
Extending Unannotated System F with Positive-Recursive Types

Aaron Stump

December 2, 2014

1 Introduction

In this note, we will extend unannotated System F with positive-recursive types µX.T , to obtain an unan-
notated type system Fµ. One way to think about a recursive type µX.T is that it is a finite representation
of an infinite type expression. For example, suppose we have a type like µX.A→ X. We could think of this
as abbreviating the infinite type

A→ (A→ (A→ · · ·))

We won’t actually use infinite types in either our type system or our metatheoretic analysis of that type
system, but they can provide helpful intuition. For example, it is clear that if recursive types were thought
of as denoting infinite type expressions, then the type µX.T would always be equal to [µX.T/X]T . For the
small example just considered: µX.A→ X is equal to A→ (µX.A→ X), which can be confirmed informally
be thinking of the infinite expansion of each type.

This example type µX.A → X is not terribly useful, but we can use recursive types to assign types for
Parigot-encoded datatypes. For example, recall that in the Parigot-encoding, the first few numbers are:

0 = λs.λz.z
1 = λs.λz.s 0 z
2 = λs.λz.s 1 (s 0 z)
3 = λs.λz.s 2 (s 1 (s 0 z))

So the s variable has to take in a Nat as its first argument. But the type for s is part of the Nat type itself,
and hence we need recursive types. The type for Parigot-encoded (unary) natural numbers is

µNat. ∀X.(Nat→ (X → X))→ (X → X)

1.1 Positivity

It is critical that in a recursive type µX.T , the type variable X occurs only positively in T . This means that
X must occur in the domain type of an even number (possibly 0) of arrows. For example, in the type just
above for Parigot-encoded natural numbers, the type variable Nat occurs in the domain type of this function
type:

(Nat→ (X → X))

And then that type expression (and hence the occurrence of Nat) occurs in the domain type of this function
type:

(Nat→ (X → X))→ (X → X)

So this occurrence of Nat (the only one in the body of the µ-type) occurs in the left part of two arrow types,
and hence is positive.

1

Γ(x) = T

Γ ` x : T

Γ, x : T ` t : T ′

Γ ` λx.t : T → T ′
Γ ` t : T1 → T2 Γ ` t′ : T1

Γ ` t t′ : T2

Γ, X : ? ` t : T

Γ ` t : ∀X.T
Γ ` t : ∀X.T Γ ` T ′ : ?

Γ ` t : [T ′/X]T

Γ ` t : [µX.T/X]T X ∈+ T

Γ ` t : µX.T

Γ ` t : µX.T X ∈+ T

Γ ` t : [µX.T/X]T

Figure 1: Typing rules for Fµ

The positivity restriction is needed to ensure normalization. Without this restriction, we can actually assign
the type µX.X → X to the non-normalizing term

(λx. x x) (λx. x x)

How is that done? First, we can assign that same type µX.X → X to λx.x x as follows. Since µX.X → X
is equal to (µX.X → X) → (µX.X → X), by substituting the whole type expression in for X in X → X,
we may assume that the λ-bound variable x has type µX.X → X. We must then show that x x also has
that type:

·, x : (µX.X → X) ` x x : (µX.X → X)

But since as just observed, the type of x is equal to (µX.X → X) → (µX.X → X), we may apply x (with
the type (µX.X → X)→ (µX.X → X)) to itself (with the type µX.X → X). We have shown that λx.x x
has type µX.X → X. But by the same reasoning as when just now applying x x, we can then apply λx.x x
to itself, with result type µX.X → X.

We will see exactly where the requirement of positivity of X in T for µX.T is needed, in the proof of
Normalization below.

2 Syntax

term variables x
type variables X
terms t ::= x | λx.t | t t′
types T ::= X | T → T ′ | ∀X.T | µX.T

3 Typing

As for System F, we need typing contexts Γ, subject to the same implicit restriction we used before, of at
most one declaration for each variable:

Typing context Γ ::= · | Γ, x : T | Γ, X : ?

The typing rules are in Figure 1, and kinding rules in Figure 2. To enforce positivity of X in T for µX.T ,
we use an extra judgement x ∈p T , where p ∈ {+,−}. This judgement is defined in Figure 3, where we also
write p̄ for the other polarity besides p (so +̄ = − and −̄ = +). In the rules for concluding X ∈p ∀Y.T and
X ∈p µY.T , we are requiring that Y is a different variable from X. The ∀- or µ-bound variable can always
be implicitly renamed so that this requirement is met.

2

Γ(X) = ?

Γ ` X : ?

Γ ` T1 : ? Γ ` T2 : ?

Γ ` T1 → T2 : ?

Γ, X : ? ` T : ?

Γ ` ∀X.T : ?

Γ, X : ? ` T : ? X ∈+ T

Γ ` µX.T : ?

Figure 2: Kinding rules for Fµ

X ∈+ X

X 6= Y

X ∈p Y
X ∈p T X 6= Y

X ∈p ∀Y.T
X ∈p T X 6= Y

X ∈p µY.T
X ∈p̄ T1 X ∈p T2

X ∈p T1 → T2

Figure 3: Polarity of occurrences of type variables

4 Call-By-Name Normalization

The proof of call-by-name normalization for Fµ proceeds very similarly to the proof for unannotated System
F. The basic setup is the same. We will define a semantics JT Kρ for types T and functions ρ mapping the free
type variables of T to reducibility candidates. As before, we denote the set of closed terms which normalize
using call-by-name reduction as N , and write for call-by-name reduction. A reducibility candidate R is
again a set of terms satisfying:

• R ⊆ N

• If t ∈ R and t′ t, then t′ ∈ R

The set of all reducibility candidates is again denoted R. By the exact same argument as previously, we
have:

Lemma 1 (R is a cpo). The set R ordered by subset forms a complete partial order, with greatest element
N and greatest lower bound of a nonempty set of elements of R given by intersection.

We may also easily observe that ∅ ∈ R.

The crucial new aspect of the semantics of types is that we must interpret µX.T . To do this, we will use
the least fixed point of a monotonic function from R to R. Since R is a cpo, such functions indeed have
least fixed points. This is a powerful use of Lemma 1, and of the theory of least fixed points. Interpreting
µX.T as a least fixed point will ensure that JµX.T Kρ equals J[µX.T/X]T Kρ, which will be needed to prove
soundness of the typing rules involving µ-types.

We will use the following least fixed point theorem, which is standard for complete partial orders:

Theorem 2 (LFP). If f is a monotonic function from complete partial order (X,v,u) to itself, then the
least fixed point of f is u{a ∈ X | f(a) v a}.

4.1 Semantics for types

Figure 4 gives the semantics JT Kρ for types. The definitions for type variables, arrow types, and universal
types are exactly as for System F. The new case is for µ-types. Here, we are following an approach where
we try to give an interpretation for all types, not just those which are kindable. So we do not insist that
X ∈+ T in order to define an interpretation of µX.T – although this is the only case we are really interested
in for showing normalization for typable terms. We do need X ∈+ T to show existence of the least fixed
point (lfp) of the meta-level function

R ∈ R 7→ JT Kρ[X 7→R]

3

JXKρ = ρ(X)

JT1 → T2Kρ = {t ∈ N | ∀t′ ∈ JT1Kρ. t t′ ∈ JT2Kρ}

J∀X.T Kρ =
⋂
{JT Kρ[X 7→R] | R ∈ R}

JµX.T Kρ =
⋂
{R ∈ R | JT Kρ[X 7→R] ⊆ R}

Figure 4: Reducibility semantics for types

This function takes a reducibility candidate R as input, and returns JT Kρ[X 7→R]. The crucial result is that
if X ∈+ T , then this function is monotonic, and hence, since R is a cpo, has a least fixed point. But in
defining the interpretation of types, it will be technically a little easier not to rely on kindability of the type
being interpreted, nor try to prove that the function above is monotonic in the middle of the definition of
the interpretation of types. So we state that the interpretation of a µ-type is the intersection of the set
of reducibility candidates which are closed under the meta-level function displayed above, and then show
later that when X ∈+ T , that function is monotonic and hence the intersection of that set of reducibility
candidates is the least point of the function.

Lemma 3 (The semantics of types computes reducibility candidates). If ρ(X) is defined for every free type
variable of T , then JT Kρ ∈ R.

Proof. The proof is by induction on the structure of T . The cases for for type variables, arrow types, and
universal types are exactly as for System F, so we will not repeat them. For µX.T , the definition makes
JµX.T Kρ the intersection of a set of reducibility candidates. Since R is a complete partial order, such an
intersection is guaranteed to be an element of R.

Lemma 4 (Monotonicity). Suppose R ⊆ R′. If X ∈+ T , then for all ρ mapping all free type variables of T ,
we have JT Kρ[X 7→R] ⊆ JT Kρ[X 7→R′]. And if X ∈− T , then similarly, for all such ρ, JT Kρ[X 7→R′] ⊆ JT Kρ[X 7→R].

Proof. The proof is by mutual induction on the structure of the derivation of X ∈+ T .

Case:

X ∈+ X

We have JXKρ[X 7→R] = R ⊆ R′ = JXKρ[X 7→R′].

Case:
X 6= Y

X ∈p Y

In this case JY Kρ[X 7→R] = ρ(Y) = JY Kρ[X 7→R′].

Case:
X ∈p T X 6= Y

X ∈p ∀Y.T

By the semantics of universal types, we have

J∀Y.T Kρ[X 7→R] =
⋂
Ra∈RJT Kρ[Y 7→Ra][X 7→R]

J∀Y.T Kρ[X 7→R′] =
⋂
Ra∈RJT Kρ[Y 7→Ra][X 7→R′]

It suffices to assume an arbitrary Ra ∈ R, and relate JT Kρ[Y 7→Ra][X 7→R] and JT Kρ[Y 7→Ra][X 7→R′] (according to
the polarity p). By the IH, since X ∈p T , we have that the corresponding relationship holds: if p = + then

4

JT Kρ[Y 7→Ra][X 7→R] ⊆ JT Kρ[Y 7→Ra][X 7→R′], and if p = −, then JT Kρ[Y 7→Ra][X 7→R′] ⊆ JT Kρ[Y 7→Ra][X 7→R]. We are
instantiating the variable assignment ρ in the IH with ρ[Y 7→ Ra].

Case:
X ∈p̄ T1 X ∈p T2

X ∈p T1 → T2

Suppose p = +. Then we may assume an arbitrary t ∈ JT1 → T2Kρ[X 7→R], and try to show t ∈ JT1 →
T2Kρ[X 7→R′]. For the latter, it suffices by the semantics of arrow types to assume t′ ∈ JT1Kρ[X 7→R′], and
show t t′ ∈ JT2Kρ[X 7→R′]. By the IH, since X ∈− T1, we know that JT1Kρ[X 7→R′] ⊆ JT1Kρ[X 7→R], and so
t′ ∈ JT1Kρ[X 7→R]. This means that we have t t′ ∈ JT1 → T2Kρ[X 7→R] by the semantics of arrow types, since
we are assuming t ∈ JT1 → T2Kρ[X 7→R]. Now we may apply the IH again, since X ∈+ T2, to deduce that
JT2Kρ[X 7→R] ⊆ JT2Kρ[X 7→R′]. This gives us t t′ ∈ JT1 → T2Kρ[X 7→R′], as required. The case where p = − is dual
to this, so we omit it.

Case:
X ∈p T X 6= Y

X ∈p µY.T

For concreteness, suppose p = + (the case for p = − is similar). We must show⋂
{R′′ ∈ R | JT Kρ[X 7→R][Y 7→R′′] ⊆ R′′} ⊆

⋂
{R′′ ∈ R | JT Kρ[X 7→R′][Y 7→R′′] ⊆ R′′}

To do this, assume an arbitrary t such that ∀R′′ ∈ R. (JT Kρ[X 7→R][Y 7→R′′] ⊆ R′′) → t ∈ R′′. It suffices then
to show ∀R′′ ∈ R. (JT Kρ[X 7→R′][Y 7→R′′] ⊆ R′′) → t ∈ R′′. For the latter, assume an arbitrary R′′ ∈ R with
JT Kρ[X 7→R′][Y 7→R′′] ⊆ R′′. We must now show t ∈ R′′. By the IH, we have

JT Kρ[X 7→R′][Y 7→R′′] ⊆ JT Kρ[X 7→R′][Y 7→R′′]

And so by transitivity of the subset relation, we have JT Kρ[X 7→R′][Y 7→R′′] ⊆ R′′. So we may instantiate the
assumption we made about t when we introduced it, to conclude t ∈ R′′ as required.

4.2 Soundness of typing

We claim this lemma without proof, as we did for System F:

Lemma 5. J[T ′/X]T Kρ = JT Kρ[X 7→T ′]

Now using the same definition of JΓK as we did for System F, we can prove:

Theorem 6 (Soundness of typing rules with respect to the semantics). If Γ ` t : T , then for all (σ, ρ) ∈ JΓK,
we have σt ∈ JT Kρ.

Proof. The proof is by induction on the structure of the typing derivation. All cases are exactly as for System
F, except for the new cases, for µ-types:

Case:
Γ ` t : [µX.T/X]T X ∈+ T

Γ ` t : µX.T

By the IH, we have σt ∈ J[µX.T/X]T Kρ. By Lemma 5, this gives us σt ∈ JT Kρ[X 7→JµX.T Kρ]. By Lemma 4, the
(meta-level) function R ∈ R 7→ JT Kρ[X 7→R] is monotonic from R to R, because X ∈+ T . So by the semantics
of µ-types and Theorem 2, JµX.T Kρ is the least fixed point of the function R ∈ R 7→ JT Kρ[X 7→R]. Since it is
a fixed point, this means that

JµX.T Kρ = JT Kρ[X 7→JµX.T Kρ]

5

But we already observed that we have σt in the set described by the right-hand side of this equation. So
this means we have σt ∈ JµX.T Kρ (the left-hand side), as required.

Case:
Γ ` t : µX.T X ∈+ T

Γ ` t : [µX.T/X]T

By the IH, we have σt ∈ JµX.T Kρ. As in the previous case, we may apply Lemma 4 and Theorem 2 to
deduce that JµX.T Kρ equals

lfp(R ∈ R 7→ JT Kρ[X 7→R])

So we have
JµX.T Kρ = JT Kρ[X 7→JµX.T Kρ]

And by similar reasoning as in the previous case, the right-hand side of this equation equals J[µX.T/X]T Kρ,
giving us the required conclusion.

Corollary 7 (Normalization). If Γ declares no term variables and Γ ` t : T then t is call-by-name normal-
izing.

Proof. The proof is exactly as for System F, making use here of Theorem 6.

6

	Introduction
	Positivity

	Syntax
	Typing
	Call-By-Name Normalization
	Semantics for types
	Soundness of typing

