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Abstract—The economic aspects of peering and transit inter-
connections between ISPs have been extensively studied in prior
literature. Prior research primarily focuses on the economic is-
sues associated with establishing peering and transit connectivity
among ISPs to model interconnection strategies. Performance
analysis, on the other hand, while understood intuitively, has not
been empirically quantified and incorporated in such models.
To fill this gap, we conduct a large scale measurement based
performance comparison of peering and transit interconnection
strategies. We use JavaScript to conduct application layer latency
measurements between 510K clients in 900 access ISPs and
multi-homed CDN servers located at 33 IXPs around the world.
Overall, we find that peering paths outperformed transit paths
for 91% Autonomous Systems (ASes) in our data. Peering paths
have smaller propagation delays as compared to transit paths for
more than 95% ASes. Peering paths outperform transit paths in
terms of propagation delay due to shorter path lengths. Peering
paths also have smaller queueing delays as compared to transit
paths for more than 50% ASes.

I. INTRODUCTION

Background. The traffic dynamics and the revenue models of

different stakeholders in the Internet content delivery ecosys-

tem have profoundly changed over the last decade [36]. On

one hand, a few large content providers and content delivery

networks (CDNs), particularly the ones serving video, now

originate most of the Internet traffic [6]. For example, Netflix

alone accounts for more than 35% of downstream Internet

traffic during peak period in North America [7]. On the other

hand, a few large access ISPs (or “eyeball networks”) provide

Internet access to a majority of consumers. For example, Com-

cast alone serves more than half of the U.S. broadband market

[39]. Internet’s topology has changed from a hierarchical

structure to a flatter structure in order to accommodate these

changes [23], [19]. Unlike the hierarchical tiered Internet,

where access ISPs acquired global Internet connectivity from

transit providers, more and more ISPs are engaging in peering

relationships with bilateral traffic exchange agreements [29],

[41]. This transition from a transit hierarchy to a peering mesh

is facilitated by Internet Exchange Points (IXPs), which allow

a large number of Autonomous Systems (ASes) to interconnect

with each other [9].

Motivation. Economic and performance benefits have played

a key role in the widespread adoption of peering [36]. From an

economic perspective, peering reduces upstream transit costs

for access ISPs. From a performance perspective, peering is

expected to improve network quality-of-service (QoS) due to

shorter paths. Since content providers primarily generate rev-

enue through advertisements and subscriptions, peering with

access ISPs to improve user experience makes sense for them.

Prior literature assumes that peering improves performance

based on anecdotal evidence. Peering and transit relation-

ships between ASes are modeled in light of these assumed

performance improvements [35], [33], [15]. However, to the

best of our knowledge, an empirical performance comparison

of peering and transit interconnections is lacking in prior

literature.

Problem Statement. In this paper, our goal is to measure,

characterize, and compare the performance of peering and

transit interconnections. Specifically, we aim to empirically

answer the following questions about peering and transit paths

between content providers and access ISPs. (1) Are peering

paths better in terms of performance than transit paths? (2)

If yes, how much performance improvement can be expected

when a content provider peers with an access ISP? (3) Is there

more to peering, apart from shorter paths, that contributes to

improved performance?

Technical Challenges. We need to overcome several technical

challenges to empirically compare and contrast performance

of peering and transit. First, we need to conduct simultaneous

measurements over peering and transit paths in order to

compare their performance. Second, we need geographically

distributed vantage points to analyze peering relationships

at different IXPs around the world. Third, we need to be

able to scale our measurements to a large number of ASes

across the Internet. Finally, we need our measurements to be

lightweight so they do not overwhelm the underlying network

and negatively impact user experience.

Proposed Approach. To overcome these challenges, we col-

laborate with a commercial content delivery network (CDN)

that has a large geographic footprint. The CDN has presence

at more than 30 different IXPs where it has peering and

transit connectivity with hundreds of different ASes. We use

JavaScript to conduct simultaneous performance measure-

ments between end-users in access ISPs and CDN servers

at IXPs over peering and transit paths. More specifically, we

embed our JavaScript code in webpages requested by end-

users which, when loaded, prompt the browser to conduct end-

to-end performance measurements to a CDN server at an IXP

via both peering and transit paths. To keep our performance978-1-5090-6501-1/17/$31.00 c©2017 IEEE
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Fig. 1. Illustration of peering and transit interconnection strategies

measurements lightweight, we calculate the download time of

a 1x1 transparent pixel tag from the CDN server to end-user.

Since the CDN serves content that is requested by a large

number of end-users, we are able to scale our measurement

study to hundreds of thousands of end-users located in differ-

ent ASes around the world.

Key Contributions. We summarize our key contributions and

findings as follows.

• In collaboration with a large commercial CDN, we con-

duct simultaneous performance measurements between 510K

clients in 920 access ISPs and CDN servers at 33 IXPs via

peering and transit paths. Overall, our measurements show

that peering paths substantially outperform transit paths. More

specifically, we note at least 5% improvement in end-to-end

latency over peering paths as compared to transit paths for

more than 91% ASes. In contrast, we find that only 2% ASes

get at least 5% improvement in end-to-end latency over transit

paths as compared to peering paths.

• We estimate propagation and queueing delays on peering

and transit paths by analyzing temporal variations in end-

to-end latency measurements. We note that peering paths

exhibit at least 5% improvement in propagation delay as

compared to transit paths for 95% ASes. We observe more

than 10 milliseconds improvement in propagation delays on

peering paths as compared to transit paths for 68% ASes. To

further analyze differences in propagation delays, we conduct

traceroute measurements from CDN servers at IXPs to access

ISPs via peering and transit paths. As expected, we note that

peering paths are shorter than transit paths. More specifically,

median path length between CDN servers and end-users in

access ISPs over peering paths is 6 IP hops, which increases

to 8 IP hops for transit paths. Similarly, median path length

is 2 AS hops over peering paths and 3 AS hops over transit

paths. The disparity in path length explains why peering paths

have smaller propagation delays as compared to transit paths.

• We note that peering paths have at least 5% less queueing

delays than transit paths for 57% ASes. In particular, we note

up to 450 milliseconds improvement in queueing delays over

peering paths as compared to transit paths for 20% ASes.

However, unlike propagation delays which are equal or better

on peering paths as compared to transit paths, we note at least

100 milliseconds degradation in queueing delays on peering

paths as compared to transit paths for 2% ASes. However, a

vast majority of ASes still get better overall performance over

peering paths than transit paths.

II. BACKGROUND

Content publishers often rely on CDNs to optimize the

delivery of their content to end-users. CDNs leverage their

geographically distributed network of cache servers to bring

content close to end-users. They redirect content requests to a

suitable cache server based on geographic proximity through

DNS redirection or IP anycast. Two common strategies for

CDN cache server deployment are enter-deep and bring-home
[22]. In the enter-deep strategy, CDNs deploy small sets of

cache servers inside a large number of ISPs to maximize their

geographic footprint. For example, Akamai, operates more

than 200K servers across more than 1,400 ISPs around the

world [1]. In the bring-home strategy, CDNs deploy large

clusters of cache servers at a few locations (commonly near

IXPs), where they interconnect with a large number of ISPs.

For example, Limelight operates thousands of servers at a few

dozen locations [22]. Note that some CDNs deploy a hybrid

infrastructure by combining both strategies. For example,

content providers such as Google and Netflix not only operate

dozens of bring-home data centers but also operate thousands

of enter-deep servers such as Google Global Cache [2] and

Netflix Open Connect [4] inside access ISPs.
Content providers and CDNs use different interconnection

strategies to send content from cache servers to end-users.

To this end, they either buy transit connectivity or directly

interconnect with access ISPs using peering arrangements.
A transit provider is responsible for carrying the traffic be-

tween their customer AS and any other AS on the Internet. As

illustrated in Figure 1, both access ISPs and content providers

use transit providers to carry their traffic. Internet transit

prices have steadily declined year-over-year, reaching ≈ $0.45

per Mbps [40]. However, global Internet traffic volume has

increased by 40-50% year-over-year as well [6]. Even though

transit costs per traffic unit have been decreasing historically,

Internet transit bills have increased [36]. Therefore, to reduce

their transit costs, CDNs and access ISPs are increasingly

engaging in peering relationships.
In peering, as illustrated in Figure 1, ASes directly inter-

connect with each other for bilateral traffic exchange. While

peering relationships are often settlement-free (i.e., cost-free),

content providers and access ISPs also sometimes engage

in paid peering. This is because some access ISPs impose

specific requirements for settlement-free peering with other

networks, e.g., minimum traffic volumes, 2:1 traffic ratios,

presence at certain IXPs, etc. These requirements have non-

trivial operational and economic overheads; for example, a

lot of content providers and CDNs cannot satisfy the 2:1

traffic ratio requirements with access ISPs due to the heavily

asymmetric nature of video content.
The choice between peering and transit is not only depen-

dent on economic factors but also on potential performance

gains. The perception is that peering should improve perfor-

mance due to shorter paths between cache servers and end-

users. However, there is a lack of clear understanding about

whether peering always outperforms transit and how much
performance gain can be expected.



III. PROPOSED APPROACH

Our goal is to conduct performance comparison of peering

and transit between CDN servers and end-users at scale. To

this end, we can use throughput measurements that rely on

bulk data transfer. However, bulk data transfer would not scale

to a large number of users because it can overload the very

network infrastructure that we are trying to measure. We can

also use latency measurements which are lightweight because

they rely on sending a few packets. Latency measurements are

generally conducted by sending an ICMP ping echo request

packet to the destination and computing the time it takes for

the corresponding ICMP echo reply packet to arrive at the

source. ICMP measurements are unfeasible for CDNs because:

(a) CDNs cannot remotely initiate ICMP measurements from

a client’s web browser; and (b) a large number of ICMP

measurements initiated from CDN’s infrastructure can trigger

ICMP rate limiting at ISPs [5], [16].

We propose to conduct application layer latency measure-

ments between CDN servers and client browsers. Since CDNs

typically embed pixel tags in client-requested web pages for

analytics purposes, we can piggyback on these pixel tags to

conduct application layer latency measurements. However, it is

non-trivial to conduct browser-based application layer latency

measurements over peering and transit paths. First, we need

to be able to conduct simultaneous latency measurements via

both peering and transit paths. This is challenging because

we cannot control network layer routing configuration at the

application layer in web browsers. Second, we need to ensure

that our browser-based application layer latency measurements

are accurate. Since browser-based network measurements can

incur non-trivial overheads [27], we need to validate the

accuracy of application layer latency measurements.

In collaboration with a commercial CDN, we embed

IFrames containing our measurement JavaScript in client-

requested webpages to carry out end-to-end latency measure-

ments via peering and transit paths. Our measurement script

conducts application layer latency measurements between

clients and dedicated measurement servers at IXPs. These

measurement servers are multi-homed so they can send content

to clients via peering and transit paths. Clients requesting con-

tent from CDN’s peering IP address get response over peering

paths. Similarly, clients requesting content from CDN’s transit

IP address get response over transit paths. Figure 2 provides

an overview of our measurement methodology.

• When a client requests a web page from a CDN server, we

embed an IFrame in the requested web page. The IFrame

contains our measurement JavaScript, which includes the

IP addresses of multi-homed measurement servers at

different CDN PoPs (points of presence) in IXPs around

the world. We probabilistically embed the IFrame in

client-requested web pages to avoid overwhelming our

measurement servers.

• To figure out the nearest PoP, the measurement JavaScript

prompts the client to issue an XHR HTTP GET request

for a pixel tag to the nearest PoP. The CDN uses an

Multi-homed 
measurement
at nearby PoP

Client Cache Server

DatabaseMeasurement results 

Fig. 2. Measurement methodology to compare performance of peering and
transit paths

anycast IP address to host content across all the PoPs.

BGP configuration ensures that client requests are redi-

rected to their nearest PoP. The HTTP response headers

contain the name of the nearest PoP. Using the PoP

name, the client can identify IP addresses of all network

interfaces (peering and multiple transit providers) of the

multi-homed measurement server.

• The measurement JavaScript is now ready to perform

latency measurements via peering and transit paths. The

measurement JavaScript inserts multiple new DOM ele-

ments to the page using the <img> tag, which points to

the URLs to download the pixel tag from the multi-homed

measurement server via peering and transit paths. Note

that IP addresses are hardcoded in the URLs to avoid

DNS lookups.

• The client establishes TCP connections over the peering

and transit interfaces of the measurement server. This step

involves the exchange of SYN and SYN-ACK packets

over a time period of 1 RTT. Note that the peering and

transit interfaces of the CDN measurement server are part

of the same subnet. Therefore, TCP SYN and subsequent

packets sent to IP addresses of both peering and transit

interfaces are expected to traverse the same path through

the network. However, on the way back, CDN routes

packets via either transit or peering interconnections

based on the IP address of the measurement server’s

network interface.

• The client sends the HTTP request to the server along

with the ACK of the three-way TCP handshake. We add a

nonce to the HTTP request to ensure that the tag is served

by the CDN measurement server rather than the local

browser cache. Moreover, the size of the pixel tag is set
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Fig. 3. Comparison of latency measurement between a client browser (with
and without background activity) and web server using JavaScript and ping.
The x-axis represents the actual RTT set between the client and server while
the y-axis plots various percentiles of the difference between the measured
RTT and actual RTT values. Note that the difference between JavaScript
based measurement and actual RTT is relatively small even on browser with
background activity across all RTT values.

to be smaller than the server’s TCP congestion window to

ensure that the pixel tag is downloaded in approximately

one round trip time.

• Finally, the pixel tag is downloaded over peering and

transit paths. Note that the total download time is ap-

proximately two round trip times (one for TCP hand-

shake and another for HTTP request-response). The

JavaScript uploads the pixel tag download time for peer-

ing (RTTPeering) and transit (RTTTransit) paths to a

database server.

It is important that the same pixel tag is downloaded

simultaneously via peering and transit paths—this allows us to

quantify the relative performance difference between peering

and transit paths instantaneously. To this end, as noted in

Figure 2, we send simultaneous HTTP requests over both

peering and transit paths.

Next, we validate the accuracy of our latency measurements

to mitigate any concerns about browser overheads due to

the JavaScript engine [27], [25]. Specifically, we compare

application layer JavaScript-based latency measurements and

network layer ping measurements in a controlled testbed

containing a web server and a client browser set up on

two different hosts. We conduct our JavaScript-based latency

measurements without background activity as well as with

background activity in the Chrome web browser. Specifically,

we vary link delays between the web server and browser

from 50 milliseconds to 300 milliseconds using the Linux

traffic controller and measure RTT using both JavaScript-

based methodology and ping. We repeat our measurements

50 times for each link delay and plot the comparison between

application layer JavaScript-based latency measurements and

network layer ping measurements in Figure 3. The x-axis

represents the actual RTT set on the link between client and

server, and the y-axis represents the difference between the

measured RTT and the actual RTT set on the link. We note

that the RTT measured using JavaScript is, at maximum,

Fig. 4. World map with clients.

PoP # of # of # of
Name IP addresses /24 prefixes ASes
Madrid 154,781 (28.5%) 16,094 (5.5%) 25 (1.4%)

New York 36,454 (6.7%) 22,972 (7.9%) 90 (5.0%)

Chicago 34,726 (6.4%) 25,631 (8.8%) 81 (4.4%)

Los Angeles 33,086 (6.1%) 18,902 (6.5%) 71 (3.9%)

London 1 28,883 (5.3%) 23,171 (8.0%) 226 (12.5%)

London 2 28,833 (5.3%) 23,500 (8.1%) 221 (12.2%)

Miami 28,608 (5.3%) 19,555 (6.7%) 33 (1.8%)

Fort Lauderdale 28,605 (5.3%) 19,525 (6.7%) 35 (1.9%)

Everett 28,074 (5.2%) 17,523 (6.0%) 88 (4.9%)

San Jose 25,274 (4.7%) 17,054 (5.9%) 45 (2.5%)

TABLE I
IP ADDRESS STATISTICS FOR THE TOP 10 MOST POPULAR POPS IN OUR

DATASET.

≈ 15 milliseconds more than that measured using ping. The

median difference between the RTT measured using JavaScript

and actual RTT stays below 10 milliseconds across all RTT

values. We conclude that our application-layer JavaScript-

based latency measurements can provide a reliable latency

estimate of the actual RTT between client and server.

IV. DATA

To conduct measurements, we deploy measurement servers

at CDN PoPs across 33 different IXP locations. We em-

bed IFrames containing our measurement script in publisher

websites that are served by the CDN. We collect 1,132,110

measurements over the course of approximately two years

(from January 1st, 2015 to October 11, 2016) from more than

500K clients, which are spread over approximately 300K /24

prefixes and span more than 900 ASes that are peering with the

CDN and are also reachable via different transit providers. For

each measurement, we record its timestamp, client IP address,

PoP name, and RTT over peering (RTTPeering) and transit

(RTTTransit) paths.

We use MaxMind IP geolocation database to locate client

IP addresses in Figure 4. Black dots represent the location

of all client IP addresses in our measurements. Note that IP

geolocation databases are reasonably accurate at the country-

level [38]. While we observe IP addresses from more than

100 different countries, a vast majority of the IP addresses are

located in the United States and Europe. For instance, 54%

of the clients in our measurements are located in the United

States, 12% in the United Kingdom, 6% in Spain, and 5% in

Germany.

Next, we analyze measurements with respect to PoP loca-

tions. Table I shows the number of IP addresses, /24 prefixes,

and ASes observed across popular PoPs in our data. Overall,

we note that the majority of users (IP addresses and /24
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(c) London 1 (d) London 2
Fig. 5. Geographical location of PoPs and clients. The red dots show the
location of the PoP while the black dots identify the location of the IP prefixes
connecting to the PoP.

prefixes) connect to the PoPs in the United States. Specifically,

we note that 7 out of the 10 PoPs with most connected clients

are located in the United States. We observe that some /24

prefixes and ASes host more clients conducting active end-to-

end latency measurements compared to others. For example,

we note that around 28.5% of clients connect to the PoP

located in Madrid while the PoP in New York serves around

6.7% of the clients. However, the clients connected to New

York PoP are distributed among more /24 IP prefixes and

ASes relative to the clients connected to Madrid PoP. More

specifically, the clients connected to New York PoP originate

from 22,972 different /24 IP prefixes and 90 different ASes

while the clients connected to Madrid PoP originate from

16,904 different /24 IP prefixes and only 25 ASes.

Figure 5 plots the geographical footprint of some PoPs in

the United States and Europe. Red dots represent the locations

of PoPs and black dots represent the locations of clients

connecting to these PoPs. As expected, we note that clients

are typically located in geographical proximity to the PoP.

However, since there is no PoP in South America, Figure 5(b)

shows that clients in Brazil are being served by the PoP in

Miami. The CDN has two PoPs in London for load-balancing

purposes. In Figures 5(c) and 5(d), it is interesting to note

that the geographical distribution of clients connecting to both

London PoPs is very similar.

V. RESULTS

In this section, we compare the performance of peering and

transit interconnections based on our measurements.

Recall that we perform simultaneous latency measurements

between a client and a CDN measurement server via peering

and transit paths (RTTPeering and RTTTransit).
1 For each

1Note that the CDN uses three major transit providers (NTT, TELIA, and
DTAG [Deutsche Telekom]) at most PoPs. We conduct our measurements
from PoPs which are multi-homed to all three transit providers.
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Fig. 6. CDF of number of measurements.

measurement, we calculate the normalized latency difference

between peering and transit paths as:

RTTPeering −RTTTransit

max(RTTPeering, RTTTransit)
.

We use the maximum of both latencies in the denominator to

limit the values between [−100%, 100%]. Since measurements

are sparsely distributed across clients over time, we want to

identify a suitable level of aggregation to conduct statistically

significant analysis. First, we aggregate measurements for

every client. Figure 6 shows that a majority of clients conduct

only a few measurements. Specifically, we note that more than

65% of clients in our dataset conduct only one measurement.

Furthermore, 99% clients conduct less than 13 measurements.

Therefore, we would filter out a vast majority of clients from

our analysis even if we set a moderate threshold on their

measurement count. Second, we aggregate clients based on /24

prefixes. Figure 6 shows that about 40% of /24 prefixes have

only one measurement. Therefore, filtering out /24 prefixes

based on their measurement count would again filter out a

substantial portion of /24 prefixes. Third, we aggregate clients

based on their AS affiliation. In Figure 6, we note that about

25.8% of ASes have at least 100 measurements. On the

other hand, we note that 82.4% ASes in our dataset have

all of their IP addresses geolocated in one country. Thus,

we conclude that AS-level aggregation is sufficient to address

sparsity of our measurements while providing reasonably

consistent geographic footprint. Therefore, in the rest of this

paper, we compare the peering and transit paths based on the

measurements aggregated over ASes.

Figure 7 plots the normalized latency difference between

peering and three different transit paths. The y-axis repre-

sents the average relative performance difference between

peering and transit paths. For each AS on the x-axis, we

average the normalized latency difference between peering

and transit paths over the entire duration of our data set.

The horizontal lines represent the points on y-axis where

performance difference is greater or less than 5% and −5%
respectively. The ASes are sorted with respect to their average

normalized latency difference over peering and transit paths

independently for each transit provider. ASes on the left have
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better performance over transit paths as compared to peering

paths and those on the right have better performance over

peering paths as compared to transit paths. In Figure 7, we note

that majority of ASes experience better latency via peering

paths as compared to transit paths. For example, considering

NTT, we note that only 2% of the ASes get substantial

performance benefit from transit paths as compared to peering

paths. This pattern is consistent for other transit providers as

well. More specifically, only 2% and 0.7% of ASes get better

performance via transit paths compared to peering paths for

TELIA and DTAG transit providers. On the other hand, we

note that approximately 92%, 91% and 95% of the ASes get

at least more than 5% improvement in latency from peering

paths compared to the transit paths for NTT, TELIA and

DTAG respectively. Our aggregate analysis shows that peering

paths significantly outperform different transit paths for a vast

majority of ASes. Since there is not much difference across

different transit providers, we limit our analysis to NTT transit

provider in the rest of this paper.

Why do peering paths outperform transit paths for a vast

majority of ASes? Intuitively, we would expect peering paths

to perform better due to the following reasons. First, peering

paths typically only carry the bidirectional traffic between the

peering ASes. Therefore, peering links likely experience less

congestion as compared to transit paths which are responsible

to handle traffic from multiple transit customers. Second,

peering paths are likely less circuitous as compared to transit

paths. Therefore, peering paths are expected to provide better

end-to-end latency compared to transit paths even in the

absence of congestion.

We further investigate the observed performance differ-

ences between peering and transit paths by decomposing the

measured delay into its constituent components. End-to-end

network delays consist of the following components: (1) pro-

cessing, (2) transmission, (3) propagation, and (4) queueing.

However, processing and transmission delays are negligible as

compared to propagation and queueing delays. Therefore, our

latency measurements are primarily composed of propagation

and queueing delays.

Figure 8 plots a representative example of the average

Fig. 8. Timeseries of measured RTT for a popular access ISP.

latency timeseries for a large access ISP in our data set. As

reported in prior literature [32], we observe diurnal variations

in RTT measurements. We analyze diurnal variations in RTT

to estimate propagation and queueing components of the mea-

sured RTT. We note that minimum measured RTT (RTTmin)

in a 24-hour time interval captures the end-to-end delay when

queue buildup at routers is at a minimum. We use RTTmin as

the estimated upper bound of propagation delay experienced

by our probe packets.2 We also note that since end-to-end

paths over the Internet tend to stay relatively constant over

time, propagation delay (RTTmin) stays constant over a

relatively large timescale. This assumption allows us to use

the difference between maximum measured RTT (RTTmax)

and minimum measured RTT (RTTmin) in a 24-hour time

interval as the upper bound estimate of maximum queueing

delay experienced by our probe packets [32].

We next leverage the estimated propagation and queueing

delays to further analyze the performance difference between

peering and transit paths.

Propagation Delays. We expect transit paths to have larger

propagation delays as compared to peering paths because they

span multiple ASes other than client and CDN ASes. To

verify this, we conduct traceroute measurements from our

CDN measurement servers located at different PoPs to clients

in access ISPs around the world via transit and peering paths.

For every AS-PoP pair, we identify client subnets in access

ISPs that conduct most measurements in our dataset. We then

use MTR [3] to conduct traceroute and ping measurements

for identifying hops on transit and peering paths between our

CDN measurement servers and the clients in these subnets.

First, we analyze the path length between CDN measurement

servers at PoPs and clients in access ISPs from the traceroute

measurements. We calculate the path length as the number of

IP hops in traceroute measurements. We further analyze AS-

level path information by mapping IP addresses to ASes. We

use standard practices (see [14] for more details) to recover

traceroutes with unresponsive hops.

2RTTmin is an upper bound estimate of propagation delay because a path
may still have non-zero queue buildup when RTT is minimum.
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Fig. 9. Distribution of path lengths in terms of IP hops and AS hops.

Figure 9 plots the distribution of number of IP hops and

number of ASes between CDN measurement servers and

clients in access ISPs. As expected, we observe that peering

paths are considerably shorter than transit paths. Specifically,

Figure 9(a) shows that median path length of peering paths is 6

whereas that of transit paths is 8. Moreover, from Figure 9(b),

we note that peering paths span over less number of ASes

compared to transit paths. As expected, we note that more

than 80% of the peering paths comprise of only CDN and

client ASes. It is interesting to note that more than two ASes

for some peering paths. Our further investigation revealed that

the intermediate hop typically belongs to the IXP possibly

due to the use of public peering fabric or other interconnection

infrastructure provided by the IXP. In contrast, more than 80%

of the transit paths comprise of 3 or more ASes. Apart from

CDN and client ASes, the traceroute measurements include

one or more transit ASes. We conclude that transit paths are

longer than peering paths both in terms of IP hops and number

of intermediate ASes.

We expect longer paths to lead to larger propagation de-

lays. Figure 10(a) plots the 50th and 95th percentiles of the

difference in propagation delays between peering and transit

paths across client ASes. PPeering and PTransit refer to the

propagation delays of peering and transit paths to an AS,

respectively. The x-axis represents the difference in propa-

gation delays between peering and transit paths. We observe

that more than 95% of the ASes in the dataset experience

better propagation delay via peering paths as compared to

transit paths. Our observation is consistent across CDF of both

50th and 95th percentiles. More specifically, half of the ASes

experience up to 12-15 milliseconds shorter propagation delays

over peering paths as compared to transit paths.

Queueing Delays. We next compare and contrast queueing

delays of peering and transit paths. The queueing delay is an

indicator of potential congestion along the end-to-end paths.

Our analysis of the estimated queueing delays via peering and

transit paths can indicate congestion due to underprovisioning.

Transit providers optimize resource usage by selling more

aggregate bandwidth to their customers than what their infras-

tructure can handle [36]. The key idea of underprovisioning is

that since customer traffic demand is elastic it would be lower

than the peak demand for most of the time. Such underprovi-

sioning can cause congestion when multiple transit customers

send more traffic than what was anticipated through the transit

provider’s network. In contrast, we do not expect this issue for

PTransit - PPeering (ms)
0 20 40 60 80 100

C
D

F

0

0.2

0.4

0.6

0.8

1

50
95

(a) Propagation Delay

QTransit - QPeering (ms)
-500 0 500 1000 1500 2000 2500

C
D

F

0

0.2

0.4

0.6

0.8

1

50
95

(b) Queueing Delay

Fig. 10. Distribution of ASes in terms of delay comparison at 50th and 95th
percentile for peering and transit paths.

peering interconnections because they are between an access

ISP and the CDN. Overall, we expect higher queueing delays

for transit paths as compared to peering paths.

Figure 10(b) plots the 50th and 95th percentiles of the

difference in queueing delays between peering and transit

paths across client ASes. QPeering and QTransit refer to

the queueing delays of peering and transit paths to an AS,

respectively. The x-axis represents the difference in queueing

delays between peering and transit paths. It is noteworthy

that our estimate of queueing delay is an upper bound on

the maximum queueing delay over 24-hour time intervals.

Therefore, some of the high queueing delays in Figure 10(b)

are possibly inflated due to retransmissions and rerouting

events. We cannot account for these issues due to our lack

of visibility at the transport and network layers.

Figure 10(b) shows that peering paths generally outperform

transit paths in terms of queueing delays. For instance, more

than 60% ASes experience at least 20 milliseconds improve-

ment in queueing delays via peering paths as compared to

transit paths for the 50th percentile comparison. Furthermore,

the difference in queueing delays exhibits a long tailed dis-

tribution for the 95th percentile comparison. For instance,

more than 20% ASes experience at least 450 milliseconds

improvement in queueing delays via peering paths for 95th

percentile comparison. It is interesting to note that some ASes

experience better queueing delays via transit paths compared

to peering paths. This trend is highlighted by ASes that lie in

the negative x-axis region in Figure 10(b). For instance, we

note that around 18% of ASes in our dataset experience at least

20 milliseconds improvement in queueing delays from transit

paths as compared to peering paths. This trend is consistent

across the 50th and 95th percentile comparison distribution

in Figure 10(b). Overall, however, we conclude that peering

paths provide better queueing delays as compared to transit

paths for a majority of ASes in our dataset.

Next, we analyze the impact of number of ASes in transit

paths on queueing delays. To this end, we compare queueing

delays for transit paths with different AS path lengths. We

find that the difference in queueing delays between peering

and transit paths increases as the number of transit ASes

increases. For example, the median difference in queuing

delays increases from 24 milliseconds for one transit AS to

40 milliseconds for three transit ASes. This shows that transit

paths traversing more transit ASes perform significantly worse

in terms of queueing delays as compared to transit paths
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Fig. 11. Scatter plots for the comparison of peering and transit path delays
in terms of propagation and queueing delays for ASes at 50th and 95th
percentiles.

traversing fewer transit ASes.

Combined Delay Analysis. We next jointly analyze the per-

formance difference between peering and transit paths in terms

of both propagation and queueing delays. In Figure 11, the x-

axis represents the difference in propagation delays between

transit and peering paths (PTransit − PPeering) whereas the

y-axis represents the difference in queueing delays between

transit and peering paths (QTransit−QPeering). Each marker

in Figure 11 represents an AS. The marker types of circle,

cross, and square indicate whether the normalized difference

between propagation delays of peering and transit paths is

more than 5%, less than -5%, or between -5% to 5%, re-

spectively. The marker colors of red, blue and black indicates

whether the normalized difference between queueing delays

of peering and transit paths is more than 5%, less than -5%,

or between -5% to 5%, respectively. We compare propagation

and queueing delays of both peering and transit paths at the

50th and 95th percentiles for the ASes.

We further summarize the performance comparison of peer-

ing and transit paths in terms of propagation and queueing

delays in Table II. We populate Table II by calculating the per-

centage difference between PPeering , PTransit and QPeering ,

QTransit for each AS at the 50th and 95th percentiles.

PTransit > PPeering implies that PTransit is at least 5% more

than PPeering . PTransit ≈ PPeering implies that PTransit and

PPeering are within 5% of each other. Using this notation, we

categorize each AS in one of the nine categories in Table II.

From Figure 11 and Table II, we note that peering con-

sistently outperforms transit in terms of propagation delay

(PTransit > PPeering) and queueing delays (QTransit >
QPeering). Specifically, we note that peering paths provide at

least 5% improvement in both propagation and queueing de-

lays for at least 44 ASes at the 50th and 95th percentiles. These

ASes appear as red circles in the first quadrant for all percentile

comparisons in Figure 11. We do observe that queueing delays

for peering paths are comparable to (QTransit ≈ QPeering)

queueing delays for transit paths for many ASes. Specifically,

around 20 ASes experience comparable queueing delay per-

formance from both peering and transit paths. We note that

these ASes appear as black markers in Figure 11.

From Figure 11 and Table II, we note that some ASes

experience worse queueing delays over peering paths as com-

pared to transit paths (QTransit < QPeering). Specifically,

we note that 11-17 ASes appear with blue markers in Figure

11. These ASes experience better propagation delay but suffer

from worse queueing delay performance over peering paths.

For these ASes, the degradation in queueing delay dominates

the improvement in propagation delay; leading to poor overall

performance over the peering paths. Such ASes that get lower

latencies over transit paths as compared to peering paths lie

on the left end of the aggregate performance curve in Figure

7. Overall, we conclude that peering paths provide better

propagation and queueing delays with the exception of a few

ASes.

VI. LIMITATIONS

We discuss the limitations of our measurement methodol-

ogy, data, and analysis below.

Accuracy. Our application layer latency measurement ap-

proach can potentially overestimate RTTs (as compared to

network layer latency measurements) due to added delays of

browser and kernel scheduling. Further note that application

layer latency measurements are susceptible to overestimation

due to packet losses because retransmissions at the transport

layer are not visible at the application layer. Therefore, packet

loss would cause the measured RTT to be greater than actual

end-to-end RTT. To mitigate these concerns, we compared

our application and network layer latency measurements in a

controlled testbed under different scenarios in Section III. We

found that our application layer latency measurements closely

follow network layer latency measurements. We also found

that the variations in application layer latency measurements

become relatively insignificant for large RTT values.

Sparsity. Our measurements are crowdsourced from clients

that visit a set of webpages hosted by the CDN. From the

CDN’s perspective, we do not have any control over the

sparsity of measurements from specific clients or ASes. We

observed that measurements from specific clients are sparse

across time. We mitigate the sparsity issue by grouping mea-

surements by clients based on their AS affiliation. To further

mitigate the sparsity issue for propagation and queueing delay

analysis, we only consider days with a large number of RTT

measurements.

Localization. Our application layer measurements do not

allow us to estimate propagation delays of individual links

and queueing delay experienced by packets traversing different

routers. Therefore, we cannot localize performance differences

between peering and transit paths. However, for the scope

of this study, we are interested in characterizing end-to-end
path performance in terms of both propagation and queueing

delays. We leave further analysis of performance differences,

including localization, for future work. To this end, we plan to

complement our application layer latency measurements with

a manageable number of network layer ICMP measurements.

Impact of path changes. Recall that we use the temporal

variations over a period of 24 hours to estimate propagation

and queueing delays. In case of a path change, our propagation

delay estimate reflects the minimum end-to-end propagation

delay observed during the time period. Since we measure



QTransit > QPeering QTransit ≈ QPeering QTransit < QPeering

PTransit > PPeering 48/44 17/26 17/11
PTransit ≈ PPeering 0/1 0/2 0/0
PTransit < PPeering 1/0 2/1 0/0

TABLE II
AS-BREAKDOWN IN TERMS OF PROPAGATION AND QUEUEING DELAYS AT 50/95TH PERCENTILE ACROSS PEERING AND TRANSIT PATHS

queueing delay as the difference between the minimum and

maximum RTT observed during the day, we potentially overes-

timate queueing delay in case of path changes. It is noteworthy

that our observed queueing delays are generally at least an

order of magnitude greater than propagation delays. Therefore,

we argue that our estimate of queueing delays only incur minor

overestimation.

Traceroute measurements. First, some of the in-path routers

reply with IP address of a different interface than the incoming

interface. This causes the estimated number of ASes on

peering and transit paths to be inflated. Figure 9(b) shows

that these cases represent a small fraction of all traceroute

measurements. Second, we note that routers sometimes incor-

rectly send peering traffic over transit due to misconfiguration.

However, such misconfigurations are rare and do not have a

significant impact on our results in Figure 9. Finally, we are

unable to map some IP addresses to ASes. We try to resolve

such situations using standard practices [14] and discard the

unresolved traceroutes.

Having in mind the caveats presented here, we believe

that our first look at the performance comparison of peering

and transit interconnections provides valuable insights to re-

searchers studying the Internet’s topology using analytical and

empirical methods.

VII. RELATED WORK

Internet peering ecosystem has been widely studied to

understand its technical, logistical, economic, and political

constraints. Norton [36] provides a detailed analysis about the

common (and uncommon! [24], [13], [43]) interconnection

practices that are used by ISPs. A major portion of prior

literature is focussed on studying the prevalence of peering

ecosystem by conducting active and passive experiments.

Augustin et al. [10] used traceroute to detect 223 IXPs and

identify IXP-related peering relationships that were not present

in the AS maps of the Internet then. Labovitz et al. [26]

examined commercial inter-domain traffic of more than 3K

peering routes to show that the majority of inter-domain traffic

flows directly over peering links between content providers

and access ISPs. Lodhi et al. [31] analyzed PeeringDB and

BGP data to study the Internet peering ecosystem. Dhamdhere

et al. [17], [20] used RIPE and RouteViews repositories to

study the evolution of Internet topology at AS level over the

course of a decade. Researchers have studied the role of IXPs

in facilitating peering interconnections between ISPs. Ager

et al. [9] studied a rich peering ecosystem at an European

IXP and found that close to 400 members at the IXP have

established more than 50K peering interconnections. Castro et

al. [12] studied an emerging phenomenon of remote peering.

Generally, peering has become a major interconnection strat-

egy among ISPs in this vast Internet ecosystem. Therefore, in

this study, we empirically quantify the performance benefits

of peering as compared to transit.

Researchers have also extensively studied economic aspects

of peering and transit selection strategies using game-theoretic

models [11], [8]. Dhamdhere et al. [18] proposed dynamic

agent-based models to study the impact of economic decisions

such as provider and peer selection on the evolution of Internet

topology in “steady state”. They also developed an agent-

based network formation tool, ITER, to model the “flattening”

Internet topology as a consequence of provider and peer selec-

tion strategies [19]. Lodhi et al. [28], [29] studied the myopic

adoption of open peering strategies among transit providers as

a result of peer pressure which degrades their economic utility.

Lodhi et al. [30] further noted that a lack of traffic information

and network topology information limits the abilities of a

tier-2 ISP to accurately forecast the impact of its peering

decisions. Ma et al. [34] observed that for peering interconnec-

tions between content providers and access ISPs, settlement-

free and paid are optimal pricing models for symmetric and

asymmetric traffic patterns respectively. However, we note

that these papers primarily consider the connectivity costs

associated with transit and peering interconnections to model

utility of the service providers, and not consider the effect

of performance benefits on the utility of service providers.

Prior research has shown that better performance such as

better end-to-end latency and throughput, leads to better user

engagement, which improves service providers’ revenues [42],

[37]. To this end, Ma et al. further incorporated the content

providers’ characteristics (quality requirements, traffic pat-

terns) and access providers’ characteristics (QoS guarantees,

price) to model transit and peer selection strategies [35].

Furthermore, in [33] Ma characterized the benefits of paid

peering to service providers by considering various parameters

like end-user stickiness and market shares of the service

providers. Courcoubetis et al. [15] used service profitability

from advertising, user/subscriber loyalty to derive a pricing

model for premium peering relationships between content

and access providers using Nash bargaining solutions. We

note that the prior literature relies on intuitive understanding

of performance benefits of peering paths over transit paths

especially for the peering interconnections between content

providers and other ISPs [21]. Our results can complement

these analytical studies.

VIII. CONCLUSION

In this paper, we empirically compare the performance

of peering and transit interconnections by conducting a

large scale measurement study. We deploy our measurement



JavaScript on multi-homed CDN servers located at 33 IXPs

around the world and conduct measurements from 510K

clients. Overall, we find that peering paths outperform transit

paths. We find that peering paths almost always outperform

transit paths in terms of propagation delays because peering

paths are shorter. While peering paths often outperform transit

paths in terms of queueing delays, we do observe higher

queueing delays on peering paths as compared to transit paths

for a few ASes in our data.

To the best of our knowledge, we present the first large-scale

empirical performance comparison of peering and transit inter-

connections in the wild. Prior research on modeling peer and

transit interconnection strategies either does not incorporate

performance as a key factor or makes arbitrary assumptions.

We expect our empirical results to inform future research on

Internet topology modeling. Our results also establish baseline

from which future performance measurements of peering and

transit can be studied. In future, we plan to study performance

differences between public and private peering as well as

study the performance impact of different traffic engineering

decisions.
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