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Abstract. This paper presents a framework to derive instantiation-based deci-
sion procedures for satisfiability of quantified formulas in first-order theories,
including its correctness, implementation, and evaluation. Using this framework
we derive decision procedures for linear real arithmetic (LRA) and linear integer
arithmetic (LIA) formulas with one quantifier alternation. Our procedure can be
integrated into the solving architecture used by typical SMT solvers. Experimen-
tal results on standardized benchmarks from model checking, static analysis, and
synthesis show that our implementation of the procedure in the SMT solver CVC4
outperforms existing tools for quantified linear arithmetic.

1 Introduction

Among the biggest challenges in automated reasoning is efficient support for quantifiers
in the presence of background theories. Quantifiers enable direct encoding of a num-
ber of problems of interest, including synthesis of software fragments from specifica-
tions [31,47,53], construction of transfer functions for program analysis [37], invariant
inference [13, 25], as well as analysis of properties that go beyond safety [9, 10].

The most commonly used complete method for deciding constraints over quantified
theories is quantifier elimination [27, Section 2.7]. Quantifier elimination algorithms
typically solve a more general problem, of transforming arbitrary quantified formula
with free variables into a theory-equivalent formula with no quantifiers. However, de-
pending on the particular variant of the language of constraints, performing actual quan-
tifier elimination can have worse complexity than the decision problem [8], in part be-
cause it is required to give an answer on any formula, and the smallest formula resulting
from quantifier elimination can be very large [61]. When the goal is to decide the satisfi-
ability of quantified constraints, quantifier elimination may be doing unnecessary work.
More importantly, procedures based on quantifier elimination often do not handle the
underlying ground constraints in the most efficient way. Thus, quantifier elimination
tends to be prohibitively expensive in practice. Recent work involving quantifier elim-
ination [11, 38] has been motivated by avoiding worst-case performance by effectively
computing an equisatisfiable set of ground formulas in a lazy fashion.

In the broader scope of automated theorem proving, it is often important to reason
about formulas involving multiple theories, each of which may or may not support quan-
tifier elimination. In practice, the goal is to obtain a framework for handling quantified
formulas that is both complete for formulas belonging to decidable logics, and empiri-
cally effective when completeness guarantees are not known. To this end, modern SMT
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solvers most commonly use heuristic instantiation-based approaches [17], which are
incomplete but work well in practice for undecidable fragments of first-order logic.

Thus, our motivation is to capitalize both on recent advances in specialized
techniques for quantified linear arithmetic [11, 12, 29, 41], and recent advances in
instantiation-based theorem proving for first-order logic [16, 22, 49]. This paper seeks
to bridge the gap between these two lines of research by introducing an approach for
establishing the satisfiability of formulas in quantified linear arithmetic based on a new
quantifier instantiation framework. The use of quantifier instantiation for this task is
motivated by the following.

– Procedures based on lazy quantifier instantiation typically establish satisfiability
much faster than their theoretical complexity.

– Using quantifier instantiation for decidable fragments enables a uniform integration
and composition with existing instantiation-based techniques [16,17,49], which are
widely used by modern SMT solvers.

– An important class of synthesis problems can be expressed as quantified formulas
with one quantifier alternation. As shown in [47], solutions for these problems can
be extracted from an unsatisfiable core of quantifier instantiations.

Related Work Quantifier elimination has been used to, e.g., show decidability and
classification of boolean algebras [52, 58], Presburger arithmetic [43], decidability of
products [20, 39], [36, Chapter 12], and algebraically closed fields [57]. The original
result on decidability of Presburger arithmetic is by Presburger [43]. The space bound
for Presburger arithmetic was shown in [21]. The matching lower and upper bounds for
Presburger arithmetic were shown in [8], see also [30, Lecture 24]. An analysis param-
eterized by the number of quantifier alternations is presented in [45]. A mechanically
verified quantifier elimination algorithm was developed by Nipkow [40].

An approach for lazy quantifier elimination for linear real arithmetic was developed
by Monniaux [38]. Integration of linear quantifier elimination into the solving algo-
rithm used by SMT solvers was developed in [11], though the presented integration is
not model driven. A lazy approach for quantifier elimination, which relies on an oper-
ation called model-based projection, has been developed in the context of SMT-based
model checking [29], and can be used for extracting skolem functions for simulation
synthesis [19]. A recent approach for quantified formulas with arbitrary alternations
has been developed by Bjorner [12] for several background theories, which is not based
on instantiation. The most widely used techniques for quantifier instantiation in SMT
were developed in [17], and later in [16, 23], which primarily focused on uninterpreted
functions. Our approach for quantified linear arithmetic instantiates quantified formu-
las based on a lazy stream of candidate models, terminating when either it finds a fi-
nite set of instances are unsatisfiable, or discovers that the original formula is satisfi-
able. Other approaches in this spirit have been used to decide essentially uninterpreted
fragment [24], and, more generally, theories having a locality property [3, 28]; these
works do not directly apply to quantified linear arithmetic. A recent approach for quan-
tified formulas with one quantifier alternation has been developed in the SMT solver
Yices [18], which does not treat linear integer arithmetic. The present paper builds upon
our previous work for solving synthesis conjectures using quantifier instantiation in
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SMT [47], where an approach for quantified linear arithmetic was described without a
specific method for selecting instances and without completeness guarantees. While the
present paper focuses on linear arithmetic, where it outperforms existing approaches,
we expect the presented framework to be relevant for other quantified theories. Among
the examples of further decidable quantified constraints are quantified theories of term
algebras [36, Chapter 23], [35,54] and their extensions [14,32,50], feature trees [2,59],
and monadic second-order theories [60].

Contributions This paper makes the following contributions. First, we define a gen-
eral class of instantiation-based procedures for establishing the satisfiability of quan-
tified formulas in Section 2, and show that these procedures can be used in part as an
approach for solving synthesis problems in Section 2.3. We demonstrate instances of
the procedure are sound and complete for formulas over linear real arithmetic (LRA)
and linear integer arithmetic (LIA) with one quantifier alternation in Sections 3 and 4,
two quantified fragments for which many current SMT solvers do not have efficient
support for. We show how our procedure can be integrated into the solving architecture
used by SMT solvers in Section 5. To our knowledge, our approach is the first com-
plete algorithm for quantified linear arithmetic with one alternation that is based purely
on quantifier instantiation, which has the advantage of being composable with existing
techniques and whose soundness is straightforward to verify. In Section 6, we demon-
strate an implementation of the procedures for LIA and LRA in the SMT solver CVC4,
which in addition to having the aforementioned advantages, outperforms state-of-the-
art SMT solvers and theorem provers for quantified linear arithmetic benchmarks.

1.1 Preliminaries

We consider formulas in multi-sorted first-order logic. A signature Σ consists of a
countable set of sort symbols and a set of function symbols. Given a signature Σ,
well-sorted terms, atoms, literals, and formulas are defined as usual, and referred to
respectively as Σ-terms. We denote by FV (t) the set of free variables occurring in the
term t, and extend this notion to formulas. A Σ-term or formula is ground if it has no
free variables. A term written t[k] denotes a term whose free variables are in k.

A Σ-interpretation I maps

– each set sort symbol σ ∈ Σ to a non-empty set σI , the domain of σ in I, and
– each function f ∈ Σ of sort σ1 × . . . × σn → σ to a total function fI of sort
σI1 × . . .× σIn → σI where n > 0, and to an element of σI when n = 0.

We write tI to denote the interpretation of t in I, defined inductively as usual. A sat-
isfiability relation between Σ-interpretations and Σ-formulas, written I |= ϕ, is also
defined inductively as usual. In particular, we assume that I |= ¬ϕ if and only if it is
not the case that I |= ϕ. We say that I is a model of ϕ if I satisfies ϕ. Formulas ϕ1

and ϕ2 are equivalent (up to k) if they are satisfied by the same set of models (when
restricted to the interpretation of variables k).

A theory is a pair T = (Σ, I) where Σ is a signature and I is a non-empty set of Σ-
interpretations, the models of T . We assume Σ contains the equality predicate, which
we denote by ≈. Let JϕKT denote the set of T -models of ϕ. Observe that J¬ϕKT =
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I \ JϕKT . A Σ-formula ϕ[x] is T -satisfiable if it is satisfied by some interpretation in
I (i.e. JϕKT 6= ∅). Dually, a Σ-formula ϕ[x] is T -unsatisfiable if it is satisfied by no
interpretation in I (i.e. JϕKT = ∅). A formulaϕ is T -valid if every model of T is a model
of ϕ (i.e., JϕKT = I). Given a fragment L of the language of Σ-formulas, a Σ-theory
T is satisfaction complete with respect to L if every closed T -satisfiable formula of L
is T -valid. In terms of set of models, satisfaction completeness means that JϕKT 6= ∅
implies JϕKT = I, or, in other words, for every F ∈ L exactly one of the following two
cases hold: JϕKT = ∅, or JϕKT = I. If additionally L is closed under negation, then, for
every ϕ ∈ L, either ϕ or ¬F is unsatisfiable.

A set Γ of formulas T -entails a Σ-formula ϕ, written Γ |=T ϕ, if every model of
T that satisfies all formulas in Γ satisfies ϕ as well. A set of literals M propositionally
entails a formula ϕ, written M |=p ϕ, if M entails ϕ when considering all atomic for-
mulas inM ∪ϕ as propositional variables; such entailment is one of from propositional
logic and is independent of the theory.

We write RA (resp. IA) to denote the theory of real (resp. integer) arithmetic. Its
signature consists of the sort Real (resp. Int), the binary predicate symbols > and <,
functions + and · denoting addition and multiplication, and the constants of its sort
interpreted as usual. We write t ≤ s as shorthand for ¬(t > s), and t ≥ s as shorthand
for ¬(t < s). We write LRA (resp. LIA) to denote the language of linear real (resp.
integer) arithmetic formulas, that is, whose literals are of the form (¬)(c1 · x1 + . . . +
cn · xn ./ c) where c1, . . . , cn, c and x1, . . . , xn are non-zero constants and distinct
variables of sort Real (resp. Int) respectively, and ./ is one of >, <, or ≈. For each
literal of this form, there exists an equivalent literal that is in solved form with respect
to xi for each i = 1, . . . , n. That is, an LRA-literal is in solved form with respect to
x if it is of the form (¬)(x ./ t), where x 6∈ FV (t). Similarly, an LIA-literal is in
solved form with respect to x if it is of the form (¬)(c · x ./ t), where x 6∈ FV (t) and
c is an integer constant greater than zero. For integer constants c1 and c2 and non-zero
constant c, we write c1 ≡c c2 to denote that c1 and c2 are congruent modulo c, that is
(c1 mod c) = (c2 mod c), and we write c | c1 if c divides c1.

2 Quantifier Instantiation for Theories

In this section, we assume a fixed theory T and a language L that is closed under
negation and such that the satisfiability of finite sets of L formulas modulo T is de-
cidable. We present a procedure for checking satisfiability of formulas in the language
Q(L) = {∀xϕ[a,x] | ϕ[a,x] ∈ L}.

2.1 An Instantiation Procedure and Its Soundness

Figure 1 presents an instantiation-based approach for determining the satisfiability of
a T -formulas ∃a∀xϕ[a,x], where ϕ[a,x] belongs to L. The procedure introduces
a tuple of distinct fresh constants k of the same sort as a, and e of the same sort as
x. It maintains a set of formulas Γ , initially empty, and terminates when either Γ or
Γ ∪ {¬ϕ[k, e]} is T -unsatisfiable. On each iteration, the procedure invokes the subpro-
cedure S (over which the procedure is parameterized), which returns a tuple of terms
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PS(∃a∀xϕ[a,x]):

Let Γ := ∅ and k, e be tuples of fresh constants of the same type as a, x.
Repeat

If Γ is T -unsatisfiable, then return “unsat”.
If Γ ′ = Γ ∪ {¬ϕ[k, e]} is T -unsatisfiable, then return “sat”.
Otherwise,

Let I be a model of T and Γ ′ and let t[k] = S(I, Γ,¬ϕ[k, e]).
Γ := Γ ∪ {ϕ[k, t[k]]↓}.

Fig. 1. An instantiation-based approach PS for determining the T -satisfiability of ∃a∀xϕ[a, x]
parameterized by selection function S.

t[k] whose free variables are a subset of k. We then add to Γ the formula ϕ[k, t[k]]↓, a
formula equivalent to ϕ[k, t[k]] up to k3. We call S the selection function of PS .

The intution of the algorithm is to find a subset of the instances of ∀xϕ[a,x] that
are either (a) unsatisfiable, and are thus sufficient for showing that ∀xϕ[a,x] is unsatis-
fiable, or (b) satifiable and entail ∀xϕ[a,x]. The algorithm recognizes the latter case by
checking the satisfiability of Γ ∪ ¬ϕ[k, e] on each iteration of its main loop. In either
case, the algorithm may terminate before enumerating all instances of ∀xϕ[a,x]. In
practice, we have found the algorithm often terminates after enumerating only a small
number of instances for benchmarks that occur in practice.

Definition 1 A selection function (for L) takes as arguments an interpretation I, a set
of formulas Γ , and a formula ¬ϕ[k, e] in L, where I |= Γ ∪ ¬ϕ[k, e], and returns a
tuple of terms t[k] such that ϕ[k, t[k]]↓ is also in L.

Note that a selection function is only defined if I is a model for T , Γ and ¬ϕ[k, e]. We
first show that the procedure always returns correct results, regardless of the behavior
of the selection function, leaving the termination question for the next subsection. De-
tailed proofs of the all claims in this paper can be found in the extended version of this
report [48].

Lemma 1 If PS terminates with “unsat”, then ∃a∀xϕ[a,x] is T -unsatisfiable.

Proof: In this case, there exists a set Γ that is equivalent to {ϕ[k, t1], . . . , ϕ[k, tp]}
and is T -unsatisfiable where k are distinct fresh constants. Thus, ∀xϕ[k,x] is T -
unsatisfiable. Since k are distinct and fresh, we conclude that ∃a ∀xϕ[a,x] is T -
unsatisfiable. �

Lemma 2 If PS terminates with “sat”, then ∃a∀xϕ[a,x] is T -satisfiable.

Proof: In this case, there exists a set Γ equivalent to {ϕ[k, t1], . . . , ϕ[k, tp]} that is T -
satisfiable, where k are distinct fresh constants, and Γ ′ equivalent to Γ ∪{¬ϕ[k, e]} that
is T -unsatisfiable. The variables e do not occur in Γ , since the only formulas added to
it are of the form ϕ[k, t[k]]↓. Thus, we have that Γ ∪ {∃x¬ϕ[k,x]} is T -unsatisfiable.
Let I be a model of Γ . Since I is not a model of Γ ′, it must be the case that I 6|=
∃x¬ϕ[k,x], and hence I is a model for ∃a ∀xϕ[a,x]. �

3 We further comment on examples of operators ↓ in Sections 3 and 4.
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2.2 Termination of the Instantiation Procedure

The following properties of selection functions will be of interest.

Definition 2 (Finite) A selection function S is finite for ϕ[k, e] if there exists a finite
set S∗(ϕ[k, e]) such that S(I, Γ,¬ϕ[k, e]) ∈ S∗(ϕ[k, e]) for all I, Γ .

Definition 3 (Monotonic) A selection function S is monotonic for ϕ[k, e] if whenever
Γ |= ϕ[k, t], we have that S(I, Γ,¬ϕ[k, e]) 6= t.

Observe that, if S is a monotonic selection function, then for any finite list of terms
t1, . . . tn we have S(I, {ϕ[k, t1]↓, . . . , ϕ[k, tn]↓},¬ϕ[k, e]) /∈ {t1, . . . , tn}.

Definition 4 (Model-Preserving) A selection function S is model-preserving for
ϕ[k, e] if whenever S(I, Γ,¬ϕ[k, e]) = t, we have that I |= ¬ϕ[k, t].

Lemma 3 A selection function that is model-preserving for ϕ[k, e] is also monotonic
for ϕ[k, e].

Proof: Assume that S is model-preserving for ϕ[k, e] and that S(I, Γ ∪
{ϕ[k, t]},¬ϕ[k, e]) = s. By definition of selection function, we have that I |= ϕ[k, t].
By definition of model-preserving, we have that I |= ¬ϕ[k, s]. Thus, s 6= t and S is
monotonic for ϕ[k, e]. �

Theorem 1 If S is finite and monotonic for ϕ[k, e] in L, then PS is a (terminating)
decision procedure for the T -satisfiability of ∃a ∀xϕ[a,x].

Proof: Given a monotonic and finite S, the procedure PS can only execute a finite num-
ber of iterations. Assuming a decision procedure for determining the T -satisfiability of
T -formulas in L, PS(∃a∀xϕ[a,x]) must terminate. By Lemmas 1 and 2, PS is a de-
cision procedure for the T -satisfiability of ∃a ∀xϕ[a,x]. �

In this paper we will identify selection functions S that are finite and monotonic for
all ∃a ∀xϕ[a,x] residing in fragments L. The fragments we consider are satisfaction
complete. We consider satisfaction completeness to be a good guiding principle when
choosing candidate logical fragments to which our method can be applied successfully.

2.3 Connection to Synthesis

The connection between quantifier elimination and synthesis has been shown fruitful
in previous work [31]; it is one of our motivations for further improving quantified
reasoning modulo theories. The procedure mentioned in this section can be used to
synthesize functions from certain classes of specifications. Consider (second-order) T -
formulas of the form:

∃f ∀x ϕ[f ,x] (1)

of the form ∃f ∀x ϕ[f ,x], where ϕ is a quantifier-free formula, x = (x1, . . . , xn) is
a tuple of variables of sort σi for i = 1, . . . , n, and f = (f1, . . . , fm) is a tuple of
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functions of sort σ1× . . .×σn → τj for j = 1, . . . ,m. We call such formulas synthesis
conjectures. A synthesis conjecture is single invocation (over L) if it is equivalent to:

∃f ∀x ψ[x,f(x)] (2)

where ψ[x,y] ∈ L. That is, functions from f are applied to the tuple x only. The
formula (2) is equivalent to the (first-order) formula ∀x ∃y ψ[x,y], whose negation

∃x ∀y ¬ψ[x,y] (3)

is suitable as an input to Figure 1. As observed in [47], solutions for single invocation
synthesis conjectures can be extracted from an unsatisfiable core of instantiations when
proving the unsatisfiability of (3). In particular, let k be a set of distinct fresh variables of
the same sort as x, and say the set {¬ψ[k, t1[k]]↓, . . . ,¬ψ[k, tp[k]]↓} is T -unsatisfiable
where ti = (t1i [k], . . . , t

m
i [k]) for i = 1, . . . , p. Then:

1 ≤ j ≤ m : fj = λx. ite(ψ[x, tjp[x]], t
j
p[x], ( · · · ite(ψ[x, t

j
2[x]], t

j
2[x], t

j
1[x]))) (4)

is a solution for f in (2). We use the instantiation-based procedure in Figure 1 for dis-
charging (3). In contrast to prior work [47], we here devise selection functions S for
L that are finite and monotonic, obtaining a sound and complete method for synthesiz-
ing tuples of functions whose specification is a single invocation synthesis conjecture
over L. In the following sections, we show such selection functions both for linear real
arithmetic (LRA) and linear real arithmetic (LIA).

It is important to note that the solution (4) does not necessarily belong to the lan-
guage L, since there is no restriction on the selection functions for L that restricts its
return value t to terms in L. For example, in our approach for linear real arithmetic, t
may contain a free distinguished constant δ representing an infinitesimal positive value,
and in our approach for linear integer arithmetic, t may contain integer division. Addi-
tional steps may be necessary in practice for making (4) a computable function.

2.4 Illustration: Instantiation for a Simple Fragment of LRA

We first present a selection function for a restricted class L of LRA-formulas
∃a∀x, ϕ[a, x], namely whose universal quantifier is over single variable x of sort Real,
a are variables of sort Real, and whose (skolemized) body ϕ[k, e] is of the form:

(e < `1 ∨ . . . ∨ e < `n ∨ e > u1 ∨ . . . ∨ e > um) (5)

where at least one of {n,m} is greater than zero, and e 6∈ FV (`1, . . . , `n, u1, . . . , um).
Figure 2 gives a selection function for SSLRA. It considers the interpretation of terms
`1, . . . , `n and u1, . . . , um in a model I of Γ . If n > 0, then SSLRA returns the `j
whose value is maximal in I. If n = 0, then m > 0 and SSLRA returns the ui whose
value is minimal in I.

Lemma 4 SSLRA is finite for ϕ[k, e].

Proof: The terms returned by SSLRA are in {`1, . . . , `n} when n > 0, and in
{u1, . . . , um} when n = 0. �
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SSLRA(I, Γ,¬ϕ[k, e]) where ϕ[k, e] is
n∨

i=1

e < li ∨
m∨
i=1

e > ui, for n > 0 or m > 0

Return

{
`j , if n > 0 and max{`I1 , . . . , `In} = `Ij

ui, if n = 0 and min{uI1 , . . . , uIm} = uIi

Fig. 2. A selection function SSLRA for a simple fragment of LRA.

Lemma 5 SSLRA is monotonic for ϕ[k, e].

Proof: Let I be a model of LRA and Γ , where Γ |= ϕ[k, t], and assume by con-
tradiction SSLRA returns t. Consider the case where n > 0 and t = `i for some
i ∈ {1, . . . , n}. Since I |= Γ ∪ ¬ϕ[k, e], it satisfies:

(`i < `1 ∨ . . . ∨ `i < `n ∨ `i > u1 ∨ . . . ∨ `i > um)∧
e ≥ `1 ∧ . . . ∧ e ≥ `n ∧ e ≤ u1 ∧ . . . ∧ e ≤ um

(6)

Assume I satisfies `i > uk for some k ∈ {1, . . . ,m}. We have I also satisfies e ≥ `i
and e ≤ uk, and thus eI ≥ `Ii > uIk ≥ eI . Thus, I must satisfy `i < `k′ for some k′ ∈
{1, . . . , n}, and thus max{`I1 , . . . , `In} 6= `Ii . Thus, SSLRA(Γ ) 6= `i. By symmetrical
reasoning when n = 0,m > 0 and t = uj for some j ∈ {1, . . . ,m}, we have that
SSLRA(Γ ) 6= uj . Thus, SSLRA does not return t, and thus is monotonic for ϕ[k, e].

�

Example 1. Consider the formula ∀x (x < b ∨ x > a). The negated skolemized form
(¬ϕ[k, e] in Figure 1) of this formula is equivalent to the formula b ≤ e ∧ e ≤ a where
e is a fresh constant. A possible run of PSSLRA

on this input is as follows, where Γ is
initially ∅ and on each iteration Γ ′ = Γ ∪ {b ≤ e ∧ e ≤ a}.

# Γ Γ ′ t[k] Add to Γ
1 sat sat max{bI} = bI b b < b ∨ b > a
2 sat unsat

In step 2, note that Γ ′ = {b < b ∨ b > a, b ≤ e ∧ e ≤ a}, which is unsat. The run
establishes that ∃ab∀x (x > a ∨ x < b) is LRA-satisfiable. �

Example 2. Consider the formula ∀x (x < a ∨ x < b), whose skolemized negation is
equivalent to e ≥ a ∧ e ≥ b. A possible run of PSSLRA

on this input is as follows.

# Γ Γ ′ t[k] Add to Γ
1 sat sat max{aI , bI} = aI a a < a ∨ a < b
2 sat sat max{aI , bI} = bI b b < a ∨ b < b
3 unsat

Note that the formula added in step 1, equivalent to a < b, ensures that, in the second
iteration, max{aI , bI} 6= aI . The run establishes that ∃ab ∀x (x > a∨x > b) is LRA-
unsatisfiable, as expected in a linear order without endpoints. �
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3 Instantiation for Quantifier-Free LRA-Formulas

Consider the case where a and x are vectors of Real variables and L is the class of
formulas ∃a∀xϕ[a,x] where ϕ[a,x] is an arbitrary quantifier-free LRA-formula. We
assume that equalities are eliminated from ϕ by the transformation:

t ≈ 0  0 ≤ t ∧ 0 ≥ t

Figure 3 gives a selection function SLRA for LRA, which takes an interpretation I,
a set of formulas Γ , and the formula ¬ϕ[k, e]. It invokes the recursive procedure SR
which constructs a term corresponding to each variable in e. Analogous to existing
approaches for linear quantifier elimination [33, 40], our approach makes use of non-
standard terms for symbolically representing substitutions. In particular, the terms we
consider may involve a free distinguished constant δ, representing an infinitesimal posi-
tive value. For each variable ei from e, the procedure SR invokes the (non-deterministic)
subprocedure SR0, which chooses a term corresponding to ei based on a set of literals
M over the atoms of ψ which propositionally entail ψ and are satisfied by I, which
we call a propositionally satisfying assignment for ψ. We partition M into three sets
M`, Mu and Mc, where M` contains literals that correspond to lower bounds for e, Mu

contains literals that correspond to upper bounds for e, and Mc contains the remaining
literals. The sets M` and Mu are equivalent to sets of literals that are in solved form
with respect to e. When M` contains at least one literal, we may return the lower bound
whose value is maximal according to I, and similarly for Mu. If both M` and Mu are
empty, we return the term 0. When SR0 returns the term ti, we apply the substitution
{ei 7→ ti} to ψ and t, and append ti to t. Terms returned by SR0 may involve the con-
stant δ. We define a satisfiability relation between models and formulas involving δ, as
well as the max and min function for terms involving δ in the obvious way, such that
(t1 + c1 · δ)I > (t2 + c2 · δ)I if either tI1 > tI2 or both tI1 = tI2 and c1 > c2.

Overall, SLRA returns a tuple of terms t, after which we add the instance ϕ[k, t]↓ to
Γ in Figure 1. We assume ↓ eliminates occurrences of δ by the following transforma-
tions, which is inspired by virtual term substitution [33]:

δ < t 0 < t and δ > t 0 ≥ t where δ 6∈ FV (t).

Lemma 6 SLRA is finite for ϕ[k, e].

Proof: We first show that only a finite number of terms can be returned by
SR0(I, (¬ϕ[k, e])σ, ei) for any I, σ. Let A be the set of atoms occurring in ϕ[k, ei]σ.
The literals in satisfying assignments of (¬ϕ[k, e])σ are over these atoms. Let {ei <
`1, . . . , ei < `n, ei > u1, . . . , ei > um} be the set of atoms that are in solved
form with respect to ei that are equivalent to the atoms of A containing ei, where
ei 6∈ FV (`1, . . . , `n, u1, . . . , um). The terms returned by SR0(I, (¬ϕ[k, e])σ, ei) are
in {0, `1(+δ), . . . , `n(+δ), u1(−δ), . . . , um(−δ)}. Since there are only a finite num-
ber of recursive calls to SR within SLRA, and each call appends only a finite number
of possible terms to t, the set of possible return values of SLRA is finite, and thus it is
finite for ϕ[k, e]. �
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SLRA(I, Γ,¬ϕ[k, e]):

Return SR(I,¬ϕ[k, e], e, ())

SR(I, ψ, (ei, . . . , en), t):

If i > n, return t
Otherwise, let ti = SR0(I, ψ, ei), σ = {ei 7→ ti}
Return SR(I, ψσ, (ei+1, . . . , en), (tσ, ti))

SR0(I, ψ, e):

Let M =M` ∪Mu ∪Mc be such that:
• I |=M and M |=p ψ,
• M` ⇔ {e � `1, . . . , e � `n},
• Mu ⇔ {e ≺ u1, . . . , e ≺ um}, and
• e 6∈ FV (`1, . . . , `n) ∪ FV (u1, . . . , um) ∪ FV (Mc).

Return one of


`i + δ`i n > 0,max{(`1 + δ`1)

I , . . . , (`n + δ`n)
I} = (`i + δ`i )

I

uj − δuj m > 0,min{(u1 − δu1 )I , . . . , (um − δum)I} = (uj − δuj )I

0 n = 0 and m = 0

Fig. 3. A selection function SLRA for arbitrary quantifier-free LRA-formula ϕ[a, x]. Each ≺ is
either < or ≤; δ`i is δ if the ith lower bound for e is strict, and 0 otherwise. Similarly, each � is
either > or ≥; δuj is δ if the jth upper bound for e is strict, and 0 otherwise.

Lemma 7 If I is a model for LRA and quantifier-free formula ψ, then I is also a
model for ψ{e 7→ SR0(I, ψ, e)}.

Proof: Let M be a set of literals of the form described in the definition of SR0 for I, ψ
and e. Consider the case where SR0(I, ψ, e) = `i + δ`i for some i, where n > 0. We
show that I satisfies M{e 7→ `i+ δ

`
i}. First, since max{(`1+ δ`1)I , . . . , (`n+ δ`n)I} =

(`i + δ`i )
I , we know that I satisfies M`{e 7→ `i + δ`i}. In the case that the bound

on e we consider is strict, that is, e > `i ∈ M`, then δ`i is δ, and `Ii < uIj for all
j ∈ {1, . . . ,m}. Thus, I satisfies (`i + δ ≺ uj) = (e ≺ uj){e 7→ `i + δ}. In the case
that the bound on e we consider is non-strict, that is, if e ≥ `i ∈ M`, then δ`i is 0, and
`Ii ≤ uIj for all j ∈ {1, . . . ,m}. Thus, I satisfies (`i ≺ uj) = (e ≺ uj){e 7→ `i}. In
either case, we have that I satisfies each literal in Mu{e 7→ `i + δ`i}. Finally, I clearly
satisfies Mc{e 7→ `i+ δ

`
i} =Mc. The case when m > 0 is symmetric to the case when

n > 0. In the case where n = 0 and m = 0, we have that ψ does not contain e, and
I satisfies M{e 7→ 0}. In each case, I satisfies M{e 7→ SR0(I, ψ, e)}, which entails
ψ{e 7→ SR0(I, ψ, e)}, and thus the lemma holds. �

Lemma 8 SLRA is model-preserving for ϕ[k, e].

Proof: By the definition of SR and repeated applications of Lemma 7. �

Theorem 2 PSLRA
is a sound and complete procedure for determining the LRA-

satisfiability of ∃a ∀xϕ[a,x].
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Proof: By Theorem 1 and Lemma 3 of our framework as well as LRA-specific
Lemma 6 and Lemma 8. �

We illustrate the procedure through examples. SR0 is non-deterministic; we choose
instantiations only based on the lower bounds M` found in the procedure SR0, though
the procedure is free to base its instantiations on the upper bounds Mu as well. We
underline the literal in M` corresponding to the bound whose value is maximal in I. Γ
is initially empty and on each iteration Γ ′ is the union of Γ and the skolemized negation
of the input formula. Each round of SLRA computes a tuple t[k], which is used to
instantiate our quantified formula in Figure 1. The last column shows the corresponding
instance of the quantified formula after simplification, including the elimination of δ.

Example 3. To demonstrate how non-strict bounds are handled, consider the formula
∀x (x ≤ a ∨ x ≤ b), whose skolemized negation is e > a ∧ e > b. A possible run of
PSLRA

on this input is as follows.

SR0(I, Γ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e {e > a, e > b} a+ δ (a+ δ) a < b
2 sat sat e {e > a, e > b} b+ δ (b+ δ) b < a
3 unsat

This run shows ∃ab∀x (a ≥ x ∨ x ≥ b) is LRA-unsatisfiable. The disjuncts of the
instance a+ δ ≤ a∨a+ δ ≤ b added to Γ on the first iteration simplify to⊥ and a < b
respectively. We similarly obtain b < a on the second iteration. �

Example 4. To demonstrate how multiple universally quantified variables are handled,
consider the formula ∀xy (x + y < a ∨ x − y < b) whose skolemized negation is
e1 + e2 ≥ a ∧ e1 − e2 ≥ b. A possible run of PSLRA

is as follows.

SR0(I, Γ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e1 {e1 ≥ a− e2, e1 ≥ b+ e2} b+ e2

e2 {e2 ≥ a−b
2 }

a−b
2 (a+b2 , a−b2 ) ⊥

2 unsat

This run shows ∃ab∀xy (x+y < a∨x−y < b) is LRA-unsatisfiable. The substitution
for e2 is chosen based on M` after applying the substitution {e1 7→ b+ e2}. �

Example 5. To demonstrate how quantified formulas with Boolean structure are han-
dled, consider the formula ∀x ((a < x ∧ x < b) ∨ x < a + b) whose skolemized
negation is (a ≥ e ∨ e ≥ b) ∧ e ≥ a+ b. A possible run of PSLRA

is as follows.

SR0(I, Γ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e {e ≥ a+ b} a+ b (a+ b) 0 < b ∧ a < 0
2 sat sat e {e ≥ b, e ≥ a+ b} b (b) 0 < a
3 unsat
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This run shows ∃ab ∀x ((a < x ∧ x < b) ∨ x < a + b) is LRA-unsatisfiable. On the
first iteration, we assume that the propostionally satisfying assignment for Γ ′ included
a ≥ e, and hence e ≥ b is not included as a lower bound on that iteration. On the second
iteration, the solver must satisfy both b > 0 and a < 0, which implies the model I is
such that (a + b)I > aI hence e ≥ b must exist in M`, and moreover bI > (a + b)I

hence b must be the maximal lower bound for e. �

Example 6. To demonstrate a case where a variable has no bounds, consider the formula
∀xy x ≤ y, whose skolemized negation is e1 > e2. A possible run of PSLRA

on this
input is as follows.

SR0(I, Γ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e1 {e1 > e2} e2 + δ

e2 ∅ 0 (δ, 0) ⊥
2 unsat

This run shows ∀xy x > y is LRA-unsatisfiable. Notice that after the substitution
{e1 7→ e2 + δ}, we have that Γ ′ contains neither an upper nor a lower bound for
e2, and hence we choose to return the value 0. �

Example 7. To demonstrate a non-trivial case using the infinitesimal δ, consider the
formula ∀xy (x ≤ 0∨y−2·x ≤ 0) whose skolemized negation is e1 > 0∧e2−2·e1 > 0.
A possible run of PSLRA on this input is as follows.

SR0(I, Γ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e1 {e1 > 0} δ

e2 {e2 > 2 · δ} 3 · δ (δ, 3 · δ) ⊥
2 unsat

This run shows ∀xy x ≤ 0 ∨ y − 2 · x ≤ 0 is LRA-unsatisfiable. �

The procedure PSLRA
, which is an instance of the procedure in Figure 1, can be

understood as lazily enumerating the disjuncts of the Loos-Weispfenning method for
quantifier elimination over linear real arithmetic [33], with minor differences4. In this
way, our approach is similar to the projection-based procedures described in [12, 29].
These approaches compute implicants of quantified formulas, while our approach in-
stead computes a term which is in turn used for instantiation. This choice is important
for our purposes, as it enables a uniform combination of the approach with existing
instantiation-based techniques for first-order logic [17,22,49], and allows the approach
to be used as a subprocedure for synthesis as described in [47].

An alternative return value for SR0 is presented in Figure 4. When using this return
value, the procedure PSLRA

enumerates the disjuncts of Ferrante and Rackoff’s method
for quantifier elimination over linear real arithmetic [21], with minor differences. We
provide an experimental evaluation of both of these selection functions in Section 6.

4 For instance, that method uses a distinguished term∞ representing an arbitrarily large positive
value.
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Return


uj+`i

2
n > 0 and m > 0

`i + 1 n > 0 and m = 0

uj − 1 n = 0 and m > 0

0 n = 0 and m = 0

, where

{
max{`I1 , . . . , `In} = `Ii if n > 0

min{uI1 , . . . , uIm} = uIj if m > 0.
.

Fig. 4. An alternative return value for SR0.

Return one of


lj + δ n > 0

uj − δ m > 0

∞ m = 0

−∞ n = 0

, where

{
max{`I1 , . . . , `In} = `Ii if n > 0

min{uI1 , . . . , uIm} = uIj if m > 0.
.

Fig. 5. An alternative return value for SR0 that is analogous to Loos and Weispfenning’s method.

3.1 Comparison to Existing Approaches

As mentioned, at their core, most approaches for solving quantified linear arithmetic
(including ours) share many similarities with one another. In particular, given an exis-
tentially quantified formula ∃x.ϕ, based on some strategy, they enumerate (possibily
lazily) a finite set of ground formulas that are entailed by this formula. We give a brief
overview contrasting the technical details of existing approaches in this section.

We have mentioned that the approach in Figure 3 involves the use of a free dis-
tinguished constant δ, representating an infinitessmal positive value. Other approaches
also involve use of a free distinguished constant ∞, representing an arbitrarily large
positive value. Like δ, this term can be eliminated, as follows:

∞ < t ⊥ and∞ > t > where∞ 6∈ FV (t).

The two most widely known algorithms for quantifier elimination for linear real
arithmetic are the method based on infinitessimals in [33], and the method based on an
interior point method in [21]. To put these algorithms into the context of our approach,
we provide two additional alternatives for the return value of SR0 (Figures 5 and 6) that
closely approximate the effect of these methods.

Recent approaches are inspired by of one (or both) of these methods. The ap-
proaches described in [12, 29] are closely based on the Loos-Weispfenning method,
and the approach described in [18] is closely based on Ferrante-Rackoff method. The
approach described in [40] examines a certified version of both approaches.

As mentioned, Figure 3 is inspired by the Loos-Weispfenning method, but does not
use infinities. Similarly, the return value in Figure 4 is inspired by Ferrante-Rackoff
method, but does not use infinities. One possible advantage of the approach in Figure 4
is in the context of quantifier alternation. In particular, that selection function does not
use any virtual terms, and thus we may consider instances of quantified formulas hav-
ing nested quantification where eliminating virtual terms is not obvious. A complete
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Return


uj+`i

2
n > 0 and m > 0

∞ m = 0

−∞ n = 0

, where

{
max{`I1 , . . . , `In} = `Ii if n > 0

min{uI1 , . . . , uIm} = uIj if m > 0.
.

Fig. 6. An alternative return value for SR0 that is analogous to Ferrante and Rackoff’s method.

strategy for quantifier alternation using this selection function is the subject of future
work.

4 Instantiation for Quantifier-Free LIA-Formulas

We now turn our attention to the class of arbitrary LIA-formulas ∃a∀xϕ[a,x], x and
a are vectors of Int variables, and where ϕ[a,x] is quantifier-free. We again assume all
equalities are eliminated from ϕ by replacing them with a conjunction of inequalities.

Figure 7 gives a selection function SLIA for LIA. The procedure invokes the re-
cursive procedure SI , which takes as arguments I, ¬ϕ[k, e], variables e that we have
yet to incorporate into the substitutions, an integer θ, terms t found as substitutions for
variables from e so far, and a tuple of symbols p from {+,−} which we refer to as po-
larities. The role of θ will be to capture divisibility relationships through the procedure,
where θ is initially 1. The procedure invokes a call to SI0(I, ψ, ei) which based on the
propositionally satisfying assignment for ψ returns a tuple of the form (c, ti, pi), where
c is a constant, ti is a term, and pi is a polarity. The procedure for constructing the term
ti in the procedure SI0 is similar to the procedure SR0 in the previous section, where
we find the lower bound of the form ci · e ≥ `i such that the (rational) value ( `ici )

I

is maximal, and similarly for Mu. Additionally, SR0 adds a constant ρ to the maximal
lower bound (resp. minimal lower bound). This constant ensures that the returned term
ti and e are congruent modulo θ · c in I, a fact which in part suffices to show the overall
function to be model-preserving. It then constructs a substitution with coefficients σ of
the form {c ·ei 7→ ti}. A substitution of this form may be applied to integer terms of the
form c · (d · ei+ s) where ei 6∈ FV (s), where (c · (d · ei+ s))σ is defined as d · ti+ c · s.
Additionally, we define (s1 ./ s2)σ as (c ·s1)σ ./ (c ·s2)σ for ./∈ {<,>}, and thus we
can apply σ to arbitrary LIA-formulas. After constructing σ, the procedure SI invokes
a recursive call where σ is applied to ψ and (c · t), θ is multiplied by c, the term θ · ti is
appended to t, and pi is appended to p.

Overall, SI returns a vector of terms (t divp θ), that is, integer division applied
pairwise to the terms in t and the constant θ, where p determines whether this di-
vision rounds up or down. We add the instance ϕ[k, t divp θ] ↓ to Γ in Figure 1,
where occurrences of integer division are eliminated by defining ϕ[k, t divp θ] ↓ as
ϕ[k,d]∧ θ · d ≈ t±p m∧ 0 ≤ m < θ, where d and m are distinct fresh constants, and
±p is + if p is + and analogously for−. Note that our selection function chooses p such
that integer division rounds up for terms coming from lower bounds, and rounds down
for terms combing from upper bounds. This choice is not required for correctness, but
can reduce the number of instances needed for showing unsatisfiability.

Lemma 9 SLIA is finite for ϕ[k, e].
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SLIA(I, Γ,¬ϕ[k, e]):

Return SI(I,¬ϕ[k, e], e, 1, (), ())

SI(I, ψ, (ei, . . . , en), θ, t,p):

If i > n, return t divp θ
Otherwise, let (c, ti, pi) = SI0(I, ψ, ei, θ), σ = {c · ei 7→ ti}
Return SI(I, ψσ, (ei+1, . . . , en), θ · c, ((c · t)σ, θ · ti), (p, pi))

SI0(I, ψ, e, θ):

Let M =M` ∪Mu ∪Mc be such that:
• I |=M and M |=p ψ,
• M` ⇔ {c1 · e ≥ `1, . . . , cn · e ≥ `n}, c1 > 0, . . . , cn > 0,
• Mu ⇔ {d1 · e ≤ u1, . . . , dm · e ≤ um}, d1 > 0, . . . , dm > 0, and
• e 6∈ FV (`1, . . . , `n) ∪ FV (u1, . . . , um) ∪ FV (Mc).

Return one of



(ci, `i + ρ,+)
n > 0,max{( `1

c1
)I , . . . , ( `n

cn
)I} = ( `i

ci
)I ,

ρ = (ci · e− `i)I mod (θ · ci)

(dj , uj − ρ,−)
m > 0,min{(u1

d1
)I , . . . , (um

dm
)I} = (

uj

dj
)I ,

ρ = (uj − dj · e)I mod (θ · dj)

(1, ρ,+) n = 0,m = 0, ρ = eI mod θ

Fig. 7. A selection function SLIA for arbitrary quantifier-free LIA-formula ϕ[a, x].

Proof: First, we show that only a finite number of tuples are returned by
SI0(I, (¬ϕ[k, e])σ, ei, θ) for any I, σ, ei and finite θ. Let A be the set of atoms oc-
curring in ϕ[k, ei]σ. The literals in satisfying assignments of (¬ϕ[k, e])σ are over these
atoms. Let {c1 · ei < `1, . . . , cn · ei < `n, d1 · ei > u1, . . . , dm · ei > um} be the set
of atoms that are in solved form with respect to ei that are equivalent to the atoms of A
containing ei, where ei 6∈ FV (`1, . . . , `n, u1, . . . , um) and c1 > 0, . . . , cn > 0, d1 >
0, . . . , dm > 0. The tuples returned by SI0(I, (¬ϕ[k, e])σ, ei) are in the finite set:

{(ci, `i + ρ,+) | 1 ≤ i ≤ n} ∪ {(dj , uj + 1 + ρ,−) | 1 ≤ j ≤ m} ∪
{(dj , uj − ρ,−) | 1 ≤ j ≤ m} ∪ {(ci, `i − 1− ρ,+) | 1 ≤ i ≤ n} ∪ {(1, ρ,+)}

and where 0 ≤ ρ < (θ · c). Since c and θ are finite, there are a finite number of tuples of
this form. Since there are only a finite number of recursive calls to SI within SLIA, and
each call modifies t based a finite number of possible tuples coming from the set above,
the set of possible return values of SLIA is finite, and thus it is finite for ϕ[k, e]. �

Lemma 10 If I is a model for LIA and a quantifier-free formula ψ, θ ≥ 1, and
SI0(I, ψ, e, θ) = (c, t, p), then:

1. (c · e)I ≡θ·c tI , and
2. I |= ψ{c · e 7→ t}.
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Proof: We first show part 1. In the case that n > 0 and SI0(I, ψ, e, θ) = (ci, `i+ρ,+),
and

(`i + ρ)I ≡θ·ci (`i + (ci · e− `i)I mod (θ · ci))I ≡θ·ci (ci · e)I .

In the case that m > 0 and SI0(I, ψ, e, θ) = (dj , uj − ρ,−), we have

(uj − ρ)I ≡θ·dj (uj − (uj − dj · e)I mod (θ · dj))I ≡θ·dj (dj · e)I .

In the case that n = 0, m = 0, and SI0(I, ψ, e, θ) = (1, ρ,+), we have that ρI ≡θ·1
(eI mod θ)I ≡θ·1 (1 · e)I .

To show part 2, we first focus on the case where n > 0 and SI0(I, ψ, e, θ) =
(ci, `i+ ρ,+). We have that ρ = (ci · e− `i)I mod (θ · ci). Let M be a set of literals of
the form described in the body of SI0(I, ψ, e). We show that I satisfies each literal in
Mσ, where σ = {ci · e 7→ `i + ρ}. First, consider an atom in M`σ that is equivalent to
(cj ·e ≥ `j)σ for some j ∈ {1, . . . , n}. This is equivalent to (cj ·ci ·e ≥ ci ·`j)σ, which
is equivalent to cj ·ci

ci
· (`i + ρ) ≥ cj ·ci

cj
· `j , which is satisfied by I since ( `ici )

I ≥ (
`j
cj
)I

by our selection of (ci, `i+ ρ) and since ρ ≥ 0. Second, consider the atom in Muσ that
is equivalent to (dj · e ≤ uj)σ for some j ∈ {1, . . . ,m}. Let ρ′ = (ci · e− `i)I , which
is greater than 0 since I satisfies (ci · e ≥ `i). Since (ci · e)I = (`i+ ρ′)I , we have that
I satisfies (dj ·e ≤ uj){ci ·e 7→ `i+ρ

′}, which is equivalent to (dj ·(`i+ρ′) ≤ ci ·uj).
Since ρ = ρ′ mod (θ ·c) ≤ ρ′, we have that I also satisfies (dj ·(`i+ρ) ≤ ci ·uj), which
is (dj ·e ≤ uj)σ. Finally, I satisfiesMcσ asMcσ =Mc and I |=Mc. Thus, I satisfies
Mσ, which entails ψσ. The case for when m > 0 and SI0(I, ψ, e, θ) = (dj , uj −ρ,−)
is symmetric. When n = 0, m = 0, and SI0(I, ψ, e) = (1, ρ,+), the assignment M
does not contain e, and thus I satisfies M{c · e 7→ ρ} =M and ψ{c · e 7→ ρ}. �

Lemma 11 Each recursive call to SI(I, ψ, (ei, . . . , en), θ, (t1, . . . , ti−1),p) within
SLIA(I, Γ, (e1, . . . , en)) is such that:

1. θ | tIj for each 1 ≤ j < i, and
2. I |= ψ and ψ is equivalent to ¬ϕ[k, e]{θ · e1 7→ t1} · . . . · {θ · ei−1 7→ ti−1}.

Proof: Both statements clearly hold for the initial call to SI in the body of SLIA. Now,
assume both statements hold for some call to SI(I, ψ, (ei, e′), θ, (t1, . . . , ti−1),p), and
assume (c, ti, pi) = SI0(I, ψ, ei, θ). We show that both statements hold for the call to
SI(I, ψσ, e′, θ · c, ((c · t1)σ, . . . , (c · ti−1)σ, θ · ti), (p, pi)), where σ = {c · ei 7→ ti}.

To show part 1, we have from Lemma 10 part 1 that:

(c · ei)I ≡θ·c (ti + ρ)I (7)

Consider a tj where 1 ≤ j < i, where by our assumption is such that θ | tIj , and thus
θ · c | (c · tj)I . By (7), we have that θ · c | ((c · tj)σ)I . Also by (7), we have that
c | (ti + ρ)I , and thus θ · c | (θ · (ti + ρ))I .

To show part 2, by our assumption, I |= ψ and thus by Lemma 10 part 2 we have
that I |= ψσ. By our assumption, ψ is equivalent to ¬ϕ[k, e]{θ · e1 7→ t1} · . . . · {θ ·
ei−1 7→ ti−1}. Thus, ψσ is equivalent to ¬ϕ[k, e]{(θ · c) · e1 7→ (c · t1)σ} · . . . · {(θ ·
c) · ei−1 7→ (c · ti−1)σ} · {(θ · c) · ei 7→ θ · (ti + ρ)}. Thus, the lemma holds. �
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Lemma 12 SLIA is model-preserving for ϕ[k, e].

Proof: Assume that SLIA(I, Γ,¬ϕ[k, e]) = t, where e = (e1, . . . , en), and t =
(t1, . . . , tn). By Lemma 11 and the definition of SLIA, there is a θ such that for each
i = 1, . . . , n, term ti is of the form si div

p θ where θ | sIi , and I |= (¬ϕ[k, e]){θ ·e1 7→
s1} · . . . · {θ · en 7→ sn}. Thus, I satisfies (¬ϕ[k, e]){e 7→ t} = ¬ϕ[k, t], and thus SLIA
is model-preserving for ϕ[k, e]. �

Theorem 3 PSLIA is a sound and complete procedure for determining the LIA-
satisfiability of ∃a ∀xϕ[a,x].

Proof: By Theorem 1, Lemma 3, Lemma 9 and Lemma 12. �

Example 8. To demonstrate a case involving a substitution with coefficients, consider
the formula ∀xy (2 ·x < a∨x+3 ·y < b) whose negation is 2 ·e1 ≥ a∧e1+3 ·e2 ≥ b.
A possible run of PSLIA

on this input is as follows.
SI0(I, Γ, e, θ)

# Γ Γ ′ e θ M` return t[k] Add to Γ
1 sat sat e1 1 {2 · e1 ≥ a, . . .} (2, a,+)

e2 2 {6 · e2 ≥ 2 · b− a} (6, 2 · b− a,+) (6 · a, 4 · b− 2 · a) div+ 12 ψ1

2 unsat

Thus, ∃ab∀xy (2 ·x < a∨x+3 · y < b) is LIA-unsatisfiable. We assume ρ = 0 for all
calls to SI0 in this run. Applying the substitution {2 · e1 7→ a} to e1 +3 · e2 ≥ b results
in the bound 6 · e2 ≥ 2 · b− a for e2. We add to Γ the instance ψ1, which is equivalent
to 2 · ((6 · a) div+ 12) < a∨ (6 · a) div+ 12+3 · ((4 · b− 2 · a) div+ 12) < b. Applying
normalization ↓ to this formula results in a one that is LIA-unsatisfiable. �

Example 9. To demonstrate a case involving a non-zero value of ρ, consider the formula
∀xy (3 ·x+y 6≈ a∨0 > y∨y > 2) whose negation is 3 ·e1+e2 ≈ a∧0 ≤ e2∧e2 ≤ 2,
where ≈ denotes the conjunction of non-strict upper and lower bounds. A possible run
of PSLIA

on this input is as follows.
SI0(I, Γ, e, θ)

# Γ Γ ′ e θ M` return t[k] Add to Γ
1 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)

e2 3 {e2 ≥ 0} (1, 0,+) (a, 0) div+ 3 ψ1

2 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)
e2 3 {e2 ≥ 0} (1, 1,+) (a− 1, 1) div+ 3 ψ2

3 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)
e2 3 {e2 ≥ 0} (1, 2,+) (a− 2, 2) div+ 3 ψ3

4 unsat

This run shows ∃a∀xy (2 · x < a ∨ x + 3 · y < b) is LIA-unsatisfiable. On the
first iteration, we assume that Γ ′ is satisfied by a model, call it I1, that interprets all
variables as 0, and hence the values chosen for e1 and e2 correspond to their maximal
lower bounds in I1, a− e2 and 0 respectively, where in each call to SI0 we have ρ = 0.
The instance ψ1 added to Γ on this iteration is equivalent to 3 · (a div+ 3) 6≈ a and
implies that aI 6≡3 0 in subsequent models I. Thus, models I satisfying 3 ·e1+e2 ≈ a
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are such that eI2 6≡3 0. On the next iteration, Γ ′ is satisfied by a model, call it I2, where
the maximal lower bound for e2 is 0. By the above reasoning and since I2 satisfies
3 · e1 + e2 ≈ a, it must be that ρ = ((e2 − 0)I2 mod 3) 6= 0. Assume (e2 − 0)I2 ≡3 1.
The instance ψ2 is equivalent to 3 · ((a − 1) div+ 3) + 1 6≈ a, which implies that
aI 6≡3 1 in subsequent models I, and hence eI2 6≡3 1. The instance ψ3 is equivalent to
3 · ((a − 2) div+ 3) + 2 6≈ a and implies that aI 6≡3 2, which together with the two
previous instances are T -unsatisfiable. �

The procedure PSLIA can be understood to lazily enumerating disjuncts of Cooper’s
algorithm for quantifier elimination over linear integer arithmetic [15], with minor dif-
ferences. The algorithm is essentially enumerating a single path of [15] by using the
model to select a satisfied case split for each variable over an entire block of quanti-
fiers.5 Like that approach, the worst-case performance is dependent upon the size of
coefficients of monomials, which is manifested in our case by the fact that the number
of possible return values of SI0 is proportional to the size of θ. While not shown here,
our implementation takes steps to reduce the size of θ by factoring out common divisors
in θ and the coefficients returned by SI0.

4.1 Comparison to Existing Approaches

The approach taken in PSLIA
is similar to the one taken in Section 2.5 in [12]. The most

substantial difference between the two algorithms is that PSLIA
implements a variant

of Cooper’s algorithm while resolve in [12] uses the model to guide an execution of
the Omega test [44]. The most similar aspects of the approaches are the computation of
a feasible ρ and the computation of the d values in the grey shadow cases of resolve.
These differ in that a different d value is selected to ensure separation between each
upper bound and the greatest lower bound in a projection whereas ρ is selected using
the current value of ci · e (the selection of d is agnostic to e in our parlance) to ensure
all bounds are satisfied by a single instantiation.

5 Integration in an SMT Solver

This section gives an overview of how the instantiation-based procedure for quantified
formulas as described in Section 2 can be integrated into a solving architecture used
by SMT solvers, and used in part for determining the satisfiability of inputs Γ0 having
arbitrary Boolean structure that contain any number of quantified T -formulas.

Figure 8 defines a procedure SMTQI which takes as input a theory T and a set
of ground T -formulas Γ in purified form with respect to quantified formulas, that is,
a formula obtained from Γ0 by replacing all quantified formulas ∀x.ϕi[x] in Γ0 by
(uniquely associated) boolean variables Ai. We call such a variable Ai the positive
guard of ∀x.ϕi[x] and write Ai ⇔ ∀x.ϕi[x] to denote Ai is the positive guard of
∀x.ϕi[x]. In each call to SMTQI, if Γ is T -unsatisfiable, then the procedure returns

5 In the parlance of [15], PSLIA selects a feasible j value using the calculation of ρ and avoids
introducing the F±∞ cases by introducing the no bounds case (n = 0,m = 0) and always
favoring bounds when one exists.
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SMTQI(T, Γ ):

If Γ is T -unsatisfiable, then return “unsat”.
Otherwise,

Let M be such that I |=M and M |=p Γ for some model I of T and Γ .
Γ ′ := Γ .
For each (¬)Ai ∈M where Ai ⇔ ∀x.ϕi[x],

Γ ′ := Γ ′ ∪ (Ai ∨Bi) ∪ (Bi ⇒ ¬ϕi[ei]).
If Ai ∈M and Bi ∈M ,

Γ ′ := Γ ′ ∪ (Ai ⇒ ϕi[Si(I, Γ,¬ϕi[ei])])
If Γ ′ = Γ , then return “sat”. Otherwise, return SMTQI(T, Γ ′).

Fig. 8. Procedure SMTQI for SMT solving with quantifier instantiation, which determines the T -
satisfiability of a ground set of T -formulas Γ in purified form with respect to quantified formulas.

“unsat”. Otherwise, we find a model I of T and Γ and a corresponding propositionally
satisfying assignment M . We then build a new set of formulas Γ ′, initially containing
Γ , as follows. For each quantified formula ∀x.ϕi[x] whose positive guard Ai is in M ,
we add the formulas (Ai ∨ Bi) and (Bi ⇒ ¬ϕi[ei]) to Γ ′ if we have not done so
already, where Bi is a fresh Boolean variable, which we call the negative guard of
∀x.ϕi[x]. If both the positive and negative guards of ∀x.ϕi[x] are asserted positively
in M (we will say such a quantified formula is active in M ), we consider an instance
of this quantified formula to Γ ′ based on its associated selection function Si, If ϕi has
nested quantification, this instance will contain quantified formulas, which we purify in
the same manner described above. If no new formulas are added to Γ ′ in this process,
then the procedure returns “sat”. Otherwise, we call SMTQI on Γ ′.

At a high level, the procedure in Figure 8 adds guarded instances of quantified
formulas to an evolving set of formulas Γ until Γ is T -unsatisfiable, or a fixed point
is reached. In this respect, the algorithm is similar to existing instantiation-based ap-
proaches used by SMT solvers for quantified formulas [16, 23]. However, the pro-
cedure differs from these approaches in the following ways. Firstly, when a univer-
sally quantified formula are asserted negatively in M , typical approaches add the
clause (¬Ai ⇒ ¬ϕi[ei]) to Γ . Here, we choose to add the clauses (Ai ∨ Bi) and
(Bi ⇒ ¬ϕi[ei]) instead. This allow us to consider both the positive and negative ver-
sions of quantified formulas simultaneously. As such, the algorithm only adds instances
of quantified formulas where both the positive and negative guards are asserted pos-
itively in M . To ensure the model soundness of the approach (that is, the algorithm
answers “sat” only if the input is indeed T -satisfiable), we require the following prop-
erty of the set of literals M in the body of SMTQI:

If no quantified formula is active in M , then Γ ∪ {Bi} is T -unsat for i = 1, . . . , n,
where {A1, . . . , An} is the set of the positive guards that are asserted positively in M .

In other words, the set of literals M are chosen such that, if possible, at least one of
B1, . . . , Bn is true in M . In practice, this requirement can be met in a DPLL(T)-based
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SMT solver by instructing its underlying SAT solver, when it chooses a decision literal
to add to M , to choose one of the unassigned negative guards of quantified formulas in
Γ , if one exists, and assert it positively.

We refer to the treatment of quantified formulas in Figure 8 as counterexample-
guided quantifier instantiation [47]. A closely related approach is that of model-based
quantifier instantiation [24], which like the approach described here, adds instances of
quantified formulas based on models for their negations. This approach differs in its
scope, in that it primarily targets quantified formulas having uninterpreted functions,
whereas the approach described in Figure 8 targets quantified formulas having no un-
interpreted functions. It also differs in that it uses a separate copy of the SMT solver
as an oracle for checking the satisfiability of the negation of each quantified formula it
instantiates, whereas the approach described in Figure 8 uses a single instance of the
SMT solver for doing these tasks simultaneously in its main solving loop.

5.1 Arbitrary Quantifier Alternation

The algorithm in Figure 8 can be used as a basis for handling quantified formulas with
arbitrary quantifier alternations. Assume we rewrite formulas added to Γ ′ in the body
SMTQI so they are in purified form with respect to quantified formulas, that is, we
replace each quantified formula ∀x.ϕj [x] occurring in formulas Bi ⇒ ¬ϕi[ei] and
Ai ⇒ ϕi[Si(I, Γ, ei)] with its corresponding positive guard Aj . We give an intuition
of how the procedure SMTQI handles such formulas in the following. A more compre-
hensive description is the subject of future work.

Consider the LIA-formula ∀x.¬(∀y.x > y), call it ϕ1, whose positive guard is A1.
Given the input Γ = {A1}, the procedure SMTQI adds the formulas A1 ∨ B1 and
B1 ⇒ A2 to Γ , where A2 is the positive guard for (∀y.e1 > y) (call this formula ϕ2)
where e1 is a fresh constant. On the second call to SMTQI, the satisfying assignment
includes A2 and the procedure similarly adds the formulas A2 ∨B2 and B2 ⇒ e1 ≤ e2
to Γ where e2 is a fresh constant. On the third call to SMTQI, we have that Γ =
{A1, B1 ⇒ A2, B2 ⇒ e1 ≤ e2, . . .} is T -satisfiable, and we may choose a satisfying
assignment M = {A1, B1, A2, B2, e1 ≤ e2, . . .}. Both ϕ1 and ϕ2 are active in M .
The literal e1 ≤ e2 is over the atoms of ϕ2[e2/y], and we may add the formula A2 ⇒
e1 > e1 to Γ on this iteration, assuming our selection function for ϕ2 chose to return
the maximal lower bound e1 for e2. On the fourth call to SMTQI, we have that Γ =
{A1, B1 ⇒ A2, A2 ⇒ e1 > e1, . . .}, and hence B1 or A2 cannot be asserted positively
in a satisfying assignment M for this set. Hence, neither ϕ1 nor ϕ2 is active in M and
the procedure SMTQI adds no instances to Γ , indicating that our input is satisfiable.

6 Experimental Evaluation

We have implemented the procedure in the SMT solver CVC4 [4] (version 1.5 pre-
release). This section presents an evaluation of this implementation compared against
other SMT solvers and first-order theorem provers.
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keymaera (222) scholl (371) tptp (25) Total (621)
# time # time # time # time

CVC4(a) 222 2.0 352 2176.4 25 0.2 599 2178.6
CVC4 222 2.0 351 1074.0 25 0.2 598 1076.2
Z3 222 2.4 326 553.0 25 0.4 573 555.8
VampireZ3 220 51.2 57 393.2 25 2.3 302 446.7
Beagle 222 377.9 53 577.9 25 29.7 300 985.5
Vampire 218 57.8 43 31.1 25 1.3 286 90.1
Yices 222 0.9 – 0.0 25 0.01 247 1.0
ZenonArith 205 13.8 25 452.9 14 0.9 244 467.7
Princess 202 1136.2 0 0.0 25 67.4 227 1203.6

Fig. 9. Results for LRA benchmarks, showing times (in seconds) and benchmarks solved by each
solver and configuration over 3 benchmark classes with a 300s timeout. Yices (version 2.4.1) does
not support nested quantification, hence it was not applicable for the scholl class.

psyco (189) tptp (46) uauto (155) sygus (71) Total (461)
# time # time # time # time # time

CVC4 189 78.7 46 0.4 155 1.9 71 22.0 461 103.0
Z3 183 32.1 46 0.7 155 1.8 71 19.0 455 53.6
Beagle 28 900.0 46 48.4 153 343.6 57 617.7 284 1909.7
Princess 13 513.4 46 48.0 155 201.9 68 418.8 282 1182.1
VampireZ3 4 3.1 36 4.7 155 106.3 55 151.8 250 265.9
Vampire 6 196.0 36 2.0 155 378.0 46 262.8 243 838.7
ZenonArith 0 0.0 30 1.9 154 15.0 28 1374.6 212 1391.5

Fig. 10. Results for LIA benchmarks, showing times (in seconds) and benchmarks solved by each
solver and configuration over 4 benchmark classes with a 300s timeout.

Pure Quantified Linear Arithmetic We considered all quantified benchmarks over 6
classes in the LRA and LIA logics of the SMT library [5]. The class keymaera are
verification conditions coming from the Keymaera verification tool [42], scholl were
used for simplification of non-convex polyhedra in [51], psyco were used for weakest
precondition synthesis for compiler optimizations in [34], uauto correspond to verifi-
cation conditions in [26], and the tptp classes correspond to simple arithmetic conjec-
tures coming from the TPTP library [55]. We also considered a class of benchmarks
sygus corresponding to first-order formulations of the 71 single-invocation synthesis
conjectures taken from the conditional linear integer track of the 2015 edition of the
syntax-guided synthesis competition [1]. All benchmarks are in the SMT version 2
format. For comparisons with automated theorem provers, they were converted to the
TPTP format by the SMTtoTPTP conversion tool [6]. We remark that all benchmarks
consist purely of quantified formulas over linear arithmetic with very little, and in a
majority of cases, no quantifier-free content. 6

The results for the linear real and integer benchmarks are in Figures 9 and 10 re-
spectively. Of the 7 benchmark classes, only one (the scholl class from LRA) had quan-
tified formulas with nested quantification. The algorithm in Section 5 naturally extends

6 Details can be found at http://cs.uiowa.edu/˜ajreynol/InstLA.
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to such formulas; a formal treatment of nested quantification is the subject of future
work.

For LRA, we considered both the selection function from Figure 3, and its alterna-
tive from Figure 4, where the latter we refer to as CVC4 (a). For both LRA and LIA, the
best configuration of CVC4 solves the most benchmarks overall (599 and 461 respec-
tively), and did not give a conflicting response with any of the other solvers. Moreover,
we note that CVC4 solves every benchmark that does not involve nested quantification,
giving confirming evidence that our approach and implementation for solving linear
arithmetic with one quantifier alternation is indeed sound and complete. Although we
do not claim completeness for formulas with nested quantification, CVC4 solves more
benchmarks (352) from the scholl class than any other solver.

The SMT solver Z3 (version 4.3.2), which uses the approach described in [11],
solves the next most benchmarks overall, solving 573 and 455 total for the LRA and
LIA sets respectively. A technique [18] in the SMT solver Yices (version 2.4.1) is able
to solve all benchmarks from the keymaera and tptp classes of LRA, both does not
handle quantified formulas in LIA or with nested quantification. We also considered
the entrants of the first-order typed theorems division (TFA) of CASC 25, the most
recent competition for automated theorem provers [56]. 7 For both benchmarks over
LIA and LRA, the automated theorem provers trail the performance of CVC4 (and
Z3) significantly. The best LRA automated theorem prover, VampireZ3, which uses a
combination of a first-order theorem prover and an SMT solver [46], solves only 302
benchmarks, compared to 599 solved by CVC4 (a). The best LIA automated theorem
prover, Beagle [7], solves 284 benchmarks, also notably less than the 461 solved by
CVC4.

When comparing the best configuration of CVC4 to a combination of all other
solvers, CVC4 solved 31 benchmarks that no other system solved, while in only 10
cases did another system solve a benchmark that CVC4 could not solve. In addition to
solving the most benchmarks, CVC4 generally has small runtimes for the benchmarks
it solves. When compared to the second best solver Z3, which takes 1129.8 seconds to
solve 1028 benchmarks over all classes, CVC4 while solving 1060 benchmarks overall,
solves its first 1028 benchmarks in a total of 159.0 seconds. Among the benchmarks
solved by CVC4 and other systems, in only 12 cases did any system solve a benchmark
at least 5 seconds faster than CVC4, while in 13 cases CVC4 solved a benchmark at least
5 seconds faster than all other systems.

Combining Linear Arithmetic with Uninterpreted Functions A prototype of the
instantiation-based procedure from this paper was used by CVC4 in both the CASC J7
and CASC 25 competitions [56], which evaluated automated theorem provers on TPTP
benchmarks involving combinations of arithmetic and free function symbols. CVC4 won
the theorems (TFA) division of CASC J7 and finished 2nd in CASC 25, behind Vam-
pireZ3. Additionally, CVC4 won the non-theorems (TFN) division of CASC 25. While
treatment of uninterpreted functions is beyond the scope of this work, this shows the

7 We omit SPASS+T, which did not handle some classes of benchmarks due to restrictions on
its input format, was comparable to the other automated theorem provers for the others. We
show results for an updated version of Beagle (version 0.9.30).
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potential of the technique for use in general first-order automated theorem proving in
the presence of background theories.

7 Conclusion

We have presented a class of instantiation-based procedures that are at the same time
complete for quantified linear arithmetic and highly efficient in practice. Thanks to our
framework we also obtain a simple and modular correctness argument for soundness
and completeness on formulas with one quantifier alternation.

For future work, we would like to adapt the approach for quantified linear arithmetic
with arbitrary quantifier alternations, and develop heuristics for avoiding worst case
performance for quantified integer arithmetic involving large coefficients. We plan to
develop selection functions for other theories, in particular, algebraic datatypes and
fixed-width bitvectors, as well as for combinations of theories that admit quantifier
elimination. A longer term goal of this work is to develop an approach that is effective in
practice for quantified formulas involving both background theories and uninterpreted
functions. We plan to investigate the use of the framework described in this paper as a
component of such an approach.

Acknowledgements We would like to thank Peter Baumgartner for his help with con-
verting the benchmarks used in the evaluation to the TPTP format.
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