematics. This program is called program veri-
fication using dependent type theories. The second program is automated theorem
proving. In this program researchers build tools called model checkers and satisfiabil-

ity modulo-theories solvers. These tools can be used to model and prove properties of



large complex systems carrying out proofs of the satisfiability of certain constraints
on the system nearly automatically, and in some cases fully automatically. As an
example André Platzer and Edmund Clarke in 2009 used automated theorem proving
to verify the correctness of the in flight collision detection systems used in airplanes.
They actually found that there were cases where two planes could collide, and gave
a way to fix the problem resulting in a fully verified algorithm for collision detection.
That is he mathematically proved that there is no possible way for two planes to
collide if the systems are operational [107]. Automated theorem provers, however,
are tools used to verify the correctness of software externally to the programming
language and compiler one uses to write the software. In contrast with verification
using dependent types we wish to include the ability to verify software within the
programming language being used to write the software. Both programs have their
merits and are very fruitful and interesting.

Every formal language within this thesis has been formally defined in a tool
called Ott [120]. In addition, the full Ott specification of every type theory defined
with in this thesis can be found in the appendix. Ott is a tool for writing definitions
of logics, programming languages, type theories, A-calculi, and any other formal lan-
guage that consists of syntax and inference-style rules. Ott generates a parser and
a type checker which is used to check the accuracy of all objects definable with in
the language given to Ott as input. Ott’s strongest application is to check for syntax
errors within research articles. Ott is a great example of a tool using the very theory

we are presenting in this thesis. It clearly stands as a successful step towards the



solution of the second major problem outlined above.

This thesis consists of two major topics. The first topic is on the design of
general purpose dependently-typed functional programming languages. This topic is
covered in Part B (Design). The second topic is on the analysis of dependently-typed
functional programming languages and various type theories. This topic is broken
up into two parts: Part C (Basic Syntactic Analysis) and Part D (Normalization by
Hereditary Substitution). It is the content of these parts that consists of novel research

contributions. Specifically, the following list briefly outlines each contribution:

e The design and analysis of a core dependently-typed functional programming
language with a new property called freedom of speech. See Chapter 7 and

Chapter 10.

e The full design of a core dependently-typed functional programming language
called Separation of Proof from Program (Sep?) that remedies several short
comings of the freedom of speech language. This is a full programming language
that has been implemented, but this implementation is not a contribution of
this thesis. See Chapter 8. Part of Sep®’s design as well as several real-world
examples of verification carried out in Sep® were published in the special issue
on advanced programming techniques for construction of robust, general and

evolutionary programs [73].

e The design and analysis of a new logic and corresponding type theory called Du-

alized Intuitionistic Logic (DIL) and Dualized Type Theory (DTT) respectively.



We introduce a new completely symmetric syntax that makes for a beautiful

definition of the two theories. See Chapter 9 and Chapter 11.

We prove weak normalization of an entire family of predicative type theories
based on Stratified System F using a proof technique called hereditary substitu-
tion. See Chapter 12. A slightly different version of the proof of normalization
using hereditary substitution of Stratified System F given in this thesis was

presented at the workshop on proof-search in type theories [49].

Similarly, we show that hereditary substitution can be extended to prove nor-
malization of a classical type theory called the AA-calculus. See Chapter 13.
This work first appeared at the workshop on control operators and their seman-

tics [51].

The final contribution is the brief history of type theory given in Part A. There
we try and highlight the significant contributions of type theory starting with
Russell. This history is by no means complete, but we provide the complete
definition of many significant type theories. This tries to provide a one stop

shop for an introduction to the field.



PART A

BACKGROUND




CHAPTER 1

A BRIEF HISTORY OF TYPE THEORY

In this section we give a short history of type theory. This history will set the
stage for the later development by illustrating the reasons type theories exist and are
important, and by giving some definitions of well-known theories that make for good
examples in later sections. We first start with the early days of type theory between
the years of 1900 and 1960 during the time of Bertrand Russell and Alonzo Church.
They are as we consider them the founding fathers of type theory. The history given
here is presented in chronological order. This is not to be considered a complete
history, but rather a glimpse at the highlights of the history of type theory. This is
the least amount of history one must know to fully understand where we have been

and where this line of research may be heading.

1.1 The Early Days (1900 - 1960)

In the early 1900’s Bertrand Russell pointed out a paradox in naive set theory.
The paradox states that if H = {x |z ¢ z} then H € H <= H ¢ H. The problem
Russell exploits is that the comprehension axiom of naive set theory is allowed to
use impredicative-universal quantification. That is z in the definition of H could be
instantiated with H, because we are universally quantifying over all sets. Russell
called this vicious circularity, and he thought it made no sense at all. Russell plagued
by this paradox needed a way of eliminating it. To avoid the paradox Russell, as

he described in letters to Gottlob Frege [66, 65], considers sets as having a certain



level and such sets may only contain objects of lower level. Actually, in his letters
to Frege he gives a brief description of what came to be called the ramified theory of
types which is a generalization of the type theory we describe here. However, this less
general type theory is enough to avoid Russell’s logical paradoxes. These levels can be
considered as types of objects and so Russell’s theory became known as simple type
theory. Now what does such a theory look like? Elliott Mendleson gave a nice and
simple definition of the simple type theory and we summarize this in the following
definition [90].

Definition 1.1.0.1.

Let U denote the universe of sets. We divide U as follows:
o J! is the collection of individuals (objects of type 0).
o J"t is the collection of objects of type n.

As mentioned above the simple type theory avoids Russell’s paradox. Lets con-
sider how this is accomplished. Take Russell’s paradox and add types to it following
Def. 1.1.0.1. We obtain if H" = {z" ' | 2" ! & 2"~} then H® € H" < H" ¢ H".
We can easily see that this paradox is false. H™ can only contain elements of type
n — 1 which excludes H".

Russell’s simple type theory reveals something beautiful. It shows that to
enforce a particular property over a collection of objects we can simply add types to
the objects. This is the common theme behind all type theories. The property Russell
wished to enforce was predicativity of naive set theory. Throughout this thesis we

will see several different properties types can enforce. While ramified type theory



and simple type theory are the first defined type theories they however are not the
formulation used throughout computer science. The most common formulations used
are the varying formulations and extensions of Alonzo Church’s simply typed theory
and Haskell Curry’s combinatory logic [33, 29] 1.

In 1932 Alonzo Church published a paper on a set of formal postulates which
he thought could be used to get around Russell’s logical paradoxes without the need
for types [32]. In this paper he defines what we now call the A-calculus. The original
A-calculus consisted of variables, predicates denoted A\z.t, and predicate application
denoted t t,. See the appendix for a complete definition of the A-calculus. It was
not until Stephen Kleene and John Rosser were able to show that the A-calculus was
inconsistent as a logic when Church had to embrace types [75]. To over come the
logical paradoxes shown by Kleene and Rosser, Church, added types to his A-calculus
to obtain the simply typed A-calculus [33, 12]. In the next section we give a complete
definition of Church’s simple type theory. The reason we postpone the definition of
the simply typed A-calculus is because we provide a modern formulation of the theory.
So far we have summarized the beginnings of type theory starting with Russell, Curry,
and Church. Some really great references on this early history and more can be found
in [29, 37, 17]. We now move on to modern type theory where we will cover a large

part of type theory as it stands today.

"While Church’s simple type theory is the most common there are some other type
theories that have become very common to use and extend. To name a few: Godel’s system
T, Girard-Reynolds system F, Thierry Coquand’s Calculus of Constructions, Per Martin-
Lof’s Type Theory, Michel Parigot’s Au-Calculus, and Philip Wadler’s Dual Calculus.



10

1.2 Modern Type Theory

In this section we take a journey through modern type theory by presenting
various important advances in the field. We will provide detailed definitions of each
type theory considered. The reader may have noticed that the only definition of type
theory we have provide is that a type theory is any theory in which one must enforce
a property by organizing the objects of the theory into collections based on a notion
of type. This is not at all a complete definition and this section will serve as a guide
to a more complete definition. We do not give a complete general formal definition
of a type theory, but we hope that it is discernible from this survey. The first type
theory we define is the modern formulation of the simply typed A-calculus.

The simply typed A-calculus. There are three formulations of the simply
typed A-calculus. The first one is called Church style [59, 17, 33], the second is
called Curry style [17, 116], and the third is in the form of a pure type system.
We introduce pure type systems in Section 4.2. We define the first and the second
formulations here beginning with the first. We will first define the type theories
and then we will comment on the differences between the two theories. The first
step in defining a type theory is to define its language or syntax. Following the
syntax are several judgments assigning some meaning to the language. A judgment
is a statement about the object language derived from a set of inference rules. In
the following type theories we will derive two judgments: the reduction relation and
the type-assignment relation. The syntax and reduction relation of the Church-style

simply typed A-calculus (STLC) is defined in Figure 1 where t ranges over syntactic
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expressions called terms and T ranges over syntactic expressions called types. Terms
consist of variables x, unary functions Az : T.t (called A-abstractions) where z is
bound in ¢, and function application denoted # ;. Now types are variables X (we
use variables as base types or constants just to indicate that we may have any number
of constants), and function types denoted Ty — T, where we call T the domain type
and T, the range type. Note that if we remove the syntax for types from Figure 1
then we would obtain the (untyped) A-calculus. The syntax defines what language
is associated with the type theory. Additionally, the reduction rules describe how
to compute with the terms. The Beta rule says that if a A-abstraction Az : T.t is
applied to some term ¢, then that term may be reduced to the term resulting from
substituting ¢’ for z in ¢ which is the English interpretation for [t'/z]t. We call [t'/z]t
the capture avoiding substitution function . It is a meta-level function. That is, it is
not part of the object language. In STLC the types and terms are disjoint, but in type
theories the types are used to enforce particular properties on the terms . To enforce
these properties we need a method for assigning types to terms. This is the job of
what we will call the typing judgment , type-checking judgment, or type-assignment
judgment?. A judgment is a statement about the object language derived from a set
of inference rules. The typing judgment for STLC is defined in Figure 2. The typing

judgment depends on a typing context I" which for now can be considered as a list

2Throughout the literature one may find the typing judgment being called the typing
algorithm, type-checking algorithm, or type-assignment algorithm. However, this is a par-
ticular case where the rules deriving the typing judgment are algorithmic in the sense that
when deriving conclusions from the inference rules deriving the judgment there is always a
deterministic choice on how to proceed.
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Syntax:
T = X|T—->T
t = $|)\ITt|t1t2

Full g-reduction:

t o~ tf
Az Tt)t' ~ [t /x|t bt Tt~ de: T
ty ~ t] ty ~ 1

R-Appl R-App2

tltg’\"‘)t{tg tltg’v‘-)tlté

Figure 1. Syntax and reduction rules for the Church-style simply-typed A-calculus

Fx:TiEt: Ty

Tz:T T Fz:.T TExe:Tt:Th— T, =
Fl_tliTl—)TQ
Fl_tngl
Fl—tltgiTQ ApP

Figure 2. Typing Relation for the Church-style simply typed A-calculus

of ordered pairs consisting of a variable and a type. This list is used to keep track of

the types of the free variables in a term . The grammar for context is as follows:

' o= |a: T[Ty, Ty

Here the empty context is denoted - and context extension is denoted I'y, T's.

The inference rules deriving the typing judgment are used to determine if a
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term has a particular type. That is the term ¢ has type T in context I' if there is
a derivation with conclusion I' - ¢ : T" and beginning with axioms. Derivations are
constructed in a goal directed fashion. We first match our desired conclusion with a
rule that matches its pattern and then derives its premises bottom up. To illustrate

this consider the following example.

Example 1.2.0.1.

def
Suppose T’ = 1. Ty, — T,y : Ty. Then we apply each rule starting with its

conclusion:

VAR — VAR
F|_$ZT1—>T2 Fl_yTl

x: Ty — To,y: ThFxy: Ty
z: Ty — Tobdy: Th(zy): Ty — Ty
}_)\IT1—> TQ/\y Tl(l’y)((TlﬁTg)%Tl)%TQ

App

LAam

Lam

The Curry-style simply typed A-calculus is exactly Church-style simply type
A-calculus except there is no type annotations on A-abstractions. That is we have
Az.t instead of Az : T'.t in the syntax for terms. This definition of STLC was an
extension of Curry’s work on combinator logic.

Now a large number of type theories can be either in Church-style or in Curry-
style. The lack of typing annotations has a syntactic benefit. It prevents the pro-
grammer from having to fill in type annotations when defining functions. This can be
very beneficial when defining complicated functions. Curry-style type theories also
differ semantically. Church-style type theories contain annotations to enforce the as-
signment of exactly one type to any given term. Now Curry-style type theories do not

contain annotations, thus any given term may have many different types. Consider
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the identity function Az.x this function may have the type Nat — Nat, but it can
also be given the type Bool — Bool. In fact, there are infinitely main types one can
give the Curry-style identity function. We can also characterize this semantic differ-
ence by what John Reynolds called intrinsic and extrinsic meanings. Church-style
theories give an intrinsic meaning to terms. This means that typeable terms are the
only terms assigned a meaning. Thus, the identity function Az : T.x always has a
meaning, because we can give it the type T — T, but the function Az : T.z x has
no meaning, because no matter how hard we try we can never give the correct type
annotation 7. Now Curry-style theories give an extrinsic meaning to terms which
amounts to the same meaning we give un-type (or uni-typed) type theories. The
identity function Az.r can be assigned the meaning that it is the identity function
on the entire domain of values, not just the typeable ones. Note that we can give a
Curry-style type theory both an extrinsic and an intrinsic semantics, but Church-style
is always intrinsic [117]. A last remark is that type annotations can actually make
giving an intrinsic meaning difficult conducting the meta-theory of various expressive
type theories and programming languages, and thus removing annotations, but still
maintaining an intrinsic semantics may make meta-theoretic reasoning less difficult.
This is the benefit of using a type-annotation eraser function® to translate a Church-
style type theory into a Curry-style type theory with an intrinsic semantics. This has

been very beneficial in the study of dependent type theories.

3This is often called “type erasure”, but the erasure is the image of the type-annotation
eraser function which is the result of applying the eraser, and hence not the process of
erasing.
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The syntax and reduction relation of the Curry-style STLC is defined in Fig-
ure 3 and the typing judgment is defined in Figure 4. We call the typing judgment
defined here an implicit typing paradigm. The fact that it is implicit shows up in the

application typing rule App:
'+ t : T1 — T2
'Ft: Ty
'k tl tg . T2

Recall that these rules are read bottom up. Until now we have considered the typing
judgment as simply a checking procedure with the type as one of the inputs, but
often this judgment is defined so that the type is computed and becomes an output.
In theories like this the above rule causes some trouble. The type T is left implicit
that is by looking at only the conclusion of the rule one cannot tell what the value
of T} must be. This problem also exists for the typing rule for A-abstractions. This
is, however, not a problem in Church style STLC because that type is annotated on
functions. This suggest that for some Curry style type theories type construction is
undecidable. Not all type theories have a Church style and a Curry style formulations.
Thierry Coquand’s Calculus of Constructions is an example of a type theory that is
in the style of Church, but it is also unclear how to define a Curry style version. It
is also unclear how to define a Church style version of the type theory of intersection
types [17].

Godel’s system T. The two type theories we have considered above are not
very expressive. In fact we cannot represent any decently complex functions on the

naturals within them. This suggests it is quite predictable that extensions of STLC
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Syntax:
T = X|T—->T
t o= $|)\It’t1 tg

Full g-reduction:

t o~ t t ~ t!
R_Beta - < R_Lam 1—1 R_Appl
(Az.t) t' ~ [t/ x]t Azt~ Azt ty by ~ t by
tg ~ té

hto bt

Figure 3. Syntax and reduction rules for the Curry-style simply-typed A-calculus

F}_tllTl—>T2
F,x:letiTQ Fl_tQ:Tl

Var Lam App

Lz T, I"F2x: T 'EXxet: T — Ty 'ttt Ty

Figure 4. Typing relation for the Curry-style simply typed A-calculus

would arise. The first of these is Godel’s system T. In this theory Godel extends
STLC with natural numbers and primitive recursion. In [59] the authors present
system T with pairs and booleans, but we leave these out here for clarity. The big
improvement is primitive recursion. The syntax and reduction relation are defined in
Figure 5 and the type-checking relation is defined in Figure 6.

We can easily see from the definition of the language that this is a direct

extension of STLC. Godel extended the types of STLC with a type constant Nat
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Syntax:
T == Nat|T =T
t == z|0|S|Az:T.t|t1t|R

Full S-reduction:

R_Beta ———— R_RecBase
Az : T.4) ¢ ~ [t'/z]t ' Rti 6,0~ &
tl ~ t{
R_RecS R_RecCongl
Rty to(St3) ~ to (Rty ta 13) t3 estep Rty bty ~ Rt] b t3 ceone
ty ~ 1 ty ~ 14
R_RecCong2 R_RecCong3
Ryt ty ~ Rty 8 3 ¢ Ty ¢
t~s tf 1~ 1 ly ~ t)
R_Lam ————————  RAppl —————=—  R.App2
Mg Tt~ Az Tt tty ~ B b o t by~ by ) P
t~t
- ~ . R,Succ
St~~St
Figure 5. Syntax and reduction rules for Godel’s system T
Var ———— Zero Succ
Dx: T, I"Fax: T I'F0: Nat I' S : Nat — Nat
Rec

'FR: T — ((T — (Nat — 7)) — (Nat — 7))

F|_t12T1—>T2

P,Jf:Tl'_t:TQ F|_t22T1
am A
TFae: Tt T, = Ty " TEtty: T v

Figure 6. Typing Relation for the Godel’s system T
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which is the type of natural numbers. He then extended the terms with a constant
term 0 denoting the natural number zero, a term S which is the successor function and
finally a recursor R which corresponds to primitive recursion. The typing judgment is
extended in the straightforward way. We only explain the typing rule for the recursor

of system T. Consider the rule:

Rec

'R:T— ((T — (Nat— T)) — (Nat — T))

We can think of R as a function which takes in a term of type 7', which will be the
base case of the recursor, and then a term of type 7' — (Nat — T'), which is the step
case of the recursion, and a second term of type Nat, which is the natural number
index of the recursion, i.e. with each recursive call this number decreases. Finally,
when given these inputs R will compute a term by recursion of type 7. While the
typing of R gives us a good picture of its operation the reduction rules for R give an

even better one. The rule

——————— RRecB
Rtl t20 -1 ecBase

shows exactly that the first argument of R is the base case. Similarly, the rule

_RecS
R tl tg (S tg) ~ t2 (R tl tg tg) tg f-fecStep

shows how the step case is computed. The type of R tells us that its second argument
must be a function which takes in the recursive call and the predecessor of the index
of R. These two functions turn out to be all that is needed to compute all primitive

recursive functions [59].
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The authors of [59] consider system T to be a step forward computationally,
but a step backward logically. We will see in Section 2 how type theories can be
considered as logics, but for now it suffices to say that they claim that system T
has no such correspondence. It turns out that system T is expressive enough to
define every primitive recursive function. In fact we can encode every ordinal from
0 to € in system T. This is quite an improvement from STLC. We now pause to
give a few example terms corresponding to interesting functions and some example

computations.

Example 1.2.0.2.

Some interesting functions in system T:

Addition:
addz y e Nat.(Ay : Nat.(Rz (Az : Nat.(Aw : Nat.(S2))) y))

Multiplication:
mult z y =D Nat.(Ay : Nat.(RO (Az : Nat.(Aw : Nat.(add z 2))) y))

Exponentiation:

expzry e Nat.(Ay : Nat.(R(S0) (Az : Nat.(Aw : Nat.(expz 2))) v))

Predecessor:

predz & Az : Nat.(RO(\z : Nat.(Aw : Nat.w)) z)

Example 1.2.0.3.

We give an example reduction of addition. We define natural numbers using con-

~ def ~ def
structor form, and define a more convenient syntaz as follows: 1 = S0, 2 = S(S0),

etc. Now we provide the following reduction:
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add23 ~2? R2(\z:Nat.(\w:Nat.(Sz)))3
~ ((Az: Nat.(Aw : Nat.(S 2))) (R2 (Az : Nat.(Aw : Nat.(S 2)))2))3
~  (Aw : Nat.(S(R2(Az : Nat.(Aw : Nat.(S 2)))2))) 3
~  S(R2(Az: Nat.(A\w : Nat.(S2))) 2)
~s  S(((Az : Nat.(Aw : Nat.(S2))) (R2 (Az : Nat.(Aw : Nat.(S 2))) 1)) 2)
~  S((Aw : Nat.(S(R2(Az : Nat.(Aw : Nat.(S 2)))1))) 2)
~  S(S(R2(A\z: Nat.(A\w : Nat.(Sz))) 1))
~  S(S((Az: Nat.(Aw : Nat.(S2))) (R2 (Az : Nat.(Aw : Nat.(S2)))0) 1))
~  S(S((A\z: Nat.(Aw : Nat.(S 2)))21))
~  S(S((A\w: Nat.(52))1))
~ 5(5(52))
= S(S(5(5(50)))
= 5

Notice that the example reduction given in Ex. 1.2.0.3 is terminating. A
natural question one could ask is, are all functions definable in system T terminating?
The answer is positive. There is a detailed proof of termination of system T in [59].
The proof is similar to how we show strong normalization for STLC in Section 6.3.
Termination is in fact guaranteed by the types of system T — in fact it is guaranteed by
the types of all the type theories we have seen up till now. Remember types are used
to enforce certain properties and termination is one of the most popular properties
types enforce.

Girard-Reynold’s System F. System T extended STLC with primitive re-
cursion, but it is not really that large of a leap forward, logically. However, a large
leap was taken independently by a French logician named Jean-Yves Girard and an
American computer scientist named John Reynolds. In 1971 Girard published his
thesis which included a number of advances in type theory one of them being an
extension of STLC with two new constructs [58, 59, 17]. In STLC we have term

variables and binders for them called A-abstractions. Girard added type variables
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and binders for them. This added the ability to define a large class of truly univer-
sal functions. He named his theory system F, and went on to show that it has a
beautiful correspondence with second order arithmetic [141]. He showed that every-
thing definable in second order arithmetic is also definable in system F by defining a
projection from system F into second order arithmetic. This shows that system F is
a very powerful type theory both computationally and as we will see later logically.
Later in 1974 Reynolds published a paper which contained a type theory equivalent to
Girard’s system F [115, 116]. Reynolds being in the field of programming languages
was investigating polymorphism. That is the ability to define universal (or generic?)
functions within a programming language. That is functions with generic types which
can be instantiated with other types. For example, being able to write a generic fold
operation which is polymorphic in the type of data the list can hold. In system T
or STLC this was not possible. We would have to define a new fold for each type of
list. Reynolds also showed that system F' is equivalent to second order arithmetic, in
a similar, although different, way Girard did [141].

The syntax for terms, types, and the reduction rules are defined in Figure 7
and the definition of the typing relation is defined in Figure 8. Similar to system T
we can easily see that system F is an extension of STLC. Types now contain a new
type VX.T which binds the type variable X in the type 7' . This allows one to define

more universal types allowing for the definition of single functions that can work on

4 Throughout this thesis we will use the term “generic” to mean that terms or programs
are written with the most abstract type possible. Try not to confuse this with generic
programming in the sense used in the design of algorithms.



Syntax:
T i= X|T - T'|VX.T
t o= z|dr: TH|AX t| | t[T]

Full S-reduction:

ook -TypeRed
Ca: T 0 [Pt " XD = [T/x] "
t ~ t, t ~s t/
N i Ttwde: T8 0 AX e AXp
b~ t{ ty ~> té
R_Appl R_App2

tl t2"’"> t{ tQ tl tgwtl té

t~st!

T~ er]

Figure 7. Syntax and reduction rules for system F

F,H]ZTll_tITQ

T T.UFz:T TFae: Tt T — T, ="
Fl_tllTl—>T2
rxe+=t:rT 'ty Ty
eAbs A
TEAX.¢-VX.T P TFtt: Th PP
TEt:VX. T
TypeApp

T+ t[T]: [T/X]|T"

Figure 8. Typing relation for the system F

22
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data of multiple different types. Terms are extended with two new terms the AX.¢
and ¢[7]. The former is the introduction form for the V-type while the latter is the
elimination form for the V-type. The former binds the type variable X in ¢ similarly
to the A\-abstraction. The latter is read, “instantiate the type of term ¢ with the type
T.” The typing rules make this more apparent. The formulation of system F we
present here is indeed Church style so terms do contain type annotations. We need
a reduction rule to eliminate the bound variable in AX .t with an actual type much
like application for A-abstractions. Hence, we extended the reduction rules of STLC
with a new rule R_TypeRed which does just that. We next consider some example

functions in system F.

Example 1.2.0.4.

Example functions with their types in system F':

Identity:

Type: VX.(X — X)

Term: AX. ) zx:X.x
Pairs:

Type: VX.VY. (X — (Y = (PAIRy X Y))))

Term: AXAY X z: X (Ay:YAZ(Xz: X = (Y = 2).((z2)y)))
First Projection:

Type: VX.VY.(PAIRy X V) — X))

Term: AX.AY.(Ap:PAIRmy X Y.((p[X]) (Az : XAy : Y.x)))
Second Projection:

Type: VYX.VY.(PAIRry X V) — Y))

Term: AX.AY.(Ap:PAIRty X Y.((p[Y]) Az : XAy : Y.y)))
Natural Number n:

Type: VX. (X = X) = (X — X))

Term: AX.(As: (X — X).(Az:X.(s"2)))
Note that in the previous example we used the definition

PAIRTy X Y £ VZ.(X - (Y = 2)) = 2)

for readability. We could have gone even further than natural numbers and pairs by
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defining addition, multiplication, exponentiation, and even primitive recursion, but
we leave those to the interested reader. For more examples, see [59]. The encod-
ings we use are the famous Church encodings of pairs and natural numbers. What
is remarkable about the encoding of natural numbers is that they act as function
iteration. That is for any function f from any type X to X and value v of type X
we have n [X] fv ~* f"v, where n is the term n in the above table.

There is one important property of TypeApp which the reader should take
notice of. Notice that there are no restrictions on what types T ranges over. That is
there is nothing preventing 7' from being V.X.T’. This property is known as impred-
icativity and system F is an impredicative system. The reader may now be questioning
whether or not this type theory is terminating. That is can we use impredicativity
to obtain a looping term? The answer was settled negatively by Girard and we will
see how he proved this in Section 6. The possibility of writing a looping term in this
theory depends on the ability to be able find a closed inhabitant of the type VX.X.
We call a term closed if all of its variables are bound. An inhabitant of a type T is
a term with type T. Such a term could be given the type T; — Ty and T which
would allow us to write a looping term. However, it is impossible to define a closed
term of type VX.X.

Stratified System F. Russell called impredicativity vicious circularity and
found it appalling. He actually took steps to remove it from his type theories all
together. To remove impredicativity — that is enforce predicativity — from his type

theories he added a second level of types which were used to organize the types of
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his theory. This organization made it impossible to instantiate a type with itself.
Predicative systems are less expressive than impredicative systems [82]. This means
that there are functions definable in an impredicative theory which are not definable
in its predicative version. In [82, 45] Daniel Leivant and Norman Danner define and
analyze a predicative version of Reynolds-Girard’s system F called Stratified System
F (SSF). They show that SSF is substantially weaker than system F. In fact we
will discuss the fact that SSF can be proven terminating by a much simpler proof
technique then system F suggesting that it is indeed weaker in Section 6.1. The
syntax and reduction rules for SSF are defined in Figure 9, kinding rules in Figure 10,

and typing rules in Figure 11. The objective of SSF is to enforce the property of

Syntax:

K = *1’ *9 ’

T = X|T—>T|VX :%,.T

t u= x| X TH|AX %ttt | t[T]

Full g-reduction:

R_B R- Red
Oz : Tt~ [zt oo (AX : %, 0)[T] ~ [T/X]t P
t~st! t~st!
_Lam _ eAbs
A Tt~ Ae: T e AX txp b~ AX Dyt e
ty ~ 1 ty ~ 1 t~t
_— _A _— _A —_——— , eA
bty tlfy T ity ot P {[T] ~ ¢[T] P

Figure 9. Syntax and reduction rules for SSF
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T T,
Dk Ty,
_Var _Arrow
DX %, 'F X%, " TET = Ts: by
DX ox, T %
P 1 K Forall

r-vx: *p.T . *maX(p-&-Lq)

Figure 10. Kinding relation for the SSF

predicativity on the types of system F. To accomplish this Leivant took the same
path as Russell in that he added a second layer of typing to system F. This second
layer is known as the kind level. Kinds are the types of types. The kinds of SSF are
the elements of the syntactic category K in the syntax for SSF. These are simply all
the natural numbers. We call these type levels. To stratify the types of system F
we use kinding rules to organize the types into levels making sure that polymorphic
types reside in a higher level than the types allowed to instantiate these polymorphic
types. The kinding rules are pretty straightforward. The one of interest is

DX vy BT,
IEVX . T 2 *max(p41,9)

K_Forall.

This is the rule which enforces predicativity. It does this by making sure the level
of VX : x,.T is at a larger level than X. This works, because all the types we
instantiate this type with must have the same level as X. We can easily see that

p < max(p+1,q) for all p and ¢q. Hence, resulting in the enforcement of our desired

property.
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THT:x, Co:Tiht: T,
To:T.TFa:T ThXe: Tt T — Ty
Tt T — Ty

Lrs: T DX sy bt T
Thtt: T, TEAX t#pf VX a7 P

F'Et:VX %, T
I'ET:x%,
CH¢T):[T/X]T

TypeApp

Figure 11. Typing relation for the SSF

A understandable question one could ask at this point is, are predicative the-
ories expressive enough to capture advanced mathematical reasoning, and real-world
programming? Unfortunately there is no correct answer at this time. This is a debat-
able question. Some believe predicative systems are enough and that impredicative
systems are too paradoxical [53]. In fact Hermann Weyl proposed a predicativist
foundation of mathematics. In his book [143] he developed a predicative analysis
using stratification to enforce predicativity. He goes on to show that a substantial
amount of mathematics can be done predictively.

I believe that impredicativity is not something that should be abolished, but
embraced. It gives theories more expressive power in an elegant way. This power
comes at a cost that reasoning about impredicative theories is more complex then
predicative theories, but this we think is to be expected. However, we do believe that

impredicativity needs to be better understood. At least in a computational light.
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System F“. In Girard’s thesis [58] Girard extends the type language of
system F with a copy of STLC. This type theory is called system F“. The syntax and
reduction rules are in Figure 12, the kinding rules in Figure 13, and the typing rules in
Figure 14. There are two kinds denoted Type and K; — K5. The formers inhabitants
are well-formed types, while the latter’s inhabitants are type level functions whose
inputs are types and outputs are types. There are only three forms of well-formed
types: variables, arrow types, and V-types. The additional members of the syntactic
category for types are used to compute types. These are A-abstractions denoted
AX : K.T and applications denoted T} T5. Note that in general these are not types.
They are type constructors. However, applications may be considered a type when
T, T5 has type Type, but this is not always the case, because STLC allows for partial
applications of functions.

The ability to compute types is known as type computation. Type-level com-
putation adds a lot of power. It can be used to write generic function specifications.
We mentioned above that system F allows one to write functions with more generic
types which allows one to define term level functions once and for all. Type level
computation increases this ability. In fact module systems can be encoded in system
F® [121]. There is one drawback though. Since terms are disjoint from types we
obtain a lot of duplication. For example, we need two copies of the natural numbers:
one at the type level and one at the term level. This is unfortunate. A fix for this
problem is to unite the term and type level allowing for types to depend on terms.

This is called dependent type theory and is the subject of Section 4. Using dependent



K == Type| K — K’
T w= X|T— T|VX:K.T|\X:K.T|T, Ty

Full S-reduction:

R_Beta
Oz : T4) 8~ [t/ '
t o~ t!
R_Lam
ATt~y T
tl ~ t{
—  R_Appl
bty ity
t o~ t!
——————  R.TypeA
T~ T’
TR-TypeLam

AX K. T~ AX K. T

T2 ~ TQ/
Tl T2 ~ Tl T2I

TR_TypeApp2

Type [-equality:

(AX . Kt)[T] ~ [T/X]t R_TypeRed
t~t
AX N Kt PUNY AX : Kt/ RnypeAbs
ty ~> té
R_App2

tl tg ~ tl té

AX :K.T)T' — [T"/X]|T

T1 ~ Tll
T1 T2 ~ Tll T2

TR-TypeAppl

e =

T=T Ty=s T,

Tl Eﬁ TQ
ﬂ Eq_-Trans Tl Eﬁ T2 Eq-Lam

Ty=3 Ts M KTy =g A\X K. T,

T =5 T} Th=5 T,

Tz =8 T2/ B A Tz =8 TQ/ Eq lmp
Ty To=s T| Ty, Ty — Tho=3 T, — T

T1 Eﬁ TQ

Eq-Forall Eq_Beta

VXKTl EQVXZK.TQ

(/\X . KTQ) Tl =3 [Tl/X]TQ

Figure 12. Syntax and reduction rules for system F*

TR_TypeBeta
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'+ Ty : Type
I'E T, : Type
T X:KI'FX:K =* TF T, — Ty Type v
X :KET: Type N'X: KiET: K,
TFVX: K.T:Type o TEAX KT K — Ky
F|_T12K1%K2
Fl_TglKl
'k Tl TQ . Kg K-App
Figure 13. Kinding rules of system F*
I'ET: Type Dx:TiEt: Ty
Te:T.UFz:T TFae:Thot:Th— T, ="
F|_t12T1—>T2
F,X:K'_t:TQ Fl_tngl
TypeAbs App
'-AX :Kt:VX:K.T I'Etity: Ts
TlEﬂ T2
I'E Ty : Type
't VX:K.T 't¢t: Ty
TypeApp Tri: Ty Conv

T+ ¢[T]: [T/X]T"

Figure 14. Typing relation for the system F*
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types and type-level computation we could amongst other things define and use only
a single copy of the natural numbers.

Logically, through the computational trinity (see Section 2) system F* corre-
sponds to higher-order logic, because we are able to define predicates of higher type.
This is quite a large logical leap forward from System F which corresponds to second
order predicate logic.

Throughout this section we took a brief journey into modern type theory. We
defined each of the most well-known type theories that are at the heart of the vast
majority of existing research in type theory and foundations of functional program-
ming languages. This was by no means a complete history, but whose aim was to

give the reader a nice introduction to the field.
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CHAPTER 2

THE COMPUTATIONAL TRINITY

The Merriam-Webster dictionary defines “computation” as “the act or action
of computing : calculation”, “the use or operation of a computer”, “system of reck-
oning”, or “an amount computed”. These meanings suggest computation is nothing
more than the process of mathematical calculation, but computation is so much more

than this. In fact there are three perspectives of computation:

Type Theory

12

Logic Category Theory

Each offering a unique position for studying computational structure. The figure
above illustrates that type theory, category theory, and logic are equals where the
symbol in the middle can be read as “isomorphic to.” That is all three fields look
very different, but can be treated as equivalent. Type theories — as we have seen
above — or typed A-calculi are essentially the study of functions where types en-
force some properties on these functions. Now as it turns out category theory is
basically the abstract study of mathematical structures using the abstraction of a
function called a morphism. Hence, in hindsight it is not surprising that type theory
and category theory are equals each offering a unique perspective of computation.

Less intuitive is the connection between these two fields and that of logic. Call-
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ing this beautiful relationship the computational trinity is non-standard. In fact I
am proposing that this terminology become standard. The standard names for this
relationship is the Curry-Howard correspondence (or isomorphism) or the proofs-
as-programs propositions-as-types correspondence. The first pays tribute to Haskell
Curry and William Howard. As we will see both Curry and Howard did have a hand
in making this ternary relationship explicit, but they were not the only ones. Hence,
this former name is unsatisfactory. The second only signifies the connection between
logic and type theory; it does not mention category theory. Thus, it is unsatisfactory.
Therefore, a better name for this relationship must become standard and I propose
the computational trinity. Robert Harper calls this connection the “Holy Trinity”
and the three way connection given above computational trinitarianism, but we have
chosen to not use religious metafors in computational research. Thus, we propose
the name “computational trinity” to emphasize the common structure between each
point, and the fact that it is a three way connection. We now move onto making this
relationship more precise. We only discuss the details of the correspondence of type
theory and logic, and type theory and category theory. The other correspondence
between logic and category theory follows similarly. Furthermore, we do not go into
complete detail of each of these correspondences, but we give plenty of references for

the curious reader.
2.1 Logic
Intuitionism began with Luitzen Brouwer. Implicit in his work was an inter-

pretation of the formulas of propositional and predicate intuitionistic logic as compu-
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tational objects. Brouwer’s student Arend Heyting made this interpretation explicit
for intuitionistic predicate logic against the advice of Brouwer. Brouwer believed
that intuitionistic logic should never be written down, but only exist in the mind
of the mathematician. Additionally, Andrey Kolmogorov defined this interpretation
for intuitionistic propositional logic. This interpretation has become known as the
Brouwer-Heyting-Kolmogorov-interpretation or the BHK-interpretation of intuition-
istic logic. Let’s consider this interpretation for intuitionistic propositional logic with
conjunction, disjunction, and implication. We denote arbitrary computational con-
structions as ¢ which can be built up from pairs of proof terms (%, t1), unary functions
denoted by A-abstractions, and injections for proof terms for sums inl(t) for inject
left and inr(t) for inject right. The BHK-interpretation defined in Def. 2.1.0.1 de-
fines the assignment of proof terms using these constructs to formulas of intuitionistic
propositional logic.

Definition 2.1.0.1.

The BHK-interpretation:

cr (A A Ag) < ¢ = (to,t1) such that tor Ay and t;r As.

cr(A1VA) < (c=inl(t) andtr Ay) or (c=inr(t) and tr As).

cr(Ay — As) <= cis a function, \x.t, such that for any dr Ay
()\l't)dTAQ

We say a construction c realizes A <= cr A.

This was the first step towards the correspondence between type theory and
logic. The second was due to Curry. We mentioned in Section 1 that Curry noticed
that the types of the combinatory logic correspond to the formulas of intuitionistic

propositional logic. This suggested that combinatory logic can be seen as a proof
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assignment to propositional logic. This was Curry’s main contribution to this line of
work. The third step was due to Howard. In [144] Howard revealed the correspon-
dence between STLC and intuitionistic propositional logic in natural deduction style.
He essentially uses the BHK-interpretation to assign proof terms to natural deduction
and then shows that this really is STLC. It is a beautiful result. More on this can
be found in [63, 144, 91, 92, 125, 135]. Since these early steps the correspondence
between logic and type theory has been developed quite extensively. Reynolds’ and
Girard extended this correspondence to second order predicate logic using system F,
and to higher order logic using system F* by Girard [141, 58]. We will see other
advances to this correspondence with logic in Section 4 where we discuss dependent
types.

There is one requirement a type theory must meet in order for it to correspond
to a consistent logic. Computational constructs such as objects of type theory must
be total (terminating). That is they must always produce a result. One part of the
correspondence between type theory and logic is that the reduction rules of the type
theory amount to the cut-elimination algorithm for the logic. That is, reducing terms
amounts to normalizing proofs. The validity of the cut theorem — states that any
non-cut-free proof can always be reduced to a cut-free one — implies consistency of
the logic. The cut theorem in type theory amounts to being able to prove that all
terms in the type theory are terminating. Speaking of cut elimination one might think
that this correspondence only holds for sequent calculi, but one can normalize natural

deduction proofs as well [109]. It is widely known that showing a type theory to be
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consistent — through the remainder of the thesis we will use the words consistent and
normalizing interchangeably — can be a very difficult task, and often requires advanced
mathematical tools. In fact a lot of the work going into defining new type theories
goes into showing it consistent. The type theories we have seen up till now are all
consistent. We will discuss in detail how to show type theories to be normalizing in

Section 6.

2.2 Category Theory
The year 1980 was a wonderful year for type theory. Not only did Howard show
that there exists a correspondence between natural deduction style propositional logic
and type theory, but Joachim Lambek also showed that there is a correspondence
between type theory and cartesian closed categories [1]. In this section we briefly
outline how this is the case and give an interpretation of STLC in a cartesian closed
category. Before we can interpret STLC we first summarize some basic definitions of

category theory. We begin with the definition of a category.

Definition 2.2.0.1.

A category denoted C,D, - - - is an abstract mathematical structure consisting of a set
of objects Obj denoted A, B,C,--- and a set of morphisms Mor denoted f,qg,h,---.
Two functions assigning objects to morphisms called src and tar. The function src
assigns a morphism its source object (domain object) while tar assigns its target object
(range object). We denote this assignment as f : A — B, where src(f) = A and
tar(f) = B. Now for each object A € Obj there exists a unique family of morphisms

called identities denoted idy : A — A. For any two morphisms f : A — B and
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g : B — C the composition of f and g must be a morphism go f : A — C.

Morphisms must obey the following rules:
f:A—B id: B— B f:A—B id: A— A
idof=f foid=f
c:C—>D b:B—C a:A— B

(cob)oa=co(boa)

In order to interpret STLC we will need a category with some special features.
The first of these is the final object.

Definition 2.2.0.2.

An object 1 of a category C is the final object if and only if there exists exactly one

morphism Q4 : A — 1 for every object A.

We will use the final object and finite products to interpret typing contexts. Finite

products are a generalization of the cartesian product in set theory.

Definition 2.2.0.3.

An object of a category C denoted A x B is called a binary product of the objects
A and B iff there exists morphisms m : Ax B — A and m : A X B — B such that
for any object C' and morphisms f; : C' — A and fy : C' — B there exists a unique
morphism f: C' — A X B such that the following diagram commutes (we denote the
fact that f is unique by \f):

<

C
s

v
A Ax B B.

The notion of a binary product can be extended in the straightforward way to

U1 T

finite products of objects denoted A; x --- x A,, for some natural number n. We will
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use finite products to interpret typing contexts in the category. We need one more
categorical structure to interpret STLC in a category. We need a special object that

can be used to model implication or the arrow type.

Definition 2.2.0.4.

An exponential of two objects A and B in a category C is an object B and an
arrow € : BA x A — B called the evaluator. The evaluator must satisfy the universal
property: for any object A and arrow f : A x B — C, there is a unique arrow,

f*: A — CP such that the following diagram commutes:

A X B ______________ - CB X B
We call f* the currying of f. By universality of € every binary morphism can

be curried uniquely. In the above definition we are using _ x _ as an endofunctor.
That is for any morphisms f : A — C and g : B — D we obtain the morphism
fxg:Ax B — C x D. We say a category C has all products and all exponentials if
and only if for any two objects in C the product of those two objects exists in C and

similarly for exponentials.

Definition 2.2.0.5.

A category C is cartesian closed if and only if it has a terminal object 1, all products,

and all exponentials.

This is all the category theory we introduce in this thesis. The interested reader

should see [42, 64, 81, 102] for excellent introductions to the subject.
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We now have everything needed to interpret STLC as a category. Our inter-
pretation follows that of [64]. The idea behind the interpretation is to interpret types
as objects and terms as morphisms. Now a term alone does not make up a morphism,
because they lack a source and a target object. So instead we interpret only typeable

terms in a typing context. That is we interpret triples (I', ¢, T) where ' ¢ : T.

Definition 2.2.0.6.

Suppose C is a cartesian closed category. Then we interpret STLC in the category

C by first interpreting types as follows:

A

[X] X
[T, — T»] = [Tx]I™]

Then typing contexts are interpreted in the following way:

[T,z :T] = [I]x[T]
Finally, we interpret terms as follows:

Variables:
Uy

[T, 22 Ty, To)] = ([0]) < [T] —— [T1]

A-Abstractions:

[Ty Az 2 Ty.t, Ty — To)] = [I] [T,z : Ty, t, To)]*

[T]t"

Applications:
[T, & 2, T2)] = 1]

In the previous definition X is just an additional object of the category. It

<H<F’ t, Ty — TQ)]]? [[<F7 b, Tl)]])

[T:]17) x [Ty] —— [T3]

does not matter what we call it. It does however need to be unique. This is how
we interpret STLC as a cartesian closed category. Modeling other type theories with
more advanced features follows quite naturally. It is not until we hit dependent types

where things change drastically.
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2.3 Impact

The reader may now be wondering what the benefits are of the computational
trinity if there are any at all. The three perspectives of computation are all just that.
They provide a unique angle on computation. To paraphrase [150] a good idea in one
can be moved over to the others and it can be very “fruitful” to to look at the idea
at each angle® .

Type theory can be seen as a foundation of typed functional programming
languages. After all they are typed A-calculi. Thus, the correspondence between type
theory and logic results in programming becoming proving. Programs are proofs and
their types are the propositions they are proving. This correspondence tells us exactly
how to add verification to our programming languages. We isolate in some way a
consistent fragment of our typed functional programming language. This fragment
becomes the logic in which we prove properties of the programs definable within
our programming language. So the benefit of the correspondence between logic and
type theory is that it allows one language for programming and stating and proving
properties of these programs.

The first use of the correspondence between logic and type theory for pro-
gramming and mathematics — that is proving theorems — was Automath. Automath
was a formal language much like a type theory devised by Nicolaas de Bruijn in the

late sixties. A large body of ideas in modern type theory came from Automath. It al-

T Actually, Zenger was talking about the connection between type theory and program-
ming, but we think it applies very nicely here.
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lowed for the specification of complete mathematical theories and was equipped with
a automated proof checker which was used to check the correctness of the formalized
theories. In fact Automath can be thought of as the grandfather to dependent type
theory. It was a wonderful line of work that resulted in a large number of great
ideas. One important thing was that de Bruijn independently from Howard stated
the correspondence between intuitionistic propositional logic and type theory [125].
The correspondence between type theory and category theory has many ben-
efits. The biggest benefit is that category theory is a very abstract theory. It allows
one to interpret type theories in such a way that one can see the basic structure of
the theory. It has also been extensively researched so when moving over to category
theory all the tools of the theory come along with it. This makes complex properties
about type theories more tractable. It can also be very enlightening to take an idea
and encode it in category theory. Develop the idea there and then move it over to
type theory. Often the complexities of syntax get in the way when working directly

in type theory, but these problems do not exist in category theory.



42

CHAPTER 3

CLASSICAL TYPE THEORY

Note that every type theory we have seen up till now has been intuitionistic.
That is they correspond to intuitionistic logic. We clearly state that all the work
Curry, Howard, de Bruijn, Girard, and others did was with respect to intuitionistic

logic. So a natural question is what about classical logic?

3.1 The \u-Calculus

The reason intuitionistic logic was the focus is that it lends itself very nicely
to being interpreted as a system of computation. That’s the entire point behind the
BHK-interpretation and the work of Brouwer. This, it seemed, was not the case
for classical logic, until Timothy Griffin’s seminal paper titled “A Formulae-as-Types
Notion of Control” [63]. This offered a typing to the control operator call/cc, and
to everyone surprise connected control operators to classical proofs. Later, Michel
Parigot constructed the Ap-calculus in 1992 [100]. Parigot was able to define a clas-
sical sequent calculus called free deduction which had a cut-elimination procedure
validating the cut-theorem for classical logic [99]. This allowed for Parigot to define
a computational perspective of free deduction which he called the Ap-calculus. This
type theory can be considered the first type-safe strongly normalizing classical type
theory. We now briefly introduce the Ap-calculus. The syntax and reduction rules
are in Figure 15.

We can think of the language of the Apu-calculus as an extension of the A-
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Syntax:

T,A,B,C == X|L1L|A—B

t t= x| Azt | pas |t b
s t= [a]t

Full g-reduction:

R_Beta R_Struc
O\z.t) '~ [t']1]t ' (nas) t' — [t/7a)s
t~st
[a](pupB.s) ~ [a/B]s foeneming Nt gt
s~ s t~st
—————————— RMu —————  R.Namin
.S~ oS’ [a]t ~ [a]t! ¢
t/ ~ t// t/ ~ t//
it U g

Figure 15. Syntax and reduction rules for the Ap-calculus

calculus. We extend it with two new operators. The first is the p-abstraction pa.s
where « is called a co-variable, an output port, or an output variable. We call the
p-abstraction a control operator. This name conveys the fact that the p-abstraction
has the ability to control whether a value is returned or placed into its bound output
port. The body of the p-abstraction must be a term called a statement denoted by
the metavariable s. Statements have the form [a]t. We can think of this as assigning
(or naming) an output port to a term. Now we extend the reduction rules with two
new reduction rules and two new congruence rules for the u-abstraction and naming
operator. The R_Struct rule is called the structural reduction rule. This allows one

to target reduction to a named subterm of the body of the p-abstraction. This rule
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t:T,A°F B, A s:TH A A
L DAFAA ™ MNiTFASBA "™ hasTraa M
b T/ - A, A
th:I'FA— B A t:I'HAA
tlt?:erll_B,A7A/ App [OZ]tZFI—Aa,A NameApp

Figure 16. Type-checking algorithm for the Ap-calculus

uses a special substitution operation [t/*«]s which says to replace every subterm of
s matching the pattern [o]t’ with [a](¢' t). We may also write [t/*a]t’ for the similar
operation on terms. This is called structural substitution.

As we said above the language of the Apu-calculus is an extension of the A-
calculus, but its type assignment is very different than STLC. The type assignment
rules are defined in Figure 16. Right away we can see a difference in the form of
judgment. We now have e : I' = A rather than I' - ¢ : 7. The former is in sequent
form. This is the orignal presentation used by Parigot. The feature of this is that it
malke it easy to see when the set of assumptions and conclusions are modified ! Think
of e : T'F A as e being a witness? of the sequent I' = A. Just as in the other type
theories we have seen, I is the typing context or the set of assumptions (input ports).

Keeping to the style of Parigot we denote elements of I' by A” instead of z : A. The

!This is not the only formalization we could have used. See [44] for another example
which is closer to the style we have been using for the earlier type theories.

2 Actually, “the witness”, because typing in unique.
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environment A is either empty -, a formula A, one or more co-assumptions or output
ports, or a formula A followed by one or more output ports. Negation is defined in
the same way as it is in intuitionistic logic. That is =4 =%/ A —_1. Note that in A
we always have L* (false) and in I" we always have T? (true) where T =1 — 1 for any
A and I trivially. We often leave these left implicit to make the presentation clean
unless absolutely necessary. These two facts hold because a sequent A;™,---, A;%
B, B,**,--- | B;" can be interpreted as (41" A---ANA;") = (BVB*V---V B")
where = is implication. Using this interpretation we can see that adding true to
the left and/or false to the right does not impact the logical truth of the statement.
This implies the following lemma.

Lemma 3.1.0.1. The following rules are admissible w.r.t. the Ap-calculus:

a fresh in A s:I'FA a fresh in A t:T'FL A
BtmlInt BtmElim

pos :I'ELA [a]t :TFA

The Ap-calculus is a classical type theory so it should be the case that the
law of excluded middle (LEM), A V —=A, holds, or equivalently the law of double
negation (LDN) =—A4 — A. Since we do not have disjunction as a primitive we show
LDN. Before showing the derivation of the LDN we first define some derived rules for
handling negation and sequent manipulation rules. The following definition defines
all derivable rules. We will take these as primitive to make things cleaner. We do not
show the derivations here, because they are rather straightforward.

Lemma 3.1.0.2. The following rules are derivable using the typing rules and the

rules of Lemma 3.1.0.1:
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t:T, A% L, A
Neglnt1
Aot T F—A A
tllrl__lA,A tgil_"_A,A
NegElim1
tl tg T "J_, A
a fresh in A s: A" FA
NeglInt2
Ax. s T A A
tllrl__lA,A tgil_"_A,A
NegElim2

tltgl]_j'_A

We are now in the state where we can prove =—A — A in the Au-calculus.

Example 3.1.0.3.

In this example we prove ——A — A. Suppose D is the following derivation:

Var

x: AV AT A
[a]x . —|—|Ay, AT A”

NameApp

Var NeglInt2
yi—\ﬁAyl——\—!A,Ao‘ )\.Z’.ILLB.[CK]wi_\_‘Ayl__\A,Aa |
Y ()\:I},uﬁ[og]x) s AY EL, A NegElim1
Then the final proof is as follows:
D
BtmElim
1B](y a.pflalz)) : ——AY - A
Mu
pe[B(y (Az.pB.Ja)r)) : =AY F A )

Ay.paec[f(y Az.pB.lalz)) - F——A — A
In the above example we leave out freshness constraints to make the presentation
cleaner. This example shows that the Ap-calculus really is classical. So from the log-
ical perspective of computation we gain classical reasoning, but do we gain anything
programmatically? It turns out that we do. We can think of the p-abstraction and
naming application as continuations which allow us to define exceptions. In fact a

great way of thinking about the u-abstraction pa.[5]t is due to Geuvers et al.:
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From a computational point of view one should think of pa.[B)t as a com-
bined operation that catches exceptions labeled o in t and throws the results

of t to B. [56]

Using this point of view we can define catch, ¢ and throw,, t.

Definition 3.1.0.4.

The following defines exceptions within the \u-calculus:

catch, t = po.lalt

throw, t = upB.[a]t, where (B is fresh

Using our reduction rules with the addition of pa.[a]t ~~ ¢ provided that « is

fresh in #3, we can easily define some nice reduction rules for these definitions.

Definition 3.1.0.5.

Reduction rules for exceptions:

catch,, (throw,, t) ~~ catch, t

throw,, (catchg t) ~ throw, ([a/(]t)

There are other reductions one might want. For the others and an extension of the

Au-calculus see [56].

3.2 The MA-Calculus
In the previous section we introduced classical type theories and defined the
Ap-calculus. We saw that it was a sequent style logic. In this section we define the
natural deduction equivalent of Au-calculus called the AA-calculus. After we define
the type theory we give a brief explanation of its equivalence to the Apu-calculus, but

we do not prove its equivalence. The AA-calculus was defined by Jakob Rehof and

3This is sometimes called 7-reduction for control operators.
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Syntax:
T,A,B,C == X| L1L|A—B
t n= x| A Tt|Ax: Tttt

Full g-reduction:

Beta

Az Tt)t! ~ [t']z]t

y fresh in ¢ and ¢
z fresh in ¢ and #/

(Az : =(Ty — To).t) t ~> Ay - = To. Az Ty — To.(y (2 1)) /2]t

StructRed

Figure 17. Syntax and reduction rules for the AA-calculus

Morten Sgrensen in Rehof’s thesis [112]. Their work on the AA-calculus was done
independently of the Au-calculus and they were not aware of their equivalence until
Parigot pointed it out. To our knowledge no actual proof was ever published, but
the proof is rather straightforward. The AA-calculus is an extension of STLC with
the LDN in the form of a control operator called A. Unlike the other type theories
we have seen we are going to first present the language and then the typing rules.
Lastly, we will define the reduction rules. It is our belief that the reduction rules may
be more clear after the reader sees the typing rules.

The language is defined in Figure 17* and the typing rules in Figure 18. We
give the formulation a la Church, but the formulation a la Curry does exist. We can

see that the syntax really is just the extension of STLC with the Az : T.t control

4We only include a subset of the reduction rules given by in Rehof and Sgrensen. Just
as before negation is defined just as it is in intuitionistic logic. For the others see [112].
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z:AFt:B Dz:—-AFt:L
x:Al'Fz: A var 'FXz:At:A— B bam 'EAz:-At: A Delta
Fl_tQIA
'+t:A— B
F}_tltle ApP

Figure 18. Type-checking algorithm for the AA-calculus

operator. This operator is the elimination form for absurdity 1. We can see this
connection by looking at its typing rule Delta. Here we assume —A and show |, and
obtain A. We can use this rule to prove LDN:

Example 3.2.0.1.

Suppose I’ o x:—=A y:—A. Then the proof of ~—A — A in the AA-calculus:

—  Var — Var
'Fz:--4 Fy:-4

l'Fzy:L
z:—AFAy:—-A(zy): A
FXz A Ay —A(zy)) —A = A

App

Delta

Lam

The AA-calculus is equivalent to the Apu-calculus. The following definition
gives an embedding from the Ap-calculus to the MA-calculus.

Definition 3.2.0.2.

The following embeds the Church style formulation of the \u-calculus into the AA-
calculus:

Context:



I, A% = |Il,z: A

A, A% = |Al,z : = A, where z is fresh in |A]

Terms and Statements:

|z ] =z

|a] =y, for some fresh variable y
Az At] = Az Alt]

|t o = |tk

|pa: As| == Az —A|s|®

laftly = =]

[a]t]? = z|t|, where « is distinct from [ and z is fresh in t
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Using the previous definition we can now prove that if a term is typeable in

the Ap-calculus then we can construct a corresponding term of the same type in the

AA-calculus.

Lemma 3.2.0.3.

i. If t : T F A A then T, |A| |t : A.

i, If t : T A then T |A F [¢] - L.

The previous lemma establishes that the AA-calculus is at least as expressive — in

terms of typeability — than the Ap-calculus. It so happens that we can prove that

the Apu-calculus is at least as strong as the AA-calculus which implies that both

type theories are equivalent with respect to typeability. We assume without loss of

generality that the typing context I' is sorted so that all negative types come after all

positive types. A negative type is of the form —A.
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Definition 3.2.0.4.

The following embeds the Church style formulation of the NA-calculus into the Aji-

calculus:

Contexts:

[fFExl:Al,...,xi:Ai,yl:—\Bl,...,yj:—\Bj, then
|$1IA1,...,$Z‘IA1" = Alxl,...,AiziEFu
ln : =By,...,y; : B;| = B™,...,B% =A

Terms:

|z =

Az : At = Az At

|11 o] = |tk

Az : —At| := papl|t|, where o £ S

Similar to the previous embedding we can now prove that all inhabited types of the

AA-calculus are inhabited in the Au-calculus.

Lemma 3.2.0.5. IfI'tt: A then|t|: T, F A A.

Both of the above lemmas can be proven by induction on the form of the assumed
typing derivations. This equivalence extends to the reduction rules as well, but the
reduction rules are not step by step equivalent. Terms of the AA-calculus will have
to do more reduction than the corresponding terms of the Ap-calculus. We do not

show this here.
3.3 Beautiful Dualities
There are some beautiful dualities present in classical logic. We say a mathe-

matical or logical construct is dual to another if there exists an involution translating

each construct to each other. An involution is a self invertible one-to-one correspon-
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dence. That is if 7 is an involution then i(i(z)) = x. Now in classical logic negation is
self dual, by De Morgan’s laws conjunction is dual to disjunction and vice versa, and
existential quantification is dual to universal quantification and vice versa. These du-
alities lead to wonderful symmetries in Gentzen’s sequent calculus. One can see these
symmetries in the rules for conjunction and disjunction. They are mirror images of
each other. These beautiful dualities are not only found in classical logic, but even
exist in intuitionistic logic. However, the dualities in intuitionistic logic are not well

understood from a type theoretic perspective.

3.3.1 The Duality of Computation

The Mpji-calculus. Pierre-Louis Curien and Hugo Herbelin put these duali-
ties to work in a very computational way. They used these dualities to show that the
call-by-value reduction strategy (CBV) is dual to the call-by-name reduction strategy
(CBN). To do this they crafted an extension of the Ap-calculus formalized in such
a way that the symmetries are explicit [44]. They are not the first to attempt this.
Andrzej Filinski to our knowledge was the first to investigate dualities with respect
to programming languages in his masters thesis [54]. It is there he investigates the
dualities in a categorical setting. Advancing on this early work Peter Selinger gave a
categorical semantics to the Au-calculus and then used these semantics to show that
CBYV is dual to CBN [119]. However, Selinger’s work did not provide an involution
of duality. In [119] Selinger defines a new class of categories called control categories.
These provide a model for control operators. He takes the usual cartesian closed cat-

egory and enriches it with a new functor modeling classical disjunction. While this
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is beautiful work we do not go into the details here.

Following Filinski and Selinger are the work of Curien and Herbelin, while
following them is the work of Philip Wadler. Below we discuss Curien and Herbelin’s
work then Wadler’s. Before going into their work we first define call-by-value and
call-by-name reduction.

The call-by-value reduction strategy is a restriction of full S-reduction. It is
defined for the Apu-calculus as follows. We first extend the language of the A\u-calculus

by defining two new syntactic categories called values and evaluation contexts.

vo=x| At | pact
E:=0|FEt|vE|[o]E

Values are the well-formed results of computations. In the Au-calculus we only con-
sider variables, A-abstractions, and p-abstractions as values. The evaluation contexts
are defined by F. They give the locations of reduction and reduction order. They tell
us that one may reduce the head of an application at any moment, but only reduce
the tail of an application if and only if the head has been reduced to a value. This is

called left-to-right CBV and is defined next.

Definition 3.3.1.1.

CBYV s defined by the following rules:

Beta Struct Naming

(Az.t) v~ [o/alt (nov.s) v~ [v/"als [ (uB-s) ~ [/ B]s

t~st
Eft] ~ E[t]

Context

A similar definition can be given for right-to-left CBV, but we do not give it here.
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CBN can now be defined. We use the same definition of values as for CBV,

but we redefine the evaluation contexts.

E:=0|FEt|[a|E| pa.E

Definition 3.3.1.2.

CBN is defined by the following rules:

Beta Struct Naming

(Az.t) 8"~ [t/ ]t (navs) b~ [t/*als [ (uB.s) ~ [/ B]s

t~st
E[t] ~ E[t']

Context
The difference between CBN and CBV is that in CBN no reduction takes place within
the argument to a function. Instead we wait and reduce the argument if it is needed
within a function. If the argument is never used it is never reduced. CBN in general
is less efficient than CBV, but it can terminate more often than CBV. If the argument
to a function is divergent then CBV will never terminate, because it must reduce the
argument to a value, but CBN may terminate if the argument is never used, because
arguments are not reduced.

At this point we would like to give some intuition of why CBYV is dual to CBN.
We reformulate an explanation due to Curien and Herbelin in [44]. To understand
the relationship between CBN and CBV we encode CBV on top of CBN using a new
term construct and reduction rule. It is well-known how to encode CBN on top of
CBV, but encoding CBV on top of CBN illustrates their relationship between each

other. Suppose we extend the language of the CBN Ap-calculus with the following

term:
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tu=...|letx = Fint

This extends the language to allow for terms to contain their evaluation contexts.

Then we add the following reduction rule:

LetCtx
v(letx =0int) ~ [v/x]t o

Using this new term and reduction rule we can now encode CBV on top of CBN.

That is a CBV redex is defined in the following way:

(Ax.t)epy t' ==t (lety = Oin (Ax.t)y)

Now consider the following redex:

(ux.s) (letx = Oint)

We can reduce the previous term by first reducing the p-redex, but we can also
start by reducing the let-redex, because p-abstractions are values. However, the two
reducts obtained from doing these reductions are not always joinable. This forms
a critical pair and shows an overlap between the LetCtx rule and the p-reduction
rule. This can be overcome by giving priority to one or the other redex. Now if we
give priority to p-redexes over all other redexes then it turns out that the reduction
strategy will be all CBN, but if we choose to give priority to the let-redexes over
all other redexes then all terms containing let-redexes will be reduced using CBV,
because the let-expression forces the term we are binding to x to be a value. What
does this have to do with duality? Well the let-expression we added to the A\u-calculus

is actually the dual to the p-abstraction. To paraphrase Curien and Herbelin [44]:
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The CBYV discipline manipulates input in the same way as the Ap-calculus
manipulates output. That is computing t1ty can be viewed as filling the
hole of the context t; 1 with the result of ty — its value — hence this value
of to is an input. This seems dual to passing output values to output ports

i the Ap-calculus.

This tells us that to switch from CBN to CBV we take the dual of the p-abstraction
suggesting that CBV is dual to CBN and vice versa. This was the starting point of
Curien and Herbelin’s work. They make this relationship more precise by defining
an extension of the A\p-calculus with duals of A-abstractions and p-abstractions. This
requires the dual to implication. Let’s define Curien and Herbelin’s extension of
the Ap-calculus and then discuss how they used it to show that CBV is dual to
CBN. Curien and Herbelin called their extension of the Ay-calculus the Apjfi-calculus.
Despite the ugly name it is a beautiful type theory. Its syntax and reduction rules
are in Figure 19 and its typing rules are in Figure 20.

The new type A— B is the dual to implication called subtraction. It is logically
equivalent to A A =B which is the dual to =A V B which is logically equivalent to
A — B. The syntactic category ¢ are called commands. They have the form of (v | e)
where v is a computation and e is its environment. Commands essentially encode an
abstract stack machine directly in the type theory. We can think of e as the stack of
terms to which v will be applied to. It also turns out that logically commands denote
cuts using the cut-rule of the underlying sequent calculus. Values defined by the

syntactic category v come in three flavors: variables, A-abstractions, p-abstractions,
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T,A,B,C == 1 |X|A—B|A-B
c = (v]e)
v o= z|Az.ov|pac|e-wv
e == «alfz.clv-e|PAe

CBYV reduction:
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Az.vy | vy - €) ~ (] iz {vy | €)) ft-Beta (uB.cle)y ~ [e/Blc R-Mu
(v|fiz.c) ~ [v/z]c f (e~ v ]| BA.er) ~ (uB.(v|e) | e) R-CoBeta
¢~ c
W E_Ctx

Figure 19. The Syntax and Reduction Rules for the Apji-Calculus

Terms:
z:AFwv:B|A
Dx:AFz:AlA var F'FXzv:A— B|A b
I'le:AFA
c:(T'FB:B,A) 'Fov:B|lA
Mu CoCtx
'k uB.c: B|A 'Fe-v:B—A|A
Contexts:
c:(Tyz: Ak A)
Tla:AFa:AA O™ Tlizc:AFA O™
F'Fo:A|A
['le:BFA I'le:BFpB:AA
Tlv-e:AsBFA * T(fre:B_AFA o
Commands:
'Fo:A|A
I'fe:AFA
(vley: TFA) ™

Figure 20. The Typing Rules for the Auji-Calculus
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and co-contexts denoted by e - v. These can be thought of as the computations to
give to the co-A-abstraction and their output routed to an output port bound by
the co-A-abstraction. Finally, we have expressions or co-terms which come in four
flavors: co-variables (output ports), fi-abstractions, contexts, and co-A-abstractions.
The fi-abstraction is the encoding of the let-expression we defined above. We write
letz = Oinv as fiz.(v|e) where e is the evaluation context for v. Thus, the fi-
abstraction is the dual to the p-abstraction. Now contexts are commands. These
provide a way of feeding input to programs. Co-M-abstractions denoted SA.e are
the dual to A-abstractions. In stead of taking input arguments they return outputs
assigned to the output port bound by the abstraction. We can see that this is a
rather large reformulation/extension of the Au-calculus. Just to summarize: Curien
and Herbelin extended the Apu-calculus with all the duals of the constructs of the
Ap-calculus.

Now reduction amounts to cuts logically, and computationally as running these
abstract machine states we are building. Programming and proving amounts to the
construction of these abstract machines. Other then this the reduction rules are

straightforward. The typing algorithm consists of three types of judgments:

Commands: c¢: (I'F A)
Terms: FFov:A|A
Contexts: I'|e: AFA

As we said early the command typing rule is cut while the judgment for terms and
contexts consist of the left rules and the right rules respectively. The bar | separates
input from output or left from right. Finally, using this type theory Curien and

Herbelin define a duality of the A\ufi-calculus into itself. Then using this duality they
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T,A,B,C == X|AANB|AVB|-A
t,a,b,c z|(a,b)|inlt|inrt| [k]not|(s).«
k,l allk,1]| fstk| snd k | not[t] | z.(s)
s n= t-k

Figure 21. Syntax of the Dual Calculus

show that starting with the CBN Apji-calculus and taking the dual one obtains the
CBV \pji-calculus.
3.3.2  The Dual Calculus

Philip Wadler invented a type theory equivalent to Curien and Herbelin’s A/i-
calculus called the dual calculus [139]. What we mean by equivalent here is that both
correspond to Gentzen’s classical sequent calculus LK, but both type theories are
definitionally inequivalent. The difference between the two type theories is that the
Mufi-calculus is defined with only negation, implication, and subtraction. Then using
De Morgan’s laws we can define conjunction and disjunction. However, the dual
calculus is defined with only negation, conjunction, and disjunction. Then we define
implication, which implies we may define A-abstractions. This is a truly remarkable
feature of classical logic.

The syntax of the dual calculus is defined in Figure 21. It is similar to the
Mfi-calculus, consisting of types, terms, coterms (continuations), and statements. As
types we have propositional variables, conjunction, disjunction, and negation. Note

that negation must be a primitive in the dual calculus rather than being defined.
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Terms in the dual calculus are variables, the introduction form for conjunction called
pairs denoted (a, b), the introduction forms for disjunction denoted inlt and inr¢
which can be read as inject left and inject right respectively. The next term is the
introduction form of negation denoted [k]not. The final term is a binder for coterms
and is the computational correspondent to the left-to-right rule. It is denoted (s).a.
This can be thought of as running the statement s and then routing its output to
the output port a. The continuations or coterms are the duals to terms and consist
of covariables denoted «, copairs denoted [k,![], the duals of inject-left and inject-
right called first and second denoted fstk and snd k respectively. The next coterm
is the elimination form of negation denoted not[t] which can be thought of as the
continuation which takes as input a term of a negative formula and routes its output
to some output port. Finally, the dual to binding an output port is binding an input
port. This is denoted z.(s). Now statements are the introduction of a cut and are
denoted t - k. Computationally, we can think of this as a command which runs the
term ¢ and routes its output to the continuation £ which continues the computation.

The reduction rules for the dual calculus are in Figure 22 and the typing
rules are in Figure 23. The reduction rules correspond to cut-elimination and can be
thought of a simplification process on proofs. Computationally they can be thought
of as running programs with their continuations. We derive three judgments from the

typing rules for terms, coterms, and statements. They have the following forms:

Terms : T'FA—t—= A
Coterms : F'FA+— Lk A
Statements: I'F A <« s

The syntax of judgments are different from Wadler’s original syntax. Here we use
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(e a)awa EtaR Py PRy Etal, 5o = Th/als BetaR
a-z.(s) ~ [a/x]s Petal [k]not - not[a] ~ a -k BetaNeg
inla [k 1] —a-F BetaCoProd1 | B BetaCoProd2
(a,b) - fstk —a-k et ) edh S b e

Figure 22. Reduction Rules for the Dual Calculus

the arrows to indicate data flow. One meaning for the judgment I' - A < t — A is
that when all the variables in I' have an input in ¢ then computing ¢ either returns
a value of type A or routes its output to a covariable in A. One meaning for the
judgment I' H A <— k£ < A is when the continuation gets input for all the variables
in I' and gets an input of A it computes a value which is stored in an output port in
A. Finally, the meaning of I' = A < s is that after the s is done computing it stores
its output in an output port in A. Each judgment has a logical meaning. The typing
rules for terms correspond to the right rules of LK, and the typing rules correspond
to the left rules of LK, while the judgment for statements correspond to the cut rule
of LK.

It has been said that Wadler invented the dual calculus when reading Curien
and Herbelin’s paper and found the subtraction operator confusing. This was his

reason for going with conjunction and disjunction instead of implication. He knew



Terms:

Tz AFA«z—4 M8

I'FA+—a— A
'A<+ inla— AV DB

t_CoProdl

''FA+— Lk« A

'FA+~a— A
''FA«~b— B

'A<+ {(a,b) > AAB

t_Prod

''FA+~b— B
'A<« intrb— AV B

t_CoProdr

A a: A<« s

TEA« [Knot — -4 % TFA ()aod ™
Coterms:
I'FA+ Lk« A
'A<« [+ B
TFAa:Acaca " TEA« [k« AvB O
'FA«+ k<« A 'FA«+~ k<« B
TFA« fstheAnB "7 TEAc sndk—Anp 0
F'-A«+~t— A z:AFA <+ s
TFA« not[t] « -4 7 TFacsm cad "
Statements:
'FA«+t— A
'A<k« A
TEA< ¢k st_Cut

Figure 23. Typing Rules for the Dual Calculus
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that conjunction and disjunction are duals in a well-known way unlike implication
and subtraction. Then using negation, conjunction, and disjunction he defined impli-
cation, A-abstractions, and application. Now the definition of these differs depending

on which reduction strategy is used.

Definition 3.3.2.3.

Under CBN Implication, A-abstractions, and application are defined in the following

way:
A—B = (mA)VB
Azt = (inl([z.((inrt) - @)]not) - o).«
tk = [not[t], k]

Under CBV Implication, A-abstractions, and application are defined in the following

way:

A— B = —|(A A —|B)
Az.t = [z.(z - fst(z.(z - snd(not[t]))))]not
tk = not[(t, [k]not)]

Notice that the two ways of defining implication in the previous definition are
duals. Wadler used the dual calculus to show that CBV is dual to CBN in [139] just
like Curien and Herbelin did in [44]. However, in a follow up paper Wadler showed
that his duality of the dual calculus into itself is an involution [140]. This was a step
further than Selinger. While Curien and Herbelin’s duality was an involution they
did not prove it. In his follow up paper Wadler also showed that the CBV A\u-calculus
is dual to the CBN Apu-calculus by translating it into the dual calculus and taking the

dual of the translation, and then translating back to the Apu-calculus.
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CHAPTER 4

DEPENDENT TYPE THEORY

All the type theories we have seen thus far consist of what are called “non-
dependent types”. These are types which do not depend on terms. System F“ is an
advance where there is a copy of STLC at the type level, but this is not a dependency,
hence, system F“ is still simply typed. So it is natural to wonder if it is beneficial
to allow types to depend on terms. The answer it turns out is yes. Much like the
history of System F, dependent types came out of two fields: programming language
research and mathematical logic. As we mentioned above, the first practical applica-
tion of the computational trinity was a system called Automath which was pioneered
by de Bruijn in the 1970’s [27]. It also turns out that Automath’s core type theory
employed dependent types, and many claim it to be the beginning of the research
area under the umbrella term “dependent type theory”. Since the work of de Bruijn
a large body of research on dependent type theory has been conducted. We start

with the work of Per Martin-Lof.

4.1 Martin-Lof’s Type Theory
Martin-Lof is a Swedish mathematical logician and philosopher who was in-
terested in defining a constructive foundations of mathematics. The foundation he
defined he called Type Theory, but what is now referred to as Martin-Lof’s Type
Theory [52, 88]. It is considered the first full dependent type theory. Type The-

ory is defined by giving a syntax and deriving three judgments. Martin-Lof placed
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S = Type| True

T A,B,C == X|T| L|A+B|llz:AB|Xz:AB

t,s,a,b,c = z|tt| Az At|tte|(t,t)|casesof z,y.t|casesof z.t;, y.ty |
abort

Figure 24. The syntax of Martin-Lof’s Type Theory

particular attention to judgments. In Type Theory types can be considered as specifi-
cations of programs, propositions, and sets. Martin-Lof then stresses that one cannot
know the meaning of a type without first knowing what its canonical members are,
knowing how to construct larger members from the canonical members, and being
able to tell when two types are equal. To describe this meaning he used judgments.
The judgments are derived using inference rules just as we have seen, and they tell
us exactly which elements are canonical and which can be constructed from smaller
members. There is also an equality judgment which describes how to tell when two
terms are equal. Martin-Lof’s Type Theory came in two flavors: intensional type
theory and extensional type theory. The difference amounts to equality types and
whether the equality judgment is distinct from the propositional equality or not. The
impact of intensional vs extensional is quite profound. The latter can be given a
straightforward categorical model, while the former cannot. We first define a basic
core of Martin-Lof’s Type Theory and then we describe how to make it intensional
and then extensional.

The syntax of Martin-Lof’s Type Theory is defined in Figure 24. The language
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consists of sorts S denoted Type and True. The sort Type is a type universe and has
as inhabitants types. It is used to classify which things are valid types. The sort
True will be used when treating types as propositions to classify which formulas are
true. The second part of the language are types T. Types consist of propositional
variables X, true or top T, false or bottom L, sum types A + B which correspond to
constructive disjunction, dependent products Iz : A.B which correspond to function
types, universal quantification, and implication, and disjoint union Xz : A.B which
correspond to pairs, constructive conjunction and existential quantification. We can
see that dependent products and disjoint union bind terms in types, hence, types
do depend on terms. The third and final part of the language are terms. We only
comment on the term constructs we have not seen before. The term tt is the inhabitant
of T and is called unit. We have a term which corresponds to a contradiction called
abort. Finally, we have two case constructs: case s of z, y.t and case s of z.t, y.t5. The
former is the elimination form for disjoint union and says if s is a pair then substitute
the first projection for z in ¢ and the second projection for y in ¢. Having the ability
to project out both pieces of a pair results in the disjoint union also called ¥-types
being strong. A weak disjoint union type is one in which only the first projection of a
pair is allowed . The second case construct case s of z.t, y.t; is the elimination form
for the sum type. This says that if s is a term of type A + B, but is an inhabitant of
the type A then substitute a for z in #, or if s is an inhabitant of B substitute it for
y in t. This we will see is the elimination form for constructive disjunction.

In dependent type theory we replace arrow types A — B with dependent
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product types Ilz : A.B, where B is allowed to depend on z. It turns out that we can
define arrow types as Iz : A.B when z is free in B; that is, B does not depend on z.
We will often abbreviate this by A — B. Recall that the arrow type corresponds to
implication. The dependent product type also corresponds to universal quantification,
because it asserts for all terms of type A we have B, or for all proofs of the proposition
A we have B. Additionally, in dependent type theory we replace cartesian product
A x B by disjoint unions Xz : A.B where B may depend on z. The inhabitants of
this type are pairs (a, b) where b may depend on a. Now simple pairs can be defined
just like arrow types are defined using product types. The type A x B is defined by
Yz : A.B where B does not depend on z. Then b in the pair (a, b) does not depend
on a. We can define projections for simple pairs as follows:

mt = casetofz,y.x
mot = casetofz,y.y.

The kinding rules are defined in Figure 25. These rules derive the judgment
I' = T : Type which describes all well-formed types — inhabitants of Type. Now types
are also propositions of intuitionistic logic. The judgment I' = T : True describes
which propositions are true constructively. The rules deriving this judgment are in
Figure 26. Note that while L is a type, it is not a true proposition. This judgment
validates the correspondence between types and propositions. In fact we could have
denoted Ilz : A.BasVx : A.Band Xz : A.B as dz : A.B. The typing rules are defined
in Figure 27. We include the typing rules for the derived forms for arrow types and
cartesian products. These can be derived as well. The rules here are straightforward,

so we only comment on the elimination rule for sum types. The rule is defined as
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I'z: AF B : Type

THL:Type 0™  TFET:Type ™  TrFz:AB:Type ¢
I'EA: Type
' B : Type Iz:AF B : Type
K_Prod K_Pi

I'FAXx B : Type I'F1Ilz : A.B : Type
' A: Type ' A: Type
I'E B : Type ' B : Type

I'FA— B:Type -Aow I'A+ B : Type ft-Coprod

Figure 25. Kinding for Martin-Lof’s Type Theory

' A: True
'+ B : True I'x:AF B : True .
' T : True Frue ' Ax B: True Hhrod I'FIlz: A.B : True Lrorall
'kt A
I'E1lz : A.B : True ') X : Truek A: True '
Tk [t/z]B: True o TFX = A:True ™
I'E X : True
'FX — A: True ' A: True ' '+ B : True .
TF A: True M T AT B True " TEA+B:True O
I'A+ B: True
[VA: Truet C: True =t A
I')B: Truet C : True ['F[t/z]B : True .
I'E C: True ROre 'Yz :A.B: True b
z freshin C

'Yz :AB: True
Iz:A B: Truek C: True

I'E C: True

LExte

Figure 26. Validity for Martin-Lof’s Type Theory
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't A
' '+ A: Type I'Eb:[t/z]B
Trhee.T T,o:AFz:4 TF(tb):%:AB
z,y freshin C
I'kFs:¥zx: AB 'Fa:A
Iz:Ay:BFc:C I'b:B
I'Fcasesof z,y.c: C Cosel 'k (a,b): AxB Frod
'Fec:AXB I'Fc:Ax B z:AFt: B _
Thme:d o Trmc:B 0 Tri:At:lz:AB
't A z freshin B
I'tt¢:1lz: A.B Iz:AFt: B
Appl Arrow
'ttt [t/z]B I'FXz:At:A— B
't A ' B : Type I'FA: Type
'+t:A— B I'Fa:A I'Eb:B
reer:B " Tra:a+B " Trb:Arp
'-s:A+ B
Lz:AFc: C
Iy:BFd:C I'EA: Type
Case2 Abort
I'Fcasesof z.c,y.c’: C [z :1Fabort: A
'Fa:A
'Fa=b:A
Thb.4 O™

Figure 27. Typing Rules for Martin Lof’s Type Theory
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'Fa=0b:A
'Fa:A 'Fa=10b:A 'Fb=c: A
Thra=a:4 " Trbo=a:4 ™™  Tra=c.a "M
'Fa:A
'Fa:T . I'b:B
TFa—tt:T o0 'Fa=m(a,b): A Fatt
'Fa:A 'Et: A
I'b:B I'z:AFb:B
Eq-Snd Eq-Beta

TFb=m(ab):B Tk (A\e:Ab)t=[t/z]b: [t/z]B

't :1lz: A.B
I'Fty=X:A(tyz):1lz: AB

Eq_Eta

'Fa:A
Ie:AFc: C
Ly:BFd:C
Eq_-Casel
I'Fcaseaof z.c,y.c’ = [a/z]c: [a/x]C
'-b:B
Iz:AFc: C
y:BF:C
Eq_-Case2

I'Fcasebof x.c,y.c’ = [b/z]|c" : [b/z]C

'=t:T
C'ka:[t/z]A
Le:T,y:A-b: B

['F case (t,a)of z,y.b = [t/z][a/y]b : [t/z][a/y] B

Eq-Case3

Figure 28. Equality for Martin-Lof’s Type Theory
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'Fs: A+ B
z:AFc: C
y:BFd:C

Case2.
I'kFcasesofx.c,y.c’: C

We mentioned above that this rule corresponds to the elimination form for construc-
tive disjunction. This rule tells us that to eliminate A V B we must assume A and
prove C' and then assume B and prove C, but this is exactly what the above rule
tells us. The computational correspondence is that the case construct gives us away
to case split over terms of two types.

As it stands Martin-Lof’s Type Theory is a very powerful logic. The axiom of
choice must be an axiom of set theory, because it cannot be proven from the other
axioms. The axiom of choice states that the cartesian product of a family of non-
empty sets is non-empty. Martin-Lof showed in [88] that the axiom of choice can
be proven with just the theory we have defined thus far in this section. Thus, one
could also prove the well-ordering theorem. This is good, because it shows that Type
Theory is powerful enough to be a candidate for a foundation of mathematics. This is
also good for dependent type based verification, because we can formulate expressive
specifications of programs.

The final judgment of Martin-Lof’s Type Theory is the definitional equality
judgment. It has the form I' - a = b : A. The rules deriving this judgment tell us
when we can consider two terms as being equal. Then two types whose elements are
equal based on this judgment are equal. The equality rules are defined in Figure 28

where we leave the congruence rules implicit for presentation purposes.
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These rules look very much like full S-reduction, but these are equalities. They
are symmetric, transitive, and reflexive unlike reduction which is not symmetric. This
is a definitional equality and it can be used during type checking implicitly at will

using the following rule:

I'Fa:A
'Fa=0b:A
TFb.4 ™

We now describe when Martin-Lof’s Type Theory is extensional or intensional.
Extensional Type Theory. In extensional type theory our equality judg-
ment is not distinct from propositional equality. To make Martin-Lof’s type theory

extensional we add the following rules:

Kinding Typing
I'E A: Type
'kFa:A
'Eb: A 'Fa=b:A THkHit:ldAab

F'FldAab:Type TI'Htt:ldAab ThHa=0b:A4

Using these rules we can prove all of the usual axioms of identity: reflexivity, transi-
tivity, and symmetry [88]. Notice that these rules collapse definitional equality into
propositional equality. The right most typing rule is where extensional type theory
gets its power. This rule states that propositional equations can be used interchange-
ably anywhere. This power comes with sacrifice, some meta-theoretic properties one
may wish to have like termination of equality and decidability of type checking no
longer hold [127, 128].

Intensional Type Theory. Now to make Martin-Lof’s Type Theory inten-

sional we add the following rules:
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Kinding: Typing:
Fkc:ldAab Iye: A d: B(z,z,r(z))
'Fa:A Doz Ay A z:ldAzyt B(z,y,z): Type
F'kFr(a):ldAaa I'FJ(d,a,b,c): B(a,b,c)
Equality:
'Fa:A

I'FJ(d,a,a,r(a)) =da: B(a,a,r(a))

As we can see here propositional equality is distinct from the definitional equality
judgment. In the above rules r(a) is the constant denoting reflexivity, and J(a, b, ¢, d)
is just an annotation on d with all the elements of the equality. Using these we can
prove reflexivity, transitivity, and symmetry. We do not go into any more detail
here between intensional and extensional type theory, but a lot of research has gone
into understanding intensional type theory. Models of intensional type theory are
more complex than extensional type theory. Recently, there has been an upsurge of
interest in intensional type theory due to a new model for type theory where types
are interpreted as homotopies [16]. See [127, 128, 67, 69] for more information.

We said at the beginning of this section that we would only define a basic core
of Martin-Lof’s type theory. We have done both for intensional Type Theory and
extensional Type Theory, but Martin-Lof included a lot more than this in his classic
paper [88]. He included ways of defining finite types as well as arbitrary infinite types
called universes much like Type. He also included rules for defining inductive types
which in the design of programming languages are very useful [48].

The universe Type contains all well-formed types. It is quite natural to think
of Type as a type itself. This is called the Type : Type axiom. In fact Martin-Lof did

that in his original theory, but Girard was able to prove that such an axiom destroys
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the consistency of the theory. Girard was able to define the Burali-Forti paradox in
Type Theory with Type : Type [35, 36]. Now Type : Type is inconsistent when the
type theory needs to correspond to logic, but if it is used purely for programming it
is a very nice feature. It can be used in generic programming [28]. In Martin-Lof’s
Type Theory without the Type : Type axiom types are program specifications, hence,

the theory can be seen as a terminating functional programming language [96].

4.2 The Calculus of Constructions
An entire class of type theories called Pure Type Systems may be expressed
by a very simple core type theory, a set of type universes called sorts, a set of axioms,
and a set of rules. The rules specify how the sorts are to be used, and govern what
dependencies are allowed in the type theory. There is a special class of eight pure
type systems with only two sorts called [J and *! called the A-cube [17]. The following

expresses the language of this class of types theories.

Definition 4.2.0.1.

The language of the \-cube:

tya,b == O x |clz|tta| Az .ty |z : .ty
Notice in the previous definition that terms and types are members of the same
language. They are not separated into two syntactic categories. This is one of the

beauties of pure type systems. They have a really clean syntax, but this beauty comes

with a cost. Some collapsed type theories are very hard to reason about.

LTt is also standard to called these Type and Prop respectively. Type is the same as we
have seen above and Prop classifies logical propositions.
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A pure type system is defined as a triple (S, A, R), where S is a set of sorts
and is a subset of the constants of the language, A is a set of axioms, and R is a set
of rules. In the A-cube {x,0} C S, A = {(x,0)}, and R varies depending on the
system. The axioms stipulate which sorts the constants of the language have. In the
A-cube there are at least two constants [] and . The set of rules are subsets of the

set {(x, %), (x,0), (O, %), (d,0)}. These rules represent four forms of dependencies:

i.  terms depend on terms: (x, )
ii. terms depend on types: ([, %)
iii. types depend on terms: (x,)
iv. types depend on types: (O,0)

In the A-cube terms always depend on terms, hence (x,*) € R for any system. For
example, (Az : t.a) b is a term depending on a term and Az : Type.b where b is a
type is a type depending on a type. An example of a term depending on a type is
the A-abstraction of sys