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Abstract—Fueled by increasing network bandwidth and de-
creasing costs, the popularity of over-the-top large-scale live video
streaming has dramatically increased over the last few years. In
this paper, we present a measurement study of adaptive bitrate
video streaming for a large-scale live event. Using server-side logs
from a commercial content delivery network, we study live video
delivery for the annual Academy Awards event that was streamed
by hundreds of thousands of viewers in the United States. We
analyze the relationship between Quality-of-Experience (QoE)
and user engagement. We first study the impact of buffering,
average bitrate, and bitrate fluctuations on user engagement. To
account for interdependencies among QoE metrics and other
confounding factors, we use quasi-experiments to quantify the
causal impact of different QoE metrics on user engagement. We
further design and implement a Principal Component Analysis
(PCA) based technique to detect live video QoE impairments in
real-time. We then use Hampel filters to detect QoE impairments
and report 92% accuracy with 20% improvement in true positive
rate as compared to baselines. Our approach allows content
providers to detect and mitigate QoE impairments on the fly
instead of relying on post-hoc analysis.

I. INTRODUCTION

An increasingly large number of content publishers now

broadcast video content live over the Internet. This growth is a

consequence of low costs of content delivery and the adoption

of advertisement/subscription based revenue models. The live

video content encompasses social networking services (e.g.,

Periscope, Facebook Live), video game streaming services

(e.g., Twitch, YouTube Gaming), broadcast TV networks (e.g.

NBC, ABC, CBS), cable TV news networks (e.g., CNN,

MSNBC), and cable TV sports networks (e.g., ESPN, NFL

network). This migration from traditional broadcast to Internet

video creates a need to provide high-quality over-the-top video

streaming services.

According to Cisco [4], 73% of the global Internet traffic

was video in 2016. Furthermore, the popularity of live video

streaming has increased significantly over the last decade due

to its emergence on social networks [3], e-sports and video

game streaming platforms [14], [15], and online sports and

entertainment broadcasts [2]. The “Video Internet” is here

to stay—the volume of video traffic is expected increase up

to 82% of the global Internet traffic by 2021. Therefore,

the stakeholders in the Internet video ecosystem such as

content providers, Content Delivery Networks (CDNs), and

Internet Service Providers (ISPs) need to frequently upgrade

their infrastructure to meet the increasing demands of Internet

video. Moreover, as high-definition streaming devices, aug-

mented/virtual reality (AR/VR) streaming, and broadband In-

ternet connectivity becomes more common, user expectations

for high-quality and smooth video streaming are continuing

to rise. Since content providers generate revenue through

advertisements and subscriptions, they strive to maintain good

user experience and maximize user engagement [1].

Extensive research has been conducted on various aspects

of streaming content delivery to cope with the ever-increasing

demands of high-quality Internet video. On one hand, prior lit-

erature includes studies on analyzing the impact of Quality-of-

Service (QoS) metrics such as bandwidth, packet loss, and bit

error rate on the performance of specific applications including

streaming video [10], [11], [17], [33]. To this end, researchers

used passively collected network data to study video access

patterns and viewing behavior of users across different ISPs

and edge networks. On the other hand, researchers have used

video-specific Quality-of-Experience (QoE) metrics, such as

rate of buffering and average bitrate, in the pursuit to directly

quantify user experience and understand the effect of “bad

QoE” on user engagement [7], [13], [21], [24]. Video stream-

ing services mostly rely on human-in-the-loop and post-hoc

analysis to detect and analyze root causes of QoE impairments

[21]. To the best of our knowledge, prior literature lacks tools

that can be used by operators to automatically detect video

QoE impairments in real-time.

In this paper, we focus our attention on analyzing user

engagement and QoE impairments for large-scale live video

streams. Specifically, we measure and analyze QoE for live

streaming of the 87th annual Academy Awards. The event was

streamed all over the United States by a large commercial

CDN with 9 geographically distributed Points-of-Presence

(PoPs). The event amassed over 600 thousand video stream

viewers over the duration of 5 hours, with nearly 100 thousand

concurrent viewers at peak. Overall, we observe over 21

million minutes of viewing time from users all across the

United States. Our objectives are to understand the impact

of various QoE metrics on user engagement and to design

techniques for automatically detecting QoE impairments in

real-time.

To this end, we first quantify video quality in terms of

different QoE metrics such as rate of buffering and average

bitrate. We then study the cause-effect relationships between

user engagement and QoE metrics using a quasi-experimental

framework. Finally, we use Principal Component Analysis978-1-5090-6501-1/17/$31.00 c©2017 IEEE
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Fig. 1. Architecture of adaptive video streaming for a large-scale live event

(PCA) to detect QoE impairments in an online and real-time

fashion. Our analysis of the large-scale live video stream-

ing event reveals several interesting findings and actionable

insights for operators. We summarize our key findings and

insights as follows.

• We analyze the interplay between different QoE metrics for

large-scale live video streaming. Using Kendall rank correla-

tion, we quantify the intrinsic interdependencies between QoE

metrics. We find strong positive 89.6% correlation between

rate of buffering and buffering ratio. We also find strong neg-

ative -40.6% correlation between rate of (bitrate) fluctuation

and average bitrate.

• We then employ a quasi-experimental framework to study

the impact of QoE metrics on user engagement while ac-

counting for the interdependencies between QoE metrics and

other confounding factors such as ISP affiliations and device

types. We find that rate of buffering has the most negative

impact on user engagement. For example, an increase in rate

of buffering by 0.13 buffering events per minute degrades user

engagement by as much as 20 minutes on average. We find

that average bitrate has a positive impact on user engagement.

For example, 1.5 Mbps increase in average bitrate improves

user engagement by 10 minutes on average. In contrast,

rate of fluctuation has a relatively negligible impact on user

engagement.

• We use PCA to help content providers to detect QoE

impairments in real-time. We group users based on their AS

affiliation and device type and construct “normal” and “resid-

ual” subspaces from the users viewing the event for significant

duration using PCA. We then project average QoE metrics of

users in a time window on the residual subspace and identify

the ones with sufficiently large projection magnitudes (L2-

norm) as anomalous users. Generally, we find that anomalous

users detected by our methodology have significantly worse

QoE metrics compared to normal users. We use the Hampel

filters to detect spikes in residual subspace projections in real-

time. Our PCA based method provides 92.7% accuracy that

represents 20% improvement in true positive rate as compared

to baselines.

II. BACKGROUND & DATA

A. Background
Internet video can be classified into three categories, each

with its own distinct characteristics: streaming stored video

(Netflix, YouTube, Hulu, etc.), streaming live video (Periscope,

Twitch, NFL Live, etc.), and interactive live video (Skype,

Facetime, Google Hangouts, etc.). On one hand, a stored

video is bandwidth-sensitive and is typically streamed from a

CDN. On the other, an interactive live video is delay-sensitive

and typically uses P2P techniques or relay servers. Lastly,

streaming live video falls somewhere in the middle of the

spectrum in terms of its delay and bandwidth sensitivity.

Video service providers typically use HTTP-based adaptive

bitrate video streaming techniques. Streaming video is divided

into smaller segments (or chunks) of length 2-10 seconds

and encoded at different bitrates with different video and

audio quality at the server. The clients are made aware of the

available bitrates via a manifest file downloaded at the start and

during playback. It is worth noting that the content servers are

not required to track the playback state at clients. The idea is to

dynamically adapt video bitrate based on various factors such

as network bandwidth estimation and player buffer occupancy.

Since end-to-end network bandwidth fluctuates over time,

adaptive bitrate controllers [6], [19], [26], [34], [35] are

implemented at the client side to estimate network bandwidth,

request video at appropriate bitrates and optimize tradeoffs

associated with QoE metrics and streaming bitrate. Note that

user QoE for streaming video is determined by a wide range

of factors such as encoding bitrate, buffering rate, etc. For

example, requesting a high streaming bitrate results in frequent

buffering events (i.e., stall while client playback buffer is being

replenished) and a lower bitrate means that the user watches

lower quality video stream. Understanding the relationship

between QoE and user engagement is an active research area

[7], [13], [24], [33].

B. Data Collection

Figure 1 shows the video delivery architecture and the

adaptive bitrate streaming protocol used by the CDN. The

CDN back-end servers receive high quality video feed from the

live event which is digitally encoded into 4-second segments

at 9 different quality levels. The quality levels range from

the lowest bitrate (quality A) to the highest bitrate (quality

I).1 The encoded video segments are pushed to the front-end

cache servers for delivery to clients. Before the initialization of

video streaming, the video player downloads the manifest file

from content servers which contain URLs of video segments

at multiple quality levels. The client sends a series of HTTP

GET requests to the content server to fetch video segments.

The video segments from the CDN server are downloaded

and stored in the playback buffer of the client video player.

The client can then reassemble the segments for rendering

a seamless video playback. Recall that the adaptive bitrate

controller is responsible for requesting the video segments at

appropriate bitrates based on network bandwidth estimation

and playback buffer information. The bitrate adaption logic is

1The CDN uses variable bitrate encoding. The average bitrate for each
quality level is as follows. A: 60 Kbps. B: 124 Kbps. C: 234 Kbps. D: 316
Kbps. E: 710 Kbps. F: 1.2 Mbps. G: 2.5 Mbps. H: 3.7 Mbps. I: 3.9 Mbps
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Fig. 2. Timeseries of viewership for different PoPs. The event was streamed
by more than 600K users. At its peak, the event was streamed by nearly 100K
users.

PoP Name Location # Users
MIA Miami 17,379
LAX Los Angeles 25,880
ATL Atlanta 36,584
SJC San Jose 54,326
DAL Dallas 63,308
DCA Washington DC 64,080
CHI Chicago 91,417
NYC New York 114,029
SEA Seattle 158,623

TABLE I
DISTRIBUTION OF VIEWERS ACROSS POPS. THE TOTAL NUMBER OF

VIEWERS ACROSS ALL POPS IS 625,626.

not defined in the standards and its implementation is often

proprietary.

Our data set is composed of server-side HTTP logs from a

commercial CDN which was responsible for online streaming

of the live event. The data is collected at multiple Points-

of-Presence (PoPs) across the United States. The HTTP logs

contain information such as client IP address, port number, and

user agents.2 We also have information about video bitrate and

server response time. Using these logs, we can measure and

analyze video quality metrics and track engagement statistics

for different users.

C. Data Statistics

As shown in Table I, our data set is collected from 9

different PoPs. We note that top-3 PoPs (Chicago, New York,

Seattle) account for 60% of total users. Overall, our data set

contains 625,626 users and more than 21 million minutes

worth of video view time. Figure 2 plots the timeseries of

number of users that were watching the event. The event

lasted over five hours. We note that the viewership started

to rapidly increase and reached its peak at around the 90th

minute mark. The peak corresponds to the marquee moment

at the event and was followed by a steady decline over time.

After about 3 hours, the viewership declined rapidly which

corresponds to the end of the main event. Figure 3 plots the

distribution of viewing time across all users in our data set.

We observe that the viewing time distribution has a long tail

[7], [34]. Furthermore, the top 5% of users watch the event

2Note that all device and user identifiers (e.g., IP addresses) in the collected
data set are anonymized to protect privacy without affecting the usefulness of
our analysis. The data sets do not permit the reversal of the anonymization
or re-identification of users.

Viewing Time (minutes)
0 50 100 150 200

C
D

F

0

0.2

0.4

0.6

0.8

1

Fig. 3. Distribution of viewing time

for more than 220 minutes. However, the median viewing time

is approximately 20 minutes. This is expected because most

users may only be interested in different portions of the event

and therefore only tune in during those portions. For example,

as evident from Figure 2, most users may be interested in the

event around the 90th minute mark.

D. Examples

To better understand the data, we illustrate four example

adaptive bitrate streaming sessions in Figure 4. Each adaptive

bitrate video session involves downloading a sequence of

segments, each at one of the distinct quality levels. The x-

axis represents the segment arrival time, which starts with

the download of the first 4 second segment. Note that the

four users shown in Figure 4 join the live video stream at

different points in time. The y-axis represents the segment

identifier which increases monotonically in a linear fashion

due to the live nature of the video stream. The markers rep-

resent individual segments, which are color coded to indicate

their bitrate. Darker colors represent lower quality levels as

compared to lighter colors. The vertical gray strips represent

buffering events, and the width of the strip represent buffering

duration. Note that the video player skips segments during a

buffering event and resumes playback from the most recent

video segment from the content provider at the end of the

buffering event.

In Figure 4, we note that all users start off the video

streaming session at a low bitrate, which is usually done

to sufficiently fill up the playback buffer at the beginning

[19]. Figure 4(a) shows a user belonging to a cable ISP with

smooth video streaming experience at a high bitrate. Figure

4(b) shows another example user from the same cable ISP.

This user also watches the video at a high bitrate, but stops

receiving subsequent segments around the 20 minute mark

resulting in a buffering event represented by the gray strip.

The buffering event lasts for over 2 minutes likely due to

loss of Internet connectivity. Comparing Figures 4(a) and 4(b),

we observe that multiple users in the same ISP may have

different video streaming experiences. Such differences can

potentially be attributed to variations in the last-mile and last-

hop connectivity as well as the device types. Figures 4(c) and

4(d) show users watching the video stream from cellular ISPs.
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Fig. 4. Illustrations of video streaming sessions: (a) High quality streaming, without buffering/fluctuations; (b) High quality streaming, with a buffering event,
without fluctuations; (c) Low quality streaming, without buffering, with fluctuations; and (d) Low quality streaming, with a buffering event and fluctuations.

Note that both users generally watch the event at low bitrates

and experience bitrate changes likely due to rapid variations

in the cellular radio link quality [8], [9].

III. QOE MEASUREMENT

Prior research has studied the impact of commonly used

network quality (or QoS) metrics such as end-to-end delay

and packet loss on application performance [16], [17], [33].

While these QoS metrics have been shown to be useful, they

do not directly tie-in to end-user experience. A user may

experience video streaming issues despite good network QoS

due to unexpected cross-layer interactions [18]. Therefore, it

is important to study QoE metrics that directly measure end-

user experience. In this section, we analyze video QoE and

characterize its impact on user engagement which is defined

in terms of video viewing time.3

A. QoE Metrics

Below, we define a set of video-specific metrics4 to quantify

QoE [7], [13].

1) Rate of Buffering (RoB): We calculate rate of buffering

as the number of buffering events (per minute). A

buffering event is characterized as the video player

stopping the video playback while waiting for the buffer

to be sufficiently replenished.

2) Buffering Ratio (BR): We calculate buffering ratio as

the ratio of total duration of buffering events to the

duration of a video session.

3) Rate of Fluctuation (RoF): We calculate rate of fluctu-

ation as the number of changes in bitrate (per minute).

Note that we do not use the magnitude of bitrate change.

4) Average Bitrate (AB): We calculate the average bitrate

as the mean bitrate of all video segments requested by

a user.

Before we study the impact of QoE metrics on user

engagement, we analyze the distributions of QoE metrics.

Figure 5 plots the cumulative distribution functions (CDFs) of

QoE metrics. In Figure 5(a), we note that a vast majority of

3Note that user engagement is also impacted by user interest in content. We
argue that lack of interest generally results in early abandonments. To account
for early abandonments, we filter out sessions that are abandoned within the
first 10 segments.

4We do not consider join time because we do not have client-side player
information.

users experience relatively low rate of buffering. For example,

almost 80% of users experience less than 0.1 buffering events

per minute. Similarly, in Figure 5(b), we note low buffering

ratios for most users. For example, more than 80% of users

have buffering ratios lower than 0.013. In Figure 5(c), we

observe that users do experience relatively frequent bitrate

fluctuations. For example, about 50% of users experience more

than 2 bitrate fluctuations per minute. In Figure 5(d), we note

that a majority of users watch the video stream at a high

bitrate. For example, more than 60% of users watch the video

stream at a bitrate of at least 1 Mbps (i.e., quality level F) on

average. Overall, we observe that a small fraction of users in

the tail of the distributions suffer from frequent and prolonged

buffering events, frequent bitrate fluctuations, and low average

bitrate. We expect these “anomalous” users to have relatively

lower engagement as compared to other users. To test this

hypothesis, we next analyze the relationship between QoE

metrics and user engagement.

Figure 6 illustrates the relationship between QoE metrics

and user engagement. We quantify user engagement in terms

of viewing time (in minutes). Naturally, higher viewing time

indicates better user engagement. From Figures 6(a) and 6(b),

we note that buffering events seem to have a strong impact on

user engagement. We observe a sharp drop in viewing time

for increasing values of rate of buffering and buffering ratio.

For example, viewing time decreases from a high of more

than 210 minutes for users who experience little/no buffering

to less than 30 minutes for users experiencing 0.5 buffering

events per minute. Moreover, viewing time decreases from a

high of about 150 minutes for users who experience very low

buffering ratio to about 30 minutes for users experiencing

5% buffering ratio. This is expected because frequent and

prolonged buffering events negatively impact user engagement

and decrease user viewing time [13]. In Figure 6(c), we note

that rate of fluctuation also has a negative impact on user

engagement. For instance, viewing time decreases to 30 min-

utes when rate of fluctuation exceeds 1.5 bitrate fluctuations

per minute. We note that frequent bitrate changes as a result

of client-side bitrate adaption impact user experience and

degrade user engagement [19]. In Figure 6(d), we observe a

non-monotonic relationship between average bitrate and user

engagement. More specifically, we observe spikes in viewing

time when average bitrate is close to the discrete quality
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Fig. 5. Distributions of QoE metrics. Overall, most users experience few buffering events at high average bitrate. We do observe a tail of users experiencing
higher buffering, more fluctuations, and lower bitrate than other users.
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Fig. 6. Impact of QoE metrics on user engagement. We note that an increase in buffering events leads to decreased user engagement. We also note that
higher average bitrate increases user engagement, but more fluctuations in video quality lead to decreased user engagement.

levels. We surmise that users with average bitrates between

two video quality levels (e.g, between F and G) experience

more fluctuations which result in lower user engagement. For

example, viewing time for users with the average bitrate at

1.2 Mbps (quality F) is about 120 minutes. Similarly, viewing

time for users with the average bitrate at 2.5 Mbps (quality

G) is about 180 minutes. However, viewing time decreases

to almost 30 minutes for users with the average bitrate at 2

Mbps.

While we note that all QoE metrics seem to impact user

engagement, we are interested in quantifying the relative im-

pact of QoE metrics on user engagement. However, as reported

in prior literature [13], [24], we note that QoE metrics have

intrinsic interdependencies. For example, changes in video

bitrate affect multiple QoE metrics such as average bitrate and

rate of fluctuation. Therefore, a naive application of regression

models to interdependent QoE metrics will lead to models that

lack meaningful interpretation.

We use Kendall rank correlation to quantify the inter-

dependencies among QoE metrics. Kendall rank correlation

coefficient determines the direction and magnitude of the

dependency between a pair of variables. Moreover, it does

not make any assumptions about the underlying distributions

of the variables which makes it suitable to capture non-

linear interdependencies among QoE metrics. Table II lists

Kendall rank correlation coefficients between all pairs of QoE

metrics. Note that high values of Kendall rank correlation

coefficients are marked as bold. We observe that the following

two pairs of QoE metrics are highly correlated. First, as

expected, rate of buffering and buffering ratio exhibit high

positive correlation. Therefore, the impact of buffering ratio

on user engagement in Figure 6(a) can partially be attributed

to rate of buffering and vice versa. Second, rate of fluctuation

and average bitrate exhibit high negative correlation. This

finding can be explained by the observation that users in

good quality networks tend to stream videos at high stable

bitrates (high bitrate, low rate of fluctuation) while users in

bad quality networks stream videos at low unstable bitrates

(low bitrate, high rate of fluctuation). Therefore, the impact

of rate of fluctuation on user engagement in Figure 6(c) can

partially be attributed to average bitrate and vice versa. We

take care of such correlations by conducting quasi-experiments

to identify cause-effect relationships between QoE metrics and

user engagement.

B. Causal Analysis
To measure the causal impact of each QoE metric on user

engagement, we employ the quasi-experimental framework

[31]. Quasi-Experiment Design (QED) is a well known tech-

nique in social/medical sciences and has been previously used

by Krishnan et al. to study QoE [24]. In this study, we extend

their application of QED to our measurements for a large-

scale live video streaming event and study the causal impact

of QoE metrics on user engagement. QED allows us to control
for confounding factor and correlated QoE metrics, and study

the cause-effect relationships between QoE metrics and user

engagement. In particular, we use matched design QED to

study the impact of a target QoE metric on user engagement

by comparing two randomly selected users with same values

of the variables we decide to control for. Specifically, we

control for confounding factors such as device type and ISP

affiliation. We also control for highly correlated QoE metrics

identified in Table II. For example, when studying the impact



Rate of Buffering Buffering Ratio Rate of Fluctuation Average Bitrate
Rate of Buffering 89.6% -8.5% -2.1%
Buffering Ratio 89.6% -7.5% -1.8%

Rate of Fluctuation -8.5% -7.5% -40.6%
Average Bitrate -2.1% -1.8% -40.6%

TABLE II
KENDALL CORRELATION COEFFICIENTS (IN PERCENT) BETWEEN QOE METRICS.
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Fig. 7. Causal impact analysis of QoE metrics on user engagement. We note that rate of buffering and average bitrate impact user engagement the most. On
the other hand, rate of fluctuation does not significantly impact user engagement.

of rate of buffering on user engagement, we select two users

with the same ISP, device type, and similar buffering ratio.

As another example, when studying the impact of average

bitrate on user engagement, we select two users with the

same ISP, device type, and similar rate of fluctuation. Note

that we control for only one highly correlated QoE metric in

order to limit sparsity. We then assign users in bins based

on their confounding factors and the discretized QoE metric

that we want to control for. As a result, all users in a bin

have same values of the control QoE metric and confounding

factors. To quantify the causal impact of a target QoE metric

on user engagement, we randomly pair clients in each bin. For

each pair, we calculate the difference in user engagement as

a function of change in the target QoE metric.

Figure 7 plots the results of the QED analysis for all

QoE metrics. The x-axis represents the change in target QoE

metric across all bins. The y-axis represents the corresponding

average change in user engagement. To ascertain statistical

significance, we plot 90% confidence intervals for the dif-

ference in user engagement. Figure 7(a) shows that rate of

buffering affects user engagement the most. For example, an

increase in rate of buffering by 0.13 buffering events per

minute degrades user engagement by as much as 20 minutes

on average. Figure 7(d) shows that average bitrate also impacts

user engagement. For example, around 1.5 Mbps increase in

average bitrate improves user engagement by 10 minutes on

average. While buffering ratio and rate of fluctuation seem to

affect user engagement in Figures 6(b) and 6(c), they are not

causally impactful according to the QED results in Figures

7(b) and 7(c). We suspect that the apparent effect of buffering

ratio and rate of fluctuation on user engagement observed in

Figures 6(b) and 6(c) is in fact due to their high correlation

with rate of buffering and average bitrate, respectively. Prior

work [24] has reported the causal impact of buffering ratio

on user abandonment; however, we find that while buffering

ratio plays some role in impacting user experience, rate of

buffering and average bitrate have the most causal impact on

user engagement.

IV. QOE IMPAIRMENT DETECTION

In the previous section, we conducted a post-hoc impact

analysis of different QoE metrics on user engagement. We

now want to focus our attention towards real-time detection

of QoE impairments. Real-time QoE impairment detection

allows content providers to track QoE impairments over time

and take suitable mitigation actions on the fly. QED allowed

us to analyze the causal impact of each QoE metric on

user engagement. However, QED is primarily used to study

after-the-fact cause-effect relationships between variables and

outcomes. Therefore, QED is a post-hoc analysis technique

which cannot be used for real-time QoE impairment detection.
We propose a real-time QoE impairment detection method

using Principal Component Analysis (PCA). Specifically, we

formulate the QoE impairment detection as an anomaly de-

tection problem. Our insight is that users experiencing QoE

impairments will stand out as anomalous among all users

because a majority of users do not experience QoE impair-

ments. We propose to use PCA to detect these anomalies over

time [22]. PCA has been widely used in prior literature for

anomaly detection [25], [30]. PCA transforms a set of input

variables to a set of orthogonal principal components such that

a small number of principal components (“normal subspace”)

explain a majority of variability in the data. The remaining

principal components (”residual subspace”) can be used to

detect anomalies in the data. Using PCA for QoE impairment

detection has some advantages. First, PCA takes care of

collinearity between QoE metrics by transforming them into

a set of linearly uncorrelated principal components. Second,

while most statistical anomaly detection methods assume an

underlying distribution of “normal”, PCA does not require

such assumptions. Finally, unlike QED, we can use PCA to

detect QoE impairments in real-time by analyzing temporal

variations in the residual subspaces. Below we provide a brief

background of PCA for anomaly detection.

A. PCA Background
PCA is typically used to transform correlated QoE met-

rics into a set of orthogonal, linearly uncorrelated principal
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Fig. 8. Implementation of PCA to detect QoE impaired (anomalous) users.

components. The principal components are ordered by the

amount of variance in the data captured by them. The principal

components with the least amount of captured variance can

be used to constitute the residual subspace. Therefore, we

can detect anomalous users experiencing QoE impairments by

analyzing the residual subspace. More specifically, we project

users into the residual subspace and identify the users with

large residual projection magnitude as anomalous users.

First, we divide users in groups based on their ISP affiliation

and device type to mitigate potential confounding factors like

interests and expectations. We use an observation matrix Zxy

for each user group, of size n×m to represent QoE metrics,

where n is the number of users in ISP x using device y, and

m is the number of QoE metrics. Element zij of the matrix

Zxy is the value of the jth QoE metric for the ith user in user

group xy. Thus, each row represents QoE metrics of a user

while each column represent the values of a particular QoE

metric across all users in the group. We standardize Zxy so that

its columns have zero mean and unit variance. This ensures

that principal components are not skewed in the direction

of QoE metrics with large magnitude. PCA yields a set of

m principal components, {vi}mi=1. Each principal component

points along the maximum variance in the remaining data,

given the variance captured by the preceding components.

Figure 8(a) plots the variance captured by each principal

component in our QoE data. We observe that more than 40%

of the variance in our data is captured by only the first principal

component, v1. In addition, the second principal component

v2 captures more than 30% variance. We use the vector space

spanned by v1 and v2 as normal subspace S. More specifically,

for a user group xy, we have the matrix Axy = (v1,v2) of

size m × 2. QoE metrics for a user i, zxyi from ISP x and

using device y can be decomposed as:

zxyi = Axy(Axy)T zxyi + (I−Axy(Axy)T )zxyi ,

where Axy(Axy)T zxyi and (I−Axy(Axy)T )zxyi respectively

represent the projection of QoE metrics of a user in user group

xy on the normal and residual subspaces. Here, Axy(Axy)T

and (I − Axy(Axy)T ) are linear operators that we can use

to project QoE metrics of a user on normal S and residual Ŝ
subspaces, respectively. Using this methodology, we synthe-

size the principal and residual subspaces for each user group

xy.

We use the L2-norm of (I − Axy(Axy)T )zxyi to detect

QoE impairments in a user group xy. Figure 8(b) plots the

distribution of residual L2-norm (||(I − Axy(Axy)T )zxyi ||2)

for users in a popular cable ISP. Note that a majority of users

have small values of residual L2-norm. Some users, however,

have very large values of L2-norm beyond the “knee” of the

curve. We identify the L2-norm threshold for every user group

(lxy) from the knee of the curve [32] and mark tail users as

anomalous.

Using this methodology, we separate out anomalous and

normal users in a popular cable ISP and plot their viewing time

distributions in Figure 8(c). We observe that the users tagged

as anomalous view the video for less duration as compared to

the users tagged as normal. For instance, median viewing time

for anomalous users is approximately 10 minutes less than that

of normal users. The difference in viewing time increases to

more than 30 minutes at the 80th percentile. We further use

the Kolmogorov-Smirnov test [28] to confirm the statistical

significance of the difference in viewing time between normal

and anomalous users.

B. Real-time QoE Impairment Detection

1) Proposed Approach: In the last section, we constructed

normal and residual subspaces for each user group xy. We

want to detect QoE impairments in real-time by analyzing the

projections of QoE metrics on the anomalous subspace. To this

end, we split the QoE timeseries in time windows of length 1

minute and calculate the average values of the QoE metrics in

the time windows. We detect anomalous users by projecting

the QoE metrics on the residual subspace and calculating the

residual L2-norm in every time window.

Zxy
t is an n × m observation matrix at time window t,

where n is the number of users in ISP x using device

y and m is the number of QoE metrics. For every time

window, the L2-norm in the residual subspace is calculated as

||(I−Axy(Axy)T )(zxyi )t||2 Here, (zxyi )t is the average QoE

metrics of a user i from user group xy in time window t. We

then tag users with values of L2-norm larger than the threshold

value lxy as anomalous users.

We want to track the QoE impairments among anomalous

users over time and raise an alarm when the QoE metrics

degrade significantly. Specifically, for real-time QoE impair-

ment detection across a user group xy, we analyze temporal



variations in the average residual norm of the anomalous users

calculated as:

(L2
avg)

xy
t =

∑

u∈anomalous(xy)

||(I−Axy(Axy)T )(zxyu )t||2

nanomalous(xy)

where anomalous(xy) encapsulates all users tagged as

anomalous in the time window. Note that (L2
avg)

xy
t portrays

the severity of QoE impairments for the anomalous users in

a group xy over time. We use (L2
avg)

xy
t to detect significant

degradation in overall QoE in a group.

Figure 9 plots the timeseries of average residual norm for

anomalous users ((L2
avg)

xy
t ) and QoE metrics for an example

ISP-device group. The x-axis represents the time relative to

the start of the live video streaming event. The y-axis of the

top subgraph represents the (L2
avg)

xy
t of the anomalous users

in the residual subspace. The y-axis of the remaining sub-

graphs represents the average values of QoE metrics for both

anomalous and normal users. Note that the QoE metrics for

anomalous users are significantly worse than the QoE metrics

for normal users. Specifically, rate of buffering, buffering ratio

and rate of fluctuation for anomalous users are significantly

larger than those for normal users. Furthermore, average bitrate

for anomalous users is less than that for normal users.

Generally, we note that the spikes in residual (L2
avg)

xy
t

follow the degradations in QoE metrics for anomalous users.

We detect these events using Hampel filters. Hampel filters

have been used in prior literature for robust and efficient outlier

detection [12], [29]. Hampel filters identify outliers based on

the input deviation from the median input in a moving window

of length K. The detected anomalies help content providers

to monitor video QoE impairments in real-time and facilitate

alarming applications. For our evaluation, we implement a

moving window Hampel filter using the threshold T = 2 and

time window of length K = 10.

2) Evaluation: To evaluate the performance of the afore-

mentioned Hampel filter based methodology, we calculate

standard ROC metrics in this section.

Ground Truth. In order to calculate the ROC metrics for

our methodology, we need ground truth to identify whether

the QoE impairments were correctly detected. Since QoE

impairments are subjective and difficult to model, there is

no definitive ground truth for QoE impairments. We surmise

that users tend to abandon the video when they experience

severe QoE impairments. Therefore, we use user abandonment

rate as ground truth for QoE impairments. Specifically, we

tag a detected QoE impairment as a true positive if the user

abandonment rate increases significantly in a time window

of 10 minutes following the detection. To this end, we use

Hampel filters and detect points of significant increase in user

abandonment rate.

Results. We compare our PCA based scheme with several

baselines. We use individual QoE metrics and user utility

equation [27] for baseline comparison. Note that the user

utility is a measure of user experience (see [27] for details)
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Fig. 9. Online QoE impairment detection results for an example group (ISP
affiliation and device type). The circles in the timeseries of residual L2-
norm represent anomalies that are automatically detected by PCA and the
Hampel filter. We observe substantial degradation across multiple QoE metrics
corresponding to the detected anomalies.

and depends on average bitrate and buffering ratio as: −370×
Buffering Ratio + Average Bitrate/4.

Figure 10 plots the true positive rate (TPR) and false

positive rate (FPR). Here, PCA represents the QoE impairment

detection using (L2
avg)

xy
t . We note that our PCA based scheme

detects QoE impairments with a highest TPR of around 50%.

However, the FPR for our PCA based scheme in Figure 10(b)

is around 8%. We further note that if we detect QoE impair-

ments using the baseline methodologies, we can potentially

get better FPR. Specifically, we note that we can get up to

35% and 40% TPR, if we detect QoE impairments from utility

equation and RoF respectively. However, the FPR for baseline

methodologies is significantly small compared to our PCA

methodology. We argue that this is due to the fact that our

PCA methodology learns the principal components from all

users in a user group. Note that some users are tolerant towards

QoE impairments and continue to watch the video regardless

of QoE degradation. On the other hand, some users abandon

the video despite good QoE due to lack of interest. Therefore,

we need to identify and learn the principal components from

the users who watch the video for a significant duration.

C. Supervised PCA
We now modify the PCA based approach by learning the

principal components from users with significant viewing

duration.

1) Proposed Approach: We argue that users who watch

the video for a significant duration tend to have good video

QoE while users who experience QoE impairments tend to

abandon the video streaming session. Therefore, we consider

users with viewing duration more than Tv minutes in every

user group (identified by AS and device type). We then use

PCA to learn principal components from the smaller subset of

users and construct principal and residual subspaces for each

user group. We then characterize users as anomalous based
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Fig. 10. ROC statistics for various QoE impairment detection schemes. While
unsupervised PCA based scheme exhibits high true positive rate (TPR), false
positive rate (FPR) is also high. We note that supervise PCA based schemes
get higher TPR and low FPR rates compared to baselines, as we train the
model on users with higher viewing time.

on the L2-norm of the projection of their QoE metrics on the

residual subspace in each time window. We further track the

average L2-norm of anomalous users ((L2
avg)

xy
t ) over time

and detect anomalies using Hampel filters. For our evaluation,

we use spikes in user abandonments to characterize a detected

impairment as either true positive or a false positive.

2) Evaluation: We calculate the TPR and FPR of the su-

pervised PCA based QoE impairment detection methodology

and plot the results in Figure 10. We vary the viewing duration

threshold Tv during PCA training and plot the TPR and FPR

in Figures 10(a) and 10(b). Specifically, we vary Tv from 30

minutes to 60 minutes in increments of 10 minutes. The last

4 bars in Figures 10(a) and 10(b) represent the TPR and FPR

of the supervised PCA based method with varying Tv . We

note in Figure 10(a) that TPR for supervised QoE impairment

detection are comparable to unsupervised QoE impairment

detection. For instance, we observe 47% TPR for supervised

detection with Tv = 30 minutes as compared to 50% TPR with

unsupervised detection. We further note that the TPR increases

only slightly with increasing Tv with a maximum of 48% at

Tv = 60 minutes.

From Figure 10(b), we note that the FPR decreases signif-

icantly with supervised detection compared to unsupervised

detection. For instance, we observe 4.6% FPR with Tv = 30
minutes compared to the 8% FPR with unsupervised PCA

based QoE impairment detection scheme. Furthermore, the

FPR for supervised detection scheme decreases to 3% with

Tv = 60 minutes. Overall, we observe more than 90%

accuracy across our PCA based schemes and baselines. This is

because as we increase Tv , the principal components capture

the QoE metrics of the users who tend to watch the video

longer. To conclude, we note that our supervised QoE im-

pairment detection scheme provides better FPR compared to

unsupervised QoE impairment detection. Our scheme allows

content providers to be notified of QoE impairments in real-

time and take mitigation actions on the fly.

V. RELATED WORK

Extensive research has been conducted on different aspects

of streaming video. However, prior studies of live video

streaming are limited to mainly characterizing user access

patterns and viewing behaviors rather than analyzing QoE

impairments in light of user engagement. Below, we review

related work on video QoE measurement and diagnosis.

Researchers have analyzed network-oriented QoS metrics

(e.g., delay, packet loss, throughput) to study video streaming

performance and user experience. Gill et al. characterized

YouTube traffic patterns on a campus network [17]. They

found that caching Web 2.0 metadata can improve bandwidth

utilization and user experience. Finamore et al. found that

most users abandon a video quickly and typically use de-

fault video player configurations [16]. Because of these early

abandonments, a lot of data is spuriously downloaded in the

client buffer due to an aggressive downloading scheme. With

the widespread use of adaptive bitrate controller, however,

this concern can be largely mitigated. Shafiq et al. analyzed

QoS metrics such as throughput and radio signal-strength to

study video abandonment in a cellular network [33]. They

also proposed a predictive model to forecast individual user

abandonments based on these QoS metrics. Casas et al. de-

tected YouTube buffering events in a HSPA/3G network from

network-layer measurements and mapped them to MOS values

[10]. Chen et al. analyzed the impact of service quality metrics

(e.g., buffering), network quality metrics (e.g., physical-layer

data rate), video content (e.g., video length), and viewer

demography (e.g., gender) on user engagement in a Wi-Fi

network [11]. In contrast to these QoS-based studies, we

analyze QoE metrics for adaptive live streaming video.

Some researchers have conducted small-scale user studies

to measure and analyze QoE. Joumblatt et al. in [23] stud-

ied user satisfaction for a wide range of applications (e.g.,

YouTube, Firefox, etc.) and correlated them with end-host QoS

measurements (e.g., RTT, jitter, etc.) and application contexts.

Based on data from 19 users, they used supervised learning

techniques to build user satisfaction predictors from lower

layer metrics. In [20], Jackson et al. conducted a user study

to measure QoE for streaming video. They calculated Mean

Opinion Score (MOS) for videos that start from good quality

but degrade over time and also for videos that start from bad

quality but improve over time. They found that users reported

higher satisfaction when video quality improved over time.

Other researchers (including ourselves [5]) have conducted

large-scale “in the wild” studies to measure and analyze

QoE. In [13], Dobrian et al. conducted a seminal study to

understand the impact of video quality on user engagement. In

our work, we borrow the QoE metrics proposed in their paper

and also include rate of bitrate fluctuation as an additional

QoE metric. In [24], Krishnan et al. noted that while QoE

metrics impact user engagement, confounding factors render

such correlational analysis inaccurate. We build on their work

by leveraging a quasi-experimental framework to account

for interdependencies among QoE metrics as well as other

confounding factors such as device type and ISP affiliation. To

complement their findings, we note that while buffering ratio

(or rebuffer delay) impacts user engagement, rate of buffering

and average bitrate exhibit the most causal impact on user

engagement. Researchers have also tried to understand the

root-causes of video quality problems. In [21], Jiang et al.



showed that most QoE impairments can be attributed to a small

set of features such as CDN-AS combinations. They conducted

an offline analysis of QoE impaired video streaming sessions

and proposed mitigation strategies. In contrast, we propose

an online technique to automatically detect QoE impairments.

In [7], Balachandran et al. proposed machine learning based

models to predict individual user abandonments. On the other

hand, we use PCA for real-time, online detection of QoE

impairments across groups of users. Furthermore, our tech-

nique allows content and network providers to learn principal

components with data from past streaming events and detect

QoE impairments for the current video streaming event.

VI. CONCLUSION

In this paper, we analyze QoE and its impact on user

engagement for large-scale live video streaming. We study

QoE for a live video streaming event that amassed over 600

thousand viewers. We make the following key contributions

in this paper. First, we use a quasi-experimental framework to

quantify the causal impact of different QoE metrics on user

engagement. To this end, we control for both confounding

factors and interdependencies among QoE metrics. We find

that rate of buffering and average bitrate have the most impact

on user engagement. Second, we use PCA and the Hampel

filter for online detection of users experiencing QoE im-

pairments. We find that users experiencing QoE impairments

exhibit anomalous QoE metrics and lower engagement as

compared to other users. We use Hampel filters to detect QoE

impairments in real-time and validate detection performance

by using subsequent user abandonments as ground truth. Our

PCA-based approach is useful for content providers to detect

QoE impairments and take mitigation actions in real-time.
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