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Abstract. KIND 2 is an open-source, multi-engine, SMT-based model checker
for safety properties of finite- and infinite-state synchronous reactive systems. It
takes as input models written in an extension of the Lustre language that allows the
specification of assume-guarantee-style contracts for system components. KIND 2
was implemented from scratch based on techniques used by its predecessor, the
PKIND model checker. This paper discusses a number of improvements over
PKIND in terms of invariant generation. It also introduces two main features:
contract-based compositional reasoning and certificate generation.

1 Introduction

KIND 2 is an SMT-based model checker for synchronous reactive systems. It relies on
off-the-shelf SMT solvers to prove or disprove quantifier-free regular safety properties
of models written in an extension of the synchronous dataflow language Lustre [11].
These properties can be expressed, in a separate annotation language, as invariants or
as assume-guarantee-style contracts. KIND 2 is inspired by its predecessor PKIND [14]
and uses several of the same techniques. However, it was engineered and implemented
from scratch. Both checkers have several model checking engines, based on various
techniques, which run concurrently and in cooperation, with the goal of proving or
disproving properties and contracts.

KIND 2 is open-source and distributed in binary and source-code form under a liberal
license at http://kind.cs.uiowa.edu. This paper focuses on its novel features,
in particular, powerful invariant generation techniques, contract-based compositional
reasoning, and proof certificate generation.

2 Functionality and Main Features

We start with a summary of KIND 2’s basic functionality, i.e., (dis)proving safety
properties of reactive systems, and then describe KIND 2’s distinguishing features.

Safety analysis. Lustre is a dataflow language that allows one to define system compo-
nents as nodes, each of which maps a continuous flow of inputs (of various basic types)
to continuous flows of outputs based on both current input values and previous input and
output values (see Figure 1 for a simple example). Bigger components can be built by
parallel composition of smaller ones, achieved syntactically with node calls. Through
the use of observers [12], any (LTL) regular safety property can be expressed in Lustre
as an invariant property, hence KIND 2 focuses on checking just invariant properties.
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After various transformations and slicing, KIND 2 encodes Lustre nodes internally
as state transition systems 〈s, I(s),T (s,s′)〉 where s is the vector of typed state variables,
I the initial state predicate, and T is a two-state transition predicate (with s′ being a
renamed version of s). An invariant property P for such a system is a predicate over the
variables s that must hold in every reachable state of the system. Instances of I, T and P
are quantifier-free first-order formulas over the theories of equality with uninterpreted
functions and linear integer and real arithmetic.

The node construct allows one to specify
node sofar (x:bool) returns (p:bool);
let p = (true -> pre p) and x; tel

node sum (x:int) returns (s:int);
let s = x + (0 -> pre s);
--! PROPERTY sofar(x > 0) => s > 0; tel

Fig. 1: Example of annotated Lustre. Node
sofar encodes the "always in the past" opera-
tor of pLTL.

modular and hierarchical systems. KIND 2
takes advantage of this by performing modu-
lar reasoning over nodes. Each node can be
assigned its own properties and verified indi-
vidually. The results of the verification pro-
cess (e.g., proven properties and auxiliary
invariants) can be reused in the analysis of
other components calling that node. KIND 2
takes this approach further by allowing the
user to specify assume-guarantee-style contracts for each node, effectively enabling
compositional reasoning by fine-grained abstraction of sub-components.

At the component level, given an encoding S , 〈s, I(s),T (s,s′)〉 of a Lustre node
and a property P, KIND 2 tries to verify that P is invariant for S using a combina-
tion (described in Section 2) of different induction-based model checking engines: k-
induction [16], IC3 [3] and various auxiliary invariant generation methods. K-induction is
a generalization of standard induction and consists in finding a value k for which P holds
in all reachable states within k−1 steps (base case), and is preserved by transition chains
of length k (step case). IC3 is a popular directed reachability approach that iteratively
strengthens the given property until it becomes inductive. We use an extension of IC3
to infinite-state systems which is based on an efficient form of approximate quantifier
elimination. In our experience, IC3 is often complementary to k-induction as it can prove
properties that are not k-inductive for any k while k-induction can handle properties that
IC3 finds hard to strengthen to an inductive one. The invariant generation engines of
KIND 2 produce on the fly auxiliary invariants that are used to incrementally strengthen
the transition relation T , increasing the chances of proving the step case of k-induction
and facilitating the job of IC3.

Incremental and modular invariant generation. PKIND introduced an invariant
generation technique parameterized by a partial order� over some (equality) type τ [13].
It starts from a set of candidate terms C of type τ over a system S and heuristically
produces invariants of the form c � c′ and c = c′ where c,c′ ∈ C. For the bool type,
used in Lustre both for Boolean state variables and for properties, � is implication and
C is constructed by mining the initial state predicate and the transition relation of S for
Boolean terms. The approach maintains an index k and a directed acyclic graph (DAG),
whose vertices are sets of terms from a partition of C. A vertex V = {c1,c2, . . . ,cn}
denotes the chain of equalities c1 = c2 = · · ·= cn. An edge from node V to V ′ denotes the
inequality c� c′ for any term c in V and c′ in V ′. The DAG is a compact representation
of a set of invariant conjectures about S. Initially, k = 0 and the DAG has a single
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node C, conjecturing that all the terms in C are equivalent in every reachable state of
S. This conjecture is tested with a Bounded Model Checking-style query to an SMT
solver for a counterexample k states away from an initial state. If none is found, the
conjecture is correct for states reachable in up to k steps from an initial one, and k is
incremented. Otherwise, the DAG is modified by removing edges or splitting nodes so
that its refined conjecture is consistent with the latest counterexample and all previous
ones. The algorithm refines its DAG and increments k until k reaches a user-specified
upper bound d. It then performs a multi-property (d +1)-induction step check over each
element of the conjecture. Any equality or inequality between two candidate terms in the
conjecture that is i-inductive for i≤ d will be proved and communicated as invariant.

We have modified this technique so that it progresses in lockstep. When the conjecture
is correct at depth k, the invariant generation engine of KIND 2 performs the (k+ 1)-
induction step check right away. This allows it to output invariants that are k-inductive
for a small k faster. An additional benefit is that there is no need for a user-defined upper
bound d, whose value can vastly influence runtimes—for instance on large systems,
where unrolling the transition predicate several times can be extremely expensive.

Furthermore, KIND 2 can execute this invariant generation technique modularly
when the input system is defined as the composition of two or more nodes. In that case,
the subsystem hierarchy is traversed bottom-up. For each subsystem S, a set of (k+1)-
inductive invariants (with k initially 0) is obtained as discussed above. Those invariants
are then instantiated in every subsystem that has S as a direct subcomponent, recursively.
Once the process reaches the top-level system, any invariants discovered at that level are
communicated to the other reasoning engines of KIND 2. At that point a new bottom-up
traversal starts with a greater value of k. This approach has two significant advantages
with respect to running invariant generation on the full system monolithically: (i) it
discovers invariants for subsystems more easily and quickly; (ii) it is self-reinforcing
since instances of the invariants discovered for a subsystem of a component S can be
used to help prove invariant conjectures for S.

Compositional reasoning. Compositional reasoning is a popular technique to improve
the scalability of verification tools on systems defined as hierarchies of components.1

Components have contracts enforcing their use
node max (x:real) returns (m:real);
let m = x -> if x > pre x then x

else pre x; tel

node avg (x,y:real) returns (a:real);
(*@contract

assume x <= y;
guarantee x <= a and a <= y; *)

let a = (x + y) / 2.0; tel

node sav (x:real) returns (s:real);
(*@contract

assume x > 0.0 and x > pre x;
guarantee s <= max(x); *)

let s = avg(x -> pre s, x); tel

Fig. 2: Lustre nodes with contracts.

in a certain context in order for them to guaran-
tee certain properties (Figure 2 for an example).
Analyzing a component consists in checking
that its contract holds after abstracting at call-
site all of its (possibly complex) sub-compo-
nents by their own contract. A contract for a sys-
tem S , 〈s, I(s),T (s,s′)〉 is a pair C , 〈A(s),
G(s)〉 where, informally, the assumption pred-
icate A describes properties that S expects its
inputs to have, while the guarantee predicate
G expresses how the component behaves when
A holds at all times. A contract can introduce
local variables (streams), refer to previous val-
ues of streams, and call arbitrary Lustre nodes. This makes KIND 2’s contract language

1 For simplicity, we describe here only the case of asymmetric parallel composition, where there
are no feedback loops between components, although KIND 2 can deal with the general case.
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expressive enough to represent any regular safety properties, once they are recast in
terms of past temporal logic (see [6] for more details on the contract language and its
use). In KIND 2, verifying that S satisfies its contract reduces to verifying that G(s)
is an invariant for the system SA = 〈 s, I(s)∧A(s), A(s)∧T (s,s′)∧A(s′) 〉. If S is a
component of some larger system S′, which provides it with input values, then S can be
abstracted by its guarantee G at call-site in S′ as long as the assumption A at call-site
is an invariant for S′. If it is, we say the call is safe. If the call is unsafe, then so is S′

since it does not respect the contract of S. If all components of a system verify their
contract and make only safe calls then the overall system is safe. KIND 2 can construct
this argument via a modular analysis, where system components are analyzed bottom-up
in the subsystem hierarchy with a process similar to modular invariant generation.

Refinement. KIND 2’s modular and compositional analysis of multi-component sys-
tems resorts to contract refinement when needed. Consider a system S1 with contract
C1 = 〈A1(s1),G1(s1)〉 that uses a subsystem S2 with contract C2 = 〈A2(s2),G2(s2)〉.
Suppose that KIND 2 cannot prove S1’s contract compositionally, that is, by abstracting
S2 by its contract. A reason for this might be that the abstraction provided by C2 is too
weak. KIND 2 will then refine S1 in the analysis by replacing S2’s contract with S2 itself,
provided, however, that the following conditions are met: (i) S2 is safe (i.e., it verifies its
contract and does not make unsafe calls), and (ii) all calls to S2 in S1 are provably safe. If
the new analysis succeeds, the user is notified of the specific contract abstraction under
which the result was obtained. Otherwise, the refinement process continues recursively
until no more contract refinement is possible. When a system like S2 is used instead
of its contract C2 it is because it provably admits a smaller set of execution traces than
C2. Because of this, when analyzing a newly refined system, KIND 2 retains any invari-
ant/property already proved and any information on properties that are still unproven
or falsified. This means that when the analysis restarts after refinement, KIND 2 will
only check the proof obligations that were not previously discharged, in effect restarting
precisely from where the previous analysis had stopped.

Certification. Having to trust the results of complex model checkers like KIND 2 is
a source of concern for some users. To address this problem, KIND 2 can produce an
independently checkable proof certificate for the properties that it claims to have proven
for a (sub)system.2 This certificate is in the form of a k-inductive invariant (expressed as
a formula together with a specific value of k) that implies all the proven properties. This
form is general enough that it can be effectively produced by all the model checking
engines described previously. Certificates coming from these engines are combined
conjunctively thanks to the fact that a k-inductive invariant is also k′-inductive for any
k′ ≥ k. Individual certificates are initially generated by single engines based on their
deductions regarding some set of properties and invariants. The combined certificate
is then simplified along two dimensions, the value of k and the size and complexity
of the invariant itself, using various fixpoint-based heuristics relying on unsat cores
and counterexamples to induction. The final certificate output by KIND 2 is written in
SMT-LIB 2 format and embedded in an SMT-LIB 2 script that checks that the certificate

2 Currently, certificate generation is available only for monolithic analyses. An extension to
compositional ones is planned as future work.
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Fig. 3: Comparison between KIND 2 and other
infinite-state model checkers.

Tool k-induction IC3

PKIND yes+ig no
ZUSTRE no yes+i
KIND 2 yes+m+ig yes
JKIND yes+ig yes+ia
NUXMV no yes+ia

Table 1: Techniques implemented
in the tools.

is k-inductive and implies the proven input properties. As a first approximation, any
SMT-LIB 2-compliant solver can then be used as a certificate checker. This essentially
shifts the burden of trust from KIND 2 to the SMT solver, reducing the trusted core to
the latter. In our initial empirical evaluation, this approach allows Kind 2 to generate
and check certificates, with an SMT solver, with a reasonable overhead (in all cases,
less than an order of magnitude). We are currently working on eliminating the SMT
solver as well from the trusted core by capitalizing on the proof-producing capabilities
of certain SMT solvers. Specifically, in collaboration with the developers of the CVC4
solver [2], we are instrumenting Kind 2 to generate from CVC4 a final certificate in the
LFSC language [17]. This way, the trusted core will reduce even further, to the much
simpler LFSC proof checker.

Architecture. KIND 2 is written in OCaml and has a concurrent architecture similar
to that of PKIND. Its various engines (base case and inductive step of k-induction, IC3,
invariant generation, and so on) run simultaneously and in cooperation. They exchange
information, mostly about properties proved or disproved to be invariant, through a
message passing interface implemented on top of the ZeroMQ library. The concurrent
execution of the base (BMC) of k-induction with the step case makes KIND 2 efficient
at disproving properties. This architecture provides superior support for systems with
multiple components and properties since it allows KIND 2 to check several properties
per component at the same time and output counterexamples or proven properties incre-
mentally, as it discovers them. Various off-the-shelf SMT solvers (currently, CVC4 [2],
Yices [9], and Z3 [8]) are used as backend reasoning engines.

3 Experimental Evaluation

Compositionality and certificate generation make KIND 2’s internal architecture more
complex, and with a higher potential overhead, than comparable model checkers. So
we provide an evaluation of KIND 2’s performance as a monolithic model-checker first
(without certificate generation), before discussing the performance of its compositional
reasoning features.
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Comparison with other tools. We compared KIND 2 with a number of recent model
checkers for infinite-state systems: PKIND [14]; JKIND [10], a model checker similar
to PKIND developed in Java by Rockwell-Collins; ZUSTRE, a Lustre front end for the
Z3-based model checker Spacer [15]; and NUXMV [5], a general purpose model checker
for synchronous finite-state and infinite-state systems. Table 1 shows the techniques
implemented by each tool among a modular version (m) of k-induction with or without
invariant generation (ig), and IC3 possibly augmented with interpolation (i) or implicit
predicate abstraction [7] (ia). We ran each tool on a Linux machine with two 12-core
64-bit AMD Opteron processors and 32GB of memory on a set of single-property
benchmarks that includes those discussed in [14].3 NUXMV was given encoded versions
of the original Lustre problems in its own input language, which were provided to use by
its developers. We gave a timeout of five minutes for each problem. Figure 3 shows that
KIND 2 is very competitive with its peers, outperforming its predecessor PKIND and
providing an answer (either valid or a counterexample) in more cases than any other tool.

Compositional vs. monolithic verification. We evaluated compositional reasoning
in KIND 2 on the TCM (Transport Class Model) for medium-sized aircraft discussed and
verified compositionally by hand by Brat el al. [4]. The subsystem of the TCM we had
access to, which is modeled in Lustre, includes components for the latitudinal and longi-
tudinal controllers, and for the mode logic that decides which controller should be active
at any time. The controllers are heavily numerical and contain non-linear expressions,
which are problematic for current SMT solvers. We wrote contracts corresponding to
Federal Aviations Regulations [4] for most of the components of the subsystem. We also
abstracted non-linear expressions by components with a linear contract.

The runtime to verify every component of the system bottom-up, including the
abstractions of non-linear expressions, is about 400 seconds on a 2014 i7 CPU running
OSX. A comparison with a purely monolithic approach is not possible because of the
presence of non-linearity. All SMT solvers we tried would return unknown, even for
checks dealing with a single, relatively simple component. As a consequence, we did
a monolithic analysis of a modified TCM system where the non-linear expressions are
replaced by their linear contract but otherwise nothing else is abstracted. In this setting,
the analysis of the top level of the system ran for two hours without reaching a conclusion.
We refer the interested reader to Champion el al. [6] for a more in-depth discussion.

4 Applications

KIND 2 is used in academia and in a variety of industrial settings. For the latter, it is for
instance one of the backend model checkers in the AGREE framework for compositional
verification of AADL models [1] at Rockwell-Collins. It has been used at General
Electric for model-based test case generation. It is also used in an open-source model-
checking plugin for Simulink developed by NASA Ames and CMU, which relies on
Lustre model checkers and produces user feedback at the Simulink block level. KIND 2’s
proof certificates are leveraged as an innovative way to approach tool qualification with
respect to DO-178C requirements in a NASA and FAA funded project.

3 The set is publicly available at https://github.com/kind2-mc/kind2-benchmarks.

https://github.com/kind2-mc/kind2-benchmarks
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