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Abstract

"Relative termination"” is a property that generalizes both termination
and "termination modulo”. In order to prove that a term rewrite system
relatively terminates, one may reuse the common termination
quasiorderings. Further proof methods become available by the
cooperation property. Relative termination sets up new proof
techniques for termination and confluence. The usefulness of the
notion of relative termination is finally demonstrated by a proof of
completeness for "reduced narrowing" and "normal narrowing", two
attractive variants of the narrowing procedure.

Zusammenfassung

"Relative Termination" ist eine Eigenschaft, die sowohl Termination
als auch "Termination modulo" verallgemeinert. Dal} ein
Termersetzungs-system relativ terminiert, 1al3t sich etwa mit den
bekannten Terminations-Quasiordnungen beweisen. Weitere
Beweismethoden erhélt man durch die Eigenschaft der Kooperation.
Relative Termination ermdglicht neue Beweismethoden fur
Termination und Konfluenz. Schliel3lich wird gezeigt, dal’ unter der
Voraussetzung der relativen Termination zwei naheliegende Varianten
der Narrowing-Prozedur vollstandig sind, namlich "reduced
narrowing" und "normal narrowing".
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One page principle:
A specification that will not fit on one page of 8.5 x 11 inch paper
cannot be understood.
Mark Ardis

Introduction and motivation

This thesis deals withwaeakeningf the notion oterminationof a term rewrite system.

A term rewrite systens a (usually finite) set of rewrite rules. A rule-Ir allows one to
replace any instance of the term | by the corresponding instance of the term r, in any
context. Term rewriting has its early roots in the work of [Church, Rosser 36] on
confluence in the lambda calculus and [Herbrand 30] on unification. The classical work
that probably gave term rewriting its main impulse, is [Knuth, Bendix 70], in which a
procedure is given that solves #imple word problenn some equational theories. The
Knuth-Bendix procedure transforms a system of equations, that describes an equationa
theory, into a confluent and terminating term rewrite system. The termination property
ensures that every term has at least one normal form, and that normal forms can safely b
computed. Moreover, if confluence holds, then normal forms are unique. In a confluent
and terminating term rewrite system semantic equality can be decided by a syntactic
comparison of normal forms. Much work has been done to develop the theory of
confluence and termination. Besides that, topics like automated theorem proving,
equational unification, and narrowing have been studied. The pure theory has been
enriched by equational rewriting, graph rewriting, and conditional rewriting. See
[Dershowitz, Jouannaud 89] for an overview and a list of references.

An algebraic (or equational) specification is a set of functions which is called the
signatureand a (usually finite) set of equations rl For simplicity, we will use an
impoverished notion of algebraic specifications, where all formulas are unconditional
equations, and specifications are homogeneous ("single-sorted", without sort/type
information). Algebraic specification was studied starting in 1974 by Liskov and Zilles,
and continued by Guttag and the ADJ group. Nowadays there is abundant literature in
that area, see [Wirsing 90] for an introduction and a list of references. Briefly
summarized, the algebraic specification world negotiates mikdel semanticsf
specification: A specification is associated with a certain class of models; a model is an
algebra where every given equation holds in all contexts and under all instantiations.
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Term rewriting, in contrast, is mainly concerned with technical issues of equational
specifications. It assigns to an algebraic specification, so to speapeaational
semanticsAn algebraic specification is turned into a term rewrite system where each
equation | r is replaced by a rewrite rule-l r. In contrast to an equation, a rewrite

rule may be used only in an oriented way, from left to right.

It is a classical programming paradigm to develop softwameadules [Wirsing et al.

83] introduces the basic notion loierarchical specificationand shows that important
properties for a working modular approach suéficient completenessdhierarchy
consistencyThese two notions on the one hand, and confluence and termination on the
other hand, are closely connected (see [Nipkow, Weikum 83] and [Kapur et al. 87] for
sufficient completeness, and [Padawitz 88] for hierarchy consistency). This stresses the
need of a hierarchical treatment of confluence and termination.

Both confluence and termination are however, in general, not modular, i.e. a term rewrite
system RIS may fail to be confluent or terminating although its components R and S are.
In a series of articles, a special case has been studied: The two components R and S ha\
no common function symbols; then IS is also called thdirect sumof R and S.
Surprisingly, confluence of R and S entails confluence [06Rn this case ([Toyama
87Db]). A number of counterexamples showed that the problem is far more difficult with
termination of direct sums ([Toyama 87a], [Ganzinger, Giegerich 87], [Klop 87]). Still,
under some restrictions, termination results exist ([Toyama et al. 87], [Rusinowitch 87a],
[Middeldorp 89]).

Often RIS is not a direct sum. Consider for instance the following algebraic specification
of queues:

Example: (Queues)
Assume a primitive algebraic specification P of items to be given, and titrfete a set
of function symbols that contains at least the function symbols occurring in P. B and F
may be unknown at the beginning; the paip,(P) might be seen as a parameter
specification to the (parameterized) queue specification below. Let the set of new function
symbols be

Fo =def{empty, app, bottom, upper, length},
where "empty" (empty queue) is a constant, "bottom" (bottom element of the queue),
"upper" (Qqueue when the bottom element has been removed), and "length" are unary, anc
"app" (append a token at the top of a queue) is a binary function syngblohsRo
satisfy Fp n Fg = @. The functions in & are specified by
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Q =def {bottom(app(x, empty))- X,

bottom(app(x, app(y, )))- bottom(app(y, a)),

upper(app(x, empty))- empty,

upper(app(x, app(y, 4)))» app(x, upper(app(y, 9))),

length(empty) - O,

length(app(x, 9)) - s(length(a))}.
Q is terminating, as can easily be shown. Under which circumstanceslis Q
terminating? QIP is not a direct sum, because 0 and s (zero and successor, respectively)
which occur in Q, may also be function symbols in P. The termination of P is certainly
necessary. But even if P is terminating, it is questionable whethd? @lso is.
According to a theorem of [Bachmair, Dershowitz 86], a sufficient condition here is
"P terminating and left-linear". This is not too strong a condition since most rewrite
systems are indeed left-linear, i.e. the left hand side of each rule contains each variable a
most once.
But if we do not know whether P terminates, can we still say something sensible about
the termination behaviour of Q in connection with P? Yes, sometimes we can. We could
for instance ask whether P-steps can force infinitely many Q-steps to occur.

O
The following small example shall illustrate what this amounts to: Let a and b denote
constants. Assume two term rewrite systeni$SRand RIS™ to be given by
R={a- b}, S={b->a}, SS={b- b}.

Both systems are obviously non-terminating, but in the systéis,Rhe progress
achieved by R-steps is repeatedly destroyed by S-steps, where in the sysm R
finally (here: immediately) S”-steps preserve the R-normal form b. Even aiter,
derivationin the latter systernontains infinitely many R-step$his effect has been
called 'relative terminatioti by Jan Willem Klop in [Klop 87]. Now back to our example:

Example: (Queues, continued)
When does Q relatively terminate to P? A necessary condition is "P left-nonerasing", i.e.
each variable that occurs on the right also occurs on the left of a rule from P. (This
condition is often presupposed anyway.) Again using Bachmair and Dershowitz
theorem, we find that "P right-linear and left-nonerasing" is sufficient. P is called right-
linear if no variable occurs twice on the right hand side of a rewrite rule. If P is right-
linear and left-nonerasing then Q-steps occur only finitely often inRA-Qerivation.

O
ROS terminates if and only if R relatively terminates to S and S terminates. This property
can be used to glue termination proofs together. Technically, this gluing corresponds to
the lexicographic combination of termination orderingstechnique which in [Ben-
Cherifa, Lescanne 86] has been shown useful for the polynomial interpretation method.
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"Relative termination” also generalizes the notion of terminatioduloan equational
theory E. We will regard an equational theory as a symmetry-closed term rewrite system.
So we may take termination modulo E to be the same as relative termination to E, for
symmetric E. The theory of "termination modulo” is comparatively well-developed
([Lankford, Ballantyne 77], [Huet 80], [Peterson, Stickel 81], [Jouannaud, Mufioz 84]).
A crucial question is therefore whether relative termination contributes anything new to
the notion of termination modulo. The answer is settled positively in this thesis: There are
rewrite systems R, S, such that R terminates relative to S, but not modulo S.

The article [Bachmair, Dershowitz 86] contains the first use and application of relative
termination in the literature. Following [Jouannaud, Mufioz 84], it introduces
commutation-like properties of rewrite systems in order to derive termination orderings.
Independently [Bellegarde, Lescanne 86] coins the related notiangnsformation
orderingandcooperation As many examples have shown, the transformation ordering is
both powerful and easy to use. For instance, homomorphic interpretation orderings seem
to be basically transformation orderings.

As the first application of relative termination, [Klop 87] uses a criterion called "splitting
effect” to prove confluence of rewrite systems® where R terminates relative to S.

Building on the work reviewed above, this thesis is concerned with the following
questions:

1) How do the notions of termination, termination modulo, and relative
termination correlate?

The three notions are, in fact, very closely related. Termination of R is a special case of
relative termination of R to S, where S = @. Moreover termination of R modulo E is a
special case, where E = S is symmetric. On this account, one may expect that relative
termination satisfies some properties which are known from termination or termination
modulo. For instance, relative termination, like termination modulo, may be proven by
termination quasiorderings. As a side-effect, rewriting modulo is re-integrated into classic
rewriting theory.

2) What can relative termination contribute to termination proof
techniques?

The first approach uses the fact that relative termination of R to S is a necessary condition
for RS Noetherian. Moreover, if S is Noetherian, relative termination of R to S is even
equivalent to termination of [RS. So in order to prove termination ofIR, it may be

-4 -



Introduction and motivation

advantageous to proceed in two steps: First prove that R is relatively Noetherian to S,
then prove that S is Noetherian. The underlying fundamental property of termination is
that ROS inheritstermination from the termination of R and S wheénSRs transitive.

The second approach establishes a relative termination result dpyatsieccommutation
property. This thesis investigates the quasi-commutatiorcaoperationmethods of
Bachmair and Dershowitz, and of Bellegarde and Lescanne. It moreover demonstrates
that these two methods are instances of a more general cooperation method that admit
local cooperatiorandstrong cooperatiormeriteria, similar to the local and strong criteria

for confluence.

3) How can one prove confluence in the case of relative termination?

Since confluence proof techniques are known for termination and termination modulo,
this question is natural. In this thesis, the confluence proof, like in the termination
modulo approach, is attacked bycaherenceproperty. This leads to a confluence
criterion for RJS which is local with the exception of the confluence proof for S. In
other words, confluence proofs can be dbrexarchically. In the confluence modulo
approach, the primitive theory may also be built-in. Then people also speak about the
class approachA possibility for a class approach not requiring symmetry is sketched but
not finished in this thesis. Finally, if one aims at local diagrams even for S, then a new
criterion calledstrong coherencgan the spirit of strong confluence, leads to a confluence
result that generalizes Klop“s confluence result.

4) Where else does relative termination apply?

Wherever termination is needed, but not in its full strength, relative termination becomes
an attractive candidate. Relative termination still provides an inductive ordering, which is
useful for an inductive proof. A demonstration of the power of relative termination on
this account is given in this thesis by two proofs. In the case that a dedicated subset S o
the given rules RS serves for reduction, reduced narrowing and normal narrowing are
complete, if R relatively terminates to S.

In summary, we are interested in relative termination for a number of reasons:

(1) Relative termination is a notion well suited to speak about the termination property.

(2) Termination "inherits" by relative termination. This is the basis of stepwise
("modular") termination proofs.

(3) Termination and termination modulo an equational specification are special cases of
relative termination.

(4) Termination of R relative to S means that the ordering fR&SINoetherian. This
ordering can be applied in various inductive proofs, for instance proofs of
confluence.
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(5) Techniques based on commuting diagrams define termination orderings (the
transformation orderings) which are closely correlated with relative termination.
These orderings are interesting in their own right: They can be used to perform
difficult termination proofs.

The thesis is organized as follows:

The first chapter "Basic term rewrite notions" explains the working set of definitions,
conventions, and basic results used later in the thesis. A definition of relative termination,
and its typical properties and proof methods are the subject of the second chapter
"Termination, termination modulo, and relative termination”. The third chapter, "How to
strengthen termination orderings”, touches the inheritance problem area, and redraws the
transformation ordering approach.

The remaining two chapters deal with applications of relative termination. Chapter 4,
entitled "Confluence criteria", develops critical pair criteria for confluence of rewrite
systems where a part of the system is relatively terminating to the rest. The thesis is
finished in chapter 5, "Applications of relative termination”, with a result about
completeness of the normal narrowing procedure.



1. Basic term rewrite notions

This chapter contains some basic definitions which will be used freely throughout this
thesis, and which are standard in the rewriting community. With one major exception:
Everybinary relation on terms is called a term rewrite system. We will plead for this
decision; it has a basic impact on the whole thesis. For surveys on term rewriting in
general, see [Huet, Oppen 80], [Jouannaud, Lescanne 86], [Klop 87], [Dershowitz,
Jouannaud 89], [Avenhaus, Madlener 90].

The set of natural numbers will be denoted bl naturally ordered by=y. For
convenience, let us reserve the names ¢, m, n, i, and k for natural numbers. Of course
here and in the sequel, all names may also occur indexed or primed or both indexed anc
primed.

1.1. Abstract relations

First, let us establish some notation for arbitrary binary relations R (over some implicit
universe U). We will sometimes drop the prefix "binary". Relations will preferably be
called Q, R, S, and TTompositionof relations is denoted by juxtaposition. The inverse
relation R! of R differs from R by the exchange of left and right hand sides:

Rl =ges {(r,]). (I,)OR}.
The symmetric, reflexive, transitive, and reflexive-transitive closures of R are denoted by
R, RE, R*, and by R, respectively.
Many properties of binary relations are of the fornil B, more conveniently, in logic
terms: For all t, t, if (t, tOP holds, then (t, t)Q holds. It is customary to
represent such a fact byleagram A diagram is a directed graph, where nodes represent
objects (t and t"), and arrows represent their relations (P and Q). Black arrows denote
premises ("if (t, t)JP ..."), and grey (elsewhere, dashed) arrows denote conclusions
("... then (t, tQ ™).
For instance, R is callezbnfluent if (R'1)*R* O R*(R'1)" holds. In other words, R is
confluent if (t, t)O (R1)"R* implies (t, t)0 R*(R1)* forall t, t". In a diagram
presentation finally, R is confluent if

holds. The three definitions are perfectly equivalent. Remember that confluence is
equivalent to th€hurch-Rosser propertyR" 0 R*(R-1)*.
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R is calledcyclic, if R* is reflexive, andcyclic if Rt is irreflexive. R is calledinitely
branching if for all t, the set {t". (t, tDIR} of immediate descendants of t is finite. A
(finite or infinite) sequenceotty, to, ... such that tti+1)JR holds for all IUN, is
also called an Rlerivation R is calledNoetherian if it admits no infinite derivations. In
this thesis we will use the predicates "is Noetherian" and "terminates” as synonymous.
An object t is calleqR-)normal orin R-normal form if there is no t° such that
(t, t)OR. The set of all R-normal forms is denoted by RNF he relation RF ("R-
normalization’) is defined by RF =get {(t, t)OR". t ONFR}. The set of normal forms

of an object t is the set INF) =gef {t". (t, t')IRNF}. If every object has a normal
form, i.e. if NR(t) # @ for all t, then R is calledormalizing Remember that
Noetherian relations are normalizing, particularly.

A reflexive and transitive relation is also calledj@asiordering an irreflexive and
transitive relation atrictordering For a quasiordering and its inverse we will preferably
use the symbols> and <. The set differencex\< (a strictordering) will then be
denoted by >, and the intersectian< (an equivalence relation) by the symbol ~. By
abuse of notation, quasiorderings and strictorderings will also be catledings A
quasiordering> will (by abuse of notation) be called Noetherian, if its associated
strictordering > is Noetherian.

1.2. Terms, substitutions, and occurrences

Let F denote a finite set, and X an infinite, countable set disjoint from F. We call
elements of Function symbolsand elements of Xariables A function arity: F- N
assigns to function symbols thairity. Function symbols of arity 0 are also called
constantsThe set of (finitejJermsis the (-)least fixpoint of the equation

Term = X0O [ ({f} x Termarity(f))

fOF

l.e. the least set that extends X and contains the tuple, (f, t,) if arity(f) =n and
t1, ...,  are in the set. Since function symbols may also be seen as functions which
construct terms, (faf..., ) is rather written f, if f is a constant, andqf(t., t)
otherwise. In this respect, there is an algebra (Term, F) of terms and their functions.
(Do not confuse this with the notion tfrm algebrain the literature, which assumes
X =@.) For certain function symbols, ad hoc mixfix syntax will be used, like for "+" in
x+y, or for "-" in -x. We will prefer the names x, y, and z for variables, a and b
for constants, f, g, h, s, -, +, and * for unary and binary function symbols, and |, r,
and t for terms.
Terms may be seen as particular trees where nodes are labelled by function symbols o
variables. For instance, if f and g are binary, thengds #g(x, @), y) is a term. It
may be depicted as
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f

¥ N\

g y
¥\
X a
For this reason, f is also called tbe symbobf the term t, and the terms g(x, a) and
y are called the first, second son, respectively, of t. Note that the equality sign "="is
not a symbol from the object language (as is f, for instance)oetasymbolvhich
we will use to indicatsyntactic equalityf terms. The other "equalities” on terms which
we will cope with, are:

1. equations as part of algebraic specifications (there we will writg, |

2. equations that are to be solved (also called goals; we will write eq(t, t) where
"eq" is a fresh function symbol), and finally,

3. the semantic equality, i.e. the congruence structure on terms which models the
application domain (denoted byr= where R is the underlying term rewrite
system).

Needless to say, these equality notions must not be confused. Details will be explained
later.

The functions Var: Term- O (X) and Func: Term- O (F) deliver the set of
variables (functions, respectively}hat occur ina term; they are defined in a
straightforward way:

Var(x) = {x}, Var(f(ty, ..., 1)) = Var(e) O ...0 Var(ty) ,

Func(x) = 9, Func(f(t, ..., &)) = {f} O Func(t) O ... O Func(t) .

If Var(t) = @, thenthe term t is callgdound In our example, Var(f(g(x, a), y)) =
{x, y} and Func(f(g(x, a), y)) = {f, g, a}. The term f(g(x, a), y)) is not ground.

Occurrencesre finite sequences of natural numbers. We will prefer the names u, v, and
w for occurrences. We will denote concatenation of occurences by the dot notation, e.qg.
in u.v for occurrences u and v. The empty occurrence or top occurrence is denoted by
A. An occurrence may be seen as a path from the root of t down to a unique node of t.
An occurrence i.u, where i is a natural number, means: Go to the i-th son, and
continue with u. In our example above, the occurrence 1.2 points to the node labelled
by a. Thesubtermof t whose root is identified by u this way, is denoted by t/u. The
replacementf t/u, within its context in t, by the term t’, is denoted by & [ti].
Subterm and replacement are defined in a straightforward way:

t/N =t f(ty, .., ) /iu = t/u,

tA «t] = t, fity, ... ) [lU < t'] = f(tg, ..., §[u < ], ..., &) -
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In our example above, t[L a] = f(a, y). Thatis to say: In order to replace the
subtermin t at occurrence 1 by the term a, one removes the subterm g(x, a) from f
and inserts a instead. The function Occ: Terrl (N*) that assigns to a terits set
of occurrencegsis the set of occurrences u for which t/u is defined. The set of
functional occurrencesFOcc(t), is the set of occurrenceSlQcc(t) such that t/dF,
I.e. the set of occurrences labelled with a function symbol in t. We have in our example
FOcc(t) = A, 1, 1.2}. A partial ordering on occurrences is defined bytkéx ordering

U <preU” = def there is an occurrence v such that u.v=u".
Taken as positions in a term, e U” means that u is above u'.

A substitutionis an endomorphisno: Term — Term, in the algebra (Term, F), i.e. it
satisfies

o(f(ty, ..., b)) = f(o(to), ...,a(tn))
for each function symbol f. So a substitution is already determined by its images of
variables, a fact that justifies the notation/{i, to/xo, ... ] for the substitution which
maps X to t, X to b, and so on. Substitutions will be denoted by small greek
letters, exceptA (empty occurrence)s (reflexive closure), ando (least transfinite
ordinal number). In order not to confuse term construction with substitution application,
we will write to instead ofa(t). The (functionalzompositionof substitutionso and
T is denoted byot. Since composition is associative and extends application,
parentheses may be omitted in expressions, asan. {fThesubsumptiomuasiordering
<sub On terms is defined by

t <supt” = def there is a substitutioo such that t* =ot
Aterm © is called annstanceof t (byo), or,more special thart. Vice versa, we say
that t ismore general tharto, or that tsubsumedo.
By abuse of notation, tr@omainof a substitutioro is the set

domo = {xOX. xo # x},
its rangeis the set

ranc = [ Var(xo).

xOdomao

Idempotent substitutions, i.e. substitutiomsvhere xo = xo holds for all x, are
characterized by the property danm ranc = @. Bijective renamings are typical non-
idempotent substitutions. Substitutions have a very technical nature. It is therefore
important to know some techniques for dealing with them. For instance, substitutions are
often interesting on a finite subset W of X. Sometimes W = Var(t) for some termt. Itis
known that every substitutioro with domo 0 W can be represented on W as a
composition of an idempotent substitution with a renamingp: OxOW. xa = xup.

(This is elsewhere writtew = pp [W] .)

-10 -
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1.3. Term rewrite systems

Let R denote a binary relation terms R is callecclosed under contexts for all terms
t1, ..., b, t', and for all fIF where arity(f) = n,
(ti, )OR implies (f(t, ..., 1), f(ts, ..., t-1, t', §+1, ... ) O R.
R is calledclosed under instantiatigrnf for all terms t, t", and substitutiors
(t, )OR implies (b, t0)0R .
(Closure under contexts is elsewhere also called F-stability or monotonicity, and closure
under instantiation is also called stability or closure under substitution.)
For proofs, we can profit from a characterization of context closure:

Fact:
R is closed under contexts if and only if, for all terms t, t", and occurrerd®sc(t),
(t/u, )OR implies (t, tlu- t'OR .
O
(Recall from the previous section that t/u denotes the subterm of t at occurrence u, anc
tlu « t'] denotes t where the term t° replaces the subterm at occurrence u.)

In order to represent term reductions, people(igsen) rewrite systems.e. relations on
terms that are explicitly given by a (not necessarily finite) set R of term pairs (I, r) which
are calledrewrite rules and are written L r. In order to say that R contains a rule

I - r, we will write (I - r)IR. Therewrite relation 5 is the smallest relation

containing R and closed under contexts and instantiation. It will be used in infix notation:
t = t'. Aterm rewrite system R is called Noetherian, confluent, or finitely branching, if
its associated rewrite relatiog is. Recall that the symbolg ¢, 5+, 5 * denote the
reflexive, transitive, and reflexive-transitive closures gf, respectively. Likewise,

= F denotes the rewriting tg(-)normal form. For convenience, we will write
instead of ﬁ*, and so on. The congruence closure-ofis denoted by &

For technical purposes, we will sometimes use the notatiﬁﬁ?tt’, to denote that
"rewriting happens at occurrence u using rule ", i.e. that there is a substitutian
where t/u=d and t" =t[u- ro]. Inthat case, t/u is callededexfor | -~ r, and u

is called the redex occurrence for-Ir in t. Itis obvious that whenevergt t” holds,

there are suitable u, |, and r, such thatit t and (I- OR hold.

Arule | — r is calledeft-linear, if each variable occurs at most once in léft-
nonerasingif Var(l) O Var(r), i.e. every variable that occursin | also occursin r, and
left-nonisolating if 10X (the left hand side of the rule is not just a variable). Likewise,
a rewrite system R is called left-linear, left-nonerasing, or left-nonisolatira) if

(I - NOR are so. b r is calledeft-nonlinear if it is not left-linear Jeft-erasingif it is
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Chapter 1. Basic term rewrite notions

not left-nonerasing, etc. If 4 r is left-linear, then | is calledright-linear, etc.
(Other authors also call a left-nonerasing rule left-non-annihilating or regular, a right-
nonisolating rule non-collapsing or collapse-free.)

For example, the rule x*x x is left-nonlinear (since x occurs twice on the left hand
side) and right-isolating (x appears isolated on the right hand side). The ruletx is

both left-linear and right-linear (the variables x and y occur at most once on each side),
but left-erasing (y appears on the right hand side, but not on the left hand side).
f(x) —» O finally is right-erasing (because x disappears at the right hand side), both left-
linear and right-linear, and both left-nonisolating and right-nonisolating (the left hand side
begins with a (unary) function symbol f, and the right hand side is a constant 0, so
both sides do not consist of a variable only).

If the premise part of a diagram is described by the transitive clostiref a rewrite
relation —, as is often the case, then it is advantageous to first prove a diagram which in
its premise just uses single-steps instead of -derivations of arbitrary length. Such a
diagram is calleébcal. For localization, i.e. for reducing the proof of a diagram to that of
its local counterpart, usually certain restrictions must be satisfied.

Since [Huet 80], it has become common to prove rewrite diagrams in two phases: The
purpose of the first phase islaralizethe diagram. For this phase, one may do without
using typical rewrite notions (like substitutions, contexts, or occurrences), and without
using rewrite properties (like closure under contexts and instantiation). In other words,
the rewrite relation may be treated asaéstractbinary relation. During this phase, we
may therefore safely confuse R with. The rewrite notions and rewrite properties are
exploited in the second phase, where decidable, sufficient properties are delelthieed
so-called critical pair criteria. The notion of “critical pair" will be defined in chapter 3.

1.4. No restrictions?

In the definition of a term rewrite system, we did not mention any such restriction as left-
nonerasing or left-nonisolating, although that is quite widespread in the term rewrite
literature. A motive for these restrictions may be that a "neat" rewrite system satisfies
them: Every Noetherian rewrite system is both left-nonerasing and left-nonisolating. (See
section 2.2 in this thesis for details.) On the other hand, if one drops the restrictions (as
in [Padawitz 88], [Dershowitz, Jouannaud 89], [Hofbauer, Kutsche 89]), then every
binary relation on terms may be considered a rewrite system. If R is not definitely
Noetherian, one must be careful whether left-erasing and left-isolating rules behave as
intended. After all, what could be a good reason for adopting such a general notion?
Among other things it satisfiegeneral duality Every term rewrite system R has an
opposite term rewrite systemIR
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Chapter 1. Basic term rewrite notions

Suppose we are given a rewrite system R, and we want to ignore the orientation of the
rules, i.e. consider the symmetric closuresggs ROR1 of R. If we forbid left-isolating

or left-erasing rewrite rules, thend®uld not be a rewrite system if R contained right-
isolating or right-erasing rules (becausg Ben contains forbidden rules). However,
many rewrite systems contain such rules. For instance,—-x*0is right-isolating, and

x*0 - 0 is right-erasing.

Systems of term equations may be treated as if they were symmetric rewrite systems.
Thus if E is a system of term equations, and [(IE)is an equation (elsewhere also
noted as 1 r or, by abuse of notation, as | =r), then E is considered as a symmetry
closed set of rules 1. r (i.e. therule - | is also in E). So we need no particular
notation for equational axioms. We can even represent E aef B for some suitable
rewrite system R.

By taking equational axioms as symmetric rewrite systems, we may consider equational
rewriting as a special case (namely, the symmetric case) of rewriting. A comparison
between equational rewriting and rewriting is possible, this way.

Another comfortable consequence of general duality is that critical pair criteria (defined in
chapter 3) become applicable in a more general setting. For instance, a criterion for
(R, S)-critical pairs applies also for-fRS)-critical pairs, for (R, $)-critical pairs, and

for (R1, S1)-critical pairs. Suppose we have a theorem about rewrite systems R and S
(which often will be the case later), then we may drop the corresponding theorem
concerning R and S for example, because it isi@al corollary.

It is all these simplifying effects which makes tfeneralnotion of term rewrite system

so compelling.
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2. Termination, termination modulo, and relative
termination

In this chapter, we define and investigate the notiorlative termination Given two
relations R and S, we call R relatively Noetherian (or relatively terminating) to S, if every
ROS-derivation contains finitely many R-steps. This is a generalization of "termination
modulo” where S is required to be symmetric. (Remember that we may consider systems
of term equations as symmetric rewrite systems.) On the other hand, relative termination
is also a weakening of termination: IfJS is Noetherian, then particularly R is relatively
Noetherian to S. It is alsostrengtheningf termination: If R is relatively Noetherian,

then R is Noetherian, particularly. This demonstrates that relative termination is a central
notion in the study of termination of rewriting, and that it deserves closer attention.
Because of the relationship between termination and termination modulo on the one hand
to relative termination on the other hand, it is interesting to ask how far their properties,
techniques and methods carry over to relative termination. In this chapter, we will show
that necessary conditions for relative termination (except trivial boundary cases) fit those
known for termination and termination modulo, but are in general slightly more liberal.
Standard termination quasiorderings can basically be carried over to relative termination.
A characterization by means of a termination quasiordering, as it is available for
termination modulo, is however far less obvious in the case of relative termination. The
last section in this chapter shows that relative termination is a proper extension of both
termination and termination modulo.

2.1. Relative termination [0 Definition and basic properties

Terminating (or Noetherian) rewrite systems are valuable, for a number of reasons. For
instance, every rewrite strategy is safe, i.e. finally leads to a normal form. Recent
overviews of termination of term rewriting are given in [Dershowitz 85] and [Dershowitz
87]. Many interesting term rewrite systems thoughpatéNoetherian. Some of them at
least have a Noetherian subset R of rules which is "robust” against the rest, S, of the
rules in the following sense: Application of R-rules with intermediate application of
arbitrarily many S-rules is finally blocked. Let us make this more precise:

Definition: ([Klop 87])
Let R and S denote binary relations. R is caflddtively Noetherian tc&, if every
(infinite) derivation { [He t2 [He ... contains onlyiinitely many 5 -steps. If S is

presupposed, then R is just calledatively NoetherianThe phenomenon that R is
relatively Noetherian, is calleglative termination
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Chapter 2: Termination, termination modulo, and relative termination

Example: (Set)
Let "a" and "b" denote two distinct constant elements. Now let an algebraic specification
of subsets of {a, b} be given that defines constants "true", "false", and @, and binary
functions "ins" (insertion of elements) and "elem" (the membership relatiprAxioms
are provided by the two rewrite systems R and S, as follows:
R =gef{elem(x, &) - false,
elem(x, ins(x, s))- true,
elem(a, ins(b, s)} elem(a, s),
elem(b, ins(a, s)}» elem(b, s)},
S mef {ins(X, ins(X, S))— ins(x, s), "left-idempotence”
ins(X, ins(y, s))- ins(y, ins(x, s))}. "left-commutativity"
R is relatively Noetherian to S. For instance, the derivation
elem(a, ins(b, ins(a, ins(a, empty))y
elem(a, ins(a, ins(a, empty))-
elem(a, ins(a, ins(a, empty)y- ...
is indeed infinite, but contains only one R-step.
O
(This and other examples will be used as running examples.)
Relative termination is closely connected with the following composed relation:

Definition: ([Bachmair, Dershowitz 86])
The relation R/S gef S RS is calledR relative to S.

O
The notation R/E is known as "R modulo E" from the case where E is symmetric.
Because the word "modulo” suggests that E is an equivalence relation, we prefer not to
use it for potentially unsymmetric S.
The (R/S¥-derivations can be seen a<{8)"-derivations which contain at least one
R-step. The equality (R/8)= S R (ROS)" will be useful later. Let us adopt the
convention that the operator "/" binds stronger than"," and weaker than
composition. So for example, RS/ means ((RS)/ QI R.
Relative termination can now be characterized in several ways.

Lemma:
Let R and S denote binary relations. Then the following propositions are equivalent:
1. R/S is Noetherian.

2. SR is Noetherian.
3. For every rewrite sequence e t2fHs - there is AN such that after 4t no

more R-steps occur.
4. R is relatively Noetherian to S.
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Chapter 2: Termination, termination modulo, and relative termination

Proof:
(10 2) SRORI/S.
(20 3)
By contradiction. Let 1tQE]§ to EEI§ ... be a derivation such that for allJi, there is
at least one R-step afteg. tCall the position where the next R-step takes place, next(n),
in other words, §* thext(n) g thext(n)+1 holds. Since this construction works for all
nCIN, there is an infinite sequence

t1 §>* g lhext(1)+1 §>* g lhext(next(1)+1)+1 §>* R
contradicting SR Noetherian.
(30 4)
Directly. Let 4 e t2 fHs ... be a derivation such that there is no more R-step after
tn for some AIN. Then it contains at most n R-steps, i.e. finitely many.
(401)
By contradiction. Every infinite derivation ts™ 5 " 2 =" g g .. contains
infinitely many R-steps.

O

Characterization number 1 will be used in the sequel as a shorthand and for orderings in
inductive proofs. A number of useful properties about relative termination can
immediately be derived from these equivalences:

Fact:
1. R* O (R/S)} O (ROS)*. So in particular,

ROS Noetherian implies R/S Noetherianand

R/S Noetherian implies R Noetherian.
2. 1f ROR, and SO S, then R/SO R/S. So relative termination édosed under
subsetsi.e. if R is relatively Noetherian to S, and [RR, and ST S, then R’ is
relatively Noetherianto S”.
3. R/Sy = (R/(S\R)y = (R/(RIS))*, etc. That is to say, only the part of S
matters that is disjoint from R.

O

The inclusions and implications in 1 are usually strict, i.e. it happens that the converse is
false:

Example:

1. ([Porat, Francez 86], simplified)

Let R mgef{S(X)+y - x+s(y)} and S gef{Xty - y+x}. As we will prove in the
next two sections, R is Noetherian, and S is not. Although R is NoetheriannoR is
relatively Noetheriarto S, as the derivation s(x)+¥% x+s(x) = S(X)*tXx 4

contains infinitely many R-steps.
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Chapter 2: Termination, termination modulo, and relative termination

2. (Set, continued)

Recall the algebraic specification of subsets of {a, b} at the beginning of this section.
ROS is not Noetherian because we could provide an infinit&ferivation. On the
other hand, R/S is Noetherian, as we will prove in section 2.4.

O

2.2. Necessary syntactic conditions

Recall from the previous chapter that a rewrite system R is Noetherian only if R is both
left-nonerasing and left-nonisolating. Now it is interesting to ask what is necessary for a
rewrite system R to beeslatively Noetherian to a rewrite system S. An answer to this
question helps us to judge methods for relative termination, because we can distinguish
between unavoidable conditions and merely accidental, technically motivated conditions.
For example, if (f(x)-» f(y))OS and R is nonempty, then R/S cannot be Noetherian.
On the other hand, for S ={x x} and R Noetherian, always R/S is Noetherian. The
necessary condition we will obtain, matches the one given in [Jouannaud, Mufioz 84] for
termination modulo.

The proof that a condition is necessary, is usually done by contradiction. In order to
disprove termination, one may for example use the fact that a relation which contains
cycles is non-Noetherian. This can be relaxed to looping relations:

Definition: ([Dershowitz 81])

A rewrite relation — is calledooping, if there are terms t, t", an occurrence u, and a
substitution o, such that both £+t and t'/u = d. In other words, there is a
derivation where an instance of the first term appears as a subterm in the last one.

Fact: ([Dershowitz 81])
A rewrite system R whose rewrite relatigp is looping, is non-Noetherian.

The rewrite system Rggf{x+y - f(y+s(x))} for instance has a looping derivEtIion
XX o f(xts(x)) z f(f(s(x)+s(x)))
where u=1.1 and = [s(x) / X]. For this reason, R is not Noetherian.
Now aleft-erasingrewrite rule |- r always admits a looping derivationgl rfl/x]
where x denotes a variable that occurs in r but not in leftAsolatingrule x - r
even is already a looping derivation. So we have the following lemma, which is

commonly known, but has apparently not yet been written down:

Fact:
If R is Noetherian, then R is left-nonerasing and left-nonisolating.
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Chapter 2: Termination, termination modulo, and relative termination

(This does not carry over taany-sortedgsystems. For instance if a: B, (" a has type

B ") and f: A- B, then the rewrite system -a f(x) is Noetherian although left-
erasing. The candidate for a loop~af(a) —» f(f(a)) - ..., is ill-sorted.)

For relative termination we have a similar property. First, we need one more (very
uncomfortable) technical notion:

Definition:

A rewrite rule |- r is calledright-nonduplicatingif 100X and r/u = r/v = | imply
u=v. Inwords: |- r is right-nonduplicating, if | is not an isolated variable that
occurs more than once in r. ("right-nonduplicating” is a weakening of "right-linear" and
of "left-nonisolating”.)

Theorem: (necessary condition)
Let R/S be Noetherian, and let R contain at least one rule dgwhere Var(d¥ @.

Then S is left-nonerasing and right-nonduplicating.

Proof:
Since R/S is Noetherian, in particular R is Noetherian. So we may already assume that
R is both left-nonerasing and left-nonisolating (see previous chapter). We claim that the
existence of any left-erasing or right-duplicating rule -(Ir){0S causes a looping
derivation for SR. Without loss of generality, we may assume that

Var(R)n Var(S) = @.
1. (for symmetric S, see [Jouannaud, Kirchner 86])
Assume that b r is left-erasing, i.e. that there is somellx Var(r) \ Var(l). Due to
the premises, there is at least one rule~(g)LJR where YlVar(d) for some suitable
y. Moreover, y{1 Var(g) n Var(d) because R is left-nonerasing. Hence we have the
looping derivation 1o rlg/iX][lly] & rld/X][l/y].
Informally, the new variable in r carries a copy of I, which is preserved by the R-step.
This is illustrated in the following diagram:

b+ QL+

g d

2.

Now let (g - d)UR, and let |- r be right-duplicating, i.e. (x r)S where
rlu=rlv=x and #v. Call r' theterm r" gf rfu « d]. Then XIVar(r’) because
/v =x. Thus we can construct the looping derivationg grfg/x]  r'[g/x] .
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Chapter 2: Termination, termination modulo, and relative termination

Informally, instantiating the variable x by g, one of the two copies of g can be used
for an R-step @ d, and the other one to repeat the game.

TN A

In the case of symmetric S, the above conditions meet the ones mentioned in [Jouannauc
Mufioz 84] (without the above marginal restriction put on R): S is (both left- and right-)
nonerasing, and nonduplicating. The merit of relaxation to an arbitrary S is indicated by
the idempotence rule f(x, X} x: Idempotence is admissible in S straight away, but its
inverse x- f(x, X) is not admissible (otherwise relative termination is lost).

2.3. Some termination quasiorderings

Now that the notion of relative termination is settled, and a necessary syntactic criterion is
available, we may start to develop sufficient criteria for relative termination. Termination
quasiorderings play a fundamental role in proving termination of rewrite systems. See
[Dershowitz 87] or [Dershowitz, Jouannaud 89] for a comprehensive treatment. The
class of simplification orderings is a well known class of termination quasiorderings.
Among them the lexicographic recursive path ordering, and the polynomial interpretation
ordering are worth mentioning. We will briefly describe these two orderings, where the
description of the lexicographic path ordering by means of a finite term rewrite system
with onehidden function is new.

A binary relation R is Noetherian if and only if its transitive closure ilRNoetherian. It

is therefore sensible to investigdieetherian orderinggelsewhere also called well-
founded orderings), i.e. transitive and Noetherian relations. A Noetherian ordering on
terms, closed under contexts and instantiation, is callegfraination ordering

(A Noetherian ordering closed under contexts is elsewhere called a reduction ordering.)
For instance, if R is a Noetherian term rewrite system, then the transitive clgsuref

the term rewrite relation is a termination ordering. This motivates the following general
proof method:

Fact: ((Manna, Ness 70])
A rewrite system R is Noetherian if and only if, there is a termination ordering > such
that RO >.

O
In other words, a termination proof for a rewrite system R consists of a suitable

termination ordering > such that | > r holds for all rules 4l r)OR. Finding a
termination ordering however may be difficult. Termination of rewrite systems has been
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shown undecidable even for strongly restricted classes of rewrite systems, for the class
of single rule systems ([Dauchet 88]) for example, or for the class of rewrite systems
where all function symbols have arity 0 or 1 ([Huet, Lankford 78]). These negative
results posed the challenge of designing powerful termination orderings.

For technical reasons, a termination ordering is often provided by a quasiordering:

Definition:
1. A Noetherian quasiordering a quasiordering whose associated strictordering > is
Noetherian.
2. Atermination quasiorderings a quasiordering closed under contexts and instantiation
whose strictordering is a termination ordering.

O
(The notion of Noetherian quasiordering is strongly related to that of a well-
quasiordering, as pointed out in [Dershowitz, Jouannaud 89].) Proofs of termination
modulo actually require a Noetheriguasiorderingbecause both the associated
strictordering and the associated equivalence relation are needed for the proof.
Most of the currently known termination quasiorderings are simplification orderings:

Definition:
Thesubterm ordering> is defined by & t/u, whenever LOcc(t). A quasiordering
that extends the subterm ordering and is closed under contexts, is caftedlifcation
ordering

O
It is known that, as an obvious consequence of Kruskal's tree theorem, every
simplification ordering is Noetherian. (Commonly, the subterm condition is replaced by a
slightly stronger condition: For all t, and#W, the inequality t > t/u must hold, in
other words, |J > must hold. Note that the above definition, like the one in
[Dershowitz, Jouannaud 89], rather admits t ~ t/o, too, which may be advantageous in
the framework of relative termination.)
Among the simplification orderings, the two most popular subclasses are the path
orderings, with théexicographic (recursive) path orderin@Dershowitz 79], [Kamin,
Lévy 80], [Dershowitz 82]) as prominent representative, and the homomorphic
interpretation orderings, where tpelynomial interpretation orderingLankford 75],
[Lankford 79], [Ben Cherifa, Lescanne 87]) is known best.
Klop gave an excellent description of recursive path ordering in [Klop 87], Def. 3.3, by
means of a term rewrite system with hidden functions. The following is a slightly
changed variant of it:
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Definition:

The class ofexicographic (recursive) path orderings described by the following
scheme: Suppose we have a quasiorderiag F, the so-calledrecedenceNext, each

fOF either has somé&xicographic statusgiven by a permutation on the set
{1, ..., arity(f)} of argument positions, ortfas multiset statysor it has none of them
(indifferent status). If f is a binary function symbol, then the two lexicographic statuses
are also referred to as left-to-right (i.e. the identical permutation) and right-to-left. We
will use the abbreviationm(ty, ..., ) =def (t(1), --.» fyn)) for the application of a
permutation to a sequence of terms.

Let there be a fresh unary function symbol *, i.dlF* with arity(*) = 1. For
simplicity of notation, we drop the pair of parentheses after *. The symbol * is called
themarker symbolA marked term *t may be taken as a nondeterministic placeholder
for some term smaller than t itself. (Accordingly, the following rewrite system is non-
confluent, see [HuBmann 89].) The finite rewrite system RPO on terms in the extended
signature EI{*} is given by the following rules (assume n = arity(f), k = arity(g) ):

Introduce marker:

X > *X

Make copies below strictly lesser top:
(X1, ees %) = OCF(XT, ooy X))y een *F(XT, o ) )
if f>g

Push marker down (lex):
f(mXe, )~ 9@(XL, - %1, X, (XL, o)), e MUK - ) )
if f~g have lexicographic statusl, p1, respectively, andiC{1, ..., min(n, k+1)}

Push marker down (mult):
(X1, 0 %) = OUXT, o X1y *Xiy ooy Xy Xid 1y -or )
if f~g have multiset status[{1, ..., n}, k=n-1,

and 1t denotes an arbitrary k-permutation

Select argument:
(X1, s X)) = X
if i0{1, ..., n}

Now let >, denote + restricted to terms that do not contain markerg,g s
P 3 o

called thdexicographic path ordering (with precedence > and status)
O
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By definition, >po is transitive, closed under contexts and instantiation (for terms and
substitutions that do not contain a marker), and contains the strict subterm ordering.
Moreover, it can be shown thatpg is irreflexive. Hence we have:

Fact:
>po Is a simplification ordering, closed under instantiation.

O
Note that the first rule in RPO is left-isolatihg see section 1.4. (We omit the proof that
>rpo Matches the definition in [Kamin, Lévy 80]. Elsewhergpo>is also called the
generalized lexicographic path ordering, or the recursive path ordering with status.)

Example:

Let R mgef{S(X)+y - Xx+s(y)}. Then R is Noetherian, proven by the lexicographic path
ordering with precedence + >s, and + having status left-to-right. The proof amounts
to show RO >rpo, i.e. s(X)+Yy 3po X+s(y). Redices are underlined:

s(x)+y 0\ Rloddde ket

*(s(x)+y) Udddd hEh Fubw %e?)
*S(X)+H*(S(X)+Y) %Qe@t%r@u@ne_ﬁt

X+(s(x)+y) "Wkt EohSndibwstictly [A&d& top
x+s((s(x)+y)) %Qe@t%r%u%e_’nt X+s(y)-

O
Klop's presentation differs in several aspects:

(1) He uses {*f. tIF}, rather than {*} as the set of new function symbols. In other
words, the marker is part of the function symbol *f. This precludes him from
comfortably using the marker at variables like for example in *x.
(2) Klop defines an infinite (ground) tree replacement system. His rule "In Context" and
his use of replacement schemata indicate that there is an equivéienewrite system
(3) Klop assumes that function symbols have variable arity. This is not necessary; a
function symbol with two arities can be split into two different function symbols with
fixed arity. This explains the additional function symbol g in the rule "Push marker
down (mult)". In order to keep the original power, the set F of function symbols should
be sufficiently rich. For f(t t2, t3) >po g(t3), for instance, there should be an
“interpolating” function symbol h ~f with arity(h) = n-1 whenever f~ g have multiset
status and k <n-1 holds. The proof works by

f(ta, 2, t3) >rpo h(t, B3) >rpo 9(t3).
Note thaffinitely manysuch additional functions are required.
(4) In [Klop 87], terms are considered up to permutations of argumentssaves
technical trouble for the multiset status. But it forbids one to have both function symbols
with lexicographic status and function symbols with multiset status at the same time.
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(Klop“s assumption can be taken into accoungdpyational rewriting with permutation
equations for each function symbol that has multiset status.)

The lexicographic path strictordering can easily be extended towards a quasiatghgring
where tmot” holdsif t and t* differ only by function symbols which are equivalent
in the precedence, and by permutations of parameters of function symbols which have
multiset status. For classifications of path orderings with status and Knuth-Bendix
orderings, see [Rusinowitch 87b], [Steinbach 88], [Dershowitz, Okada 88], and
[Lescanne 89]. Knuth-Bendix orderings are not treated here (see also the conclusion of
this thesis).
A function []: F - N(X) that maps n-ary function symbols to polynomials in n
variables with coefficients fronlN, is called apolynomial interpretationin a
straightforward way, [_] is homomorphically extended to terms, yielding a function
[]: Term - N(X). (Recall that (Term, F) forms an algebra. Likewise does
(N(X), N(X) ) form an algebra.) It is known that, provided the subterm property holds,
the polynomial interpretation ordering » induced by

t»t" < gef the polynomial [t] - [t'] is positive everywhere,
Is a simplification ordering, closed under instantiation.
By abuse of notation, we will drop square brackets around variables. Likewise, we will
use ordinary notation for polynomials, and thus overload function symbols like + with
addition onN. Now the rewrite system R above is proven Noetherian using the
polynomial interpretation

[s()] = x+1, [x+y] = 2x+y.
We have the proof

[sC)+Y] - [x+s(y)] = 2(x+1)+y - (2x+y+1) = 1 > O.

There are many rewrite systems whose termination is impossible to prove by a
simplification ordering. The reason is that they adm{bhameomorphically) self-
embeddingderivation: (t, t") is called self-embedding, if<_lt+ t* holds. (Recall:

<| denotes the subterm strictordering.) For such a situation, there is the class of semanti
path orderings ([Kamin, Lévy 80], [Dershowitz 87]). Sometimes also a "hand-made"
ordering works:

Example: (FF)

Let R mef{ffix — fgfx}. (The only function symbols f and g are assumed unary, and

in the case where all function symbols have arity 0 or 1, parentheses may be omitted
without raising confusion. Such rewrite systems enjoy a close relationship to Thue

systems.) R is self-embedding, as we now show. If there is a termination ordering

> [ R, then ffx > fgfx holds. On the other hand, if > is a simplification ordering, then
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by the subterm property, g&fx holds, so by closure under contexts, fgftfx,

which contradicts > irreflexive. So every simplification ordering must fail to prove R

Noetherian. Though R is Noetherian, proven by the Noetherian ordering > defined by
t>t =gef o. #O 2y #to O #fio >\ #fto,

where #t denotes the number of pairs of "ff patterns” (i.e. pairs of adjacent f symbols)

in t. The complicated definition of the ordering is to ensure that > is closed under

contexts and instantiation.

O

2.4. How to prove relative termination

Proving relative termination, like proving termination and termination modulo, is based
on Noetherian quasiorderings. Termination modulo can evehdacterizedby means

of a Noetherian quasiordering. It is, however, still unclarified whether the corresponding
characterization also holds for relative termination. We can answer positively for the case
where the acyclic part of S is Noetheridnit is a little more general than termination
modulo.

Termination modulo can be characterized by a Noetherian quasiordering, as follows:

Fact:
Let R and S denote binary relations. RS Noetherian if and only if, there is a
Noetherian quasiordering such that R1> and S1~ hold.

O
This characterization suggests an extension towards relative termination. As we will see
later, a characterization of relative termination by means of a quasiordering is a nontrivial
problem. For the moment, let us state the important fact that the existence of a Noetheriar
quasiordering isufficient

Fact: (quasiordering lemma)
If there is a Noetherian quasiordering where RO > and S >, then R/S is
Noetherian.

O
Now let us consider some obvious applications of quasiorderings for proving a term
rewrite system relatively Noetherian. On the spot, the criterion can be instantiated with
termination quasiorderings.

Theorem: (termination quasiordering criterion)
Let R and S denote rewrite systems3fis a termination quasiordering, and [R>
and S = hold, then R/S is Noetherian.
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Proof:
By definition, > also is closed under contexts and instantiation. Henée = and

r U>. The claim follows by the "quasiordering lemma" above.

O
So termination quasiorderings are applicable for proofs of relative termination. This

includes the class of simplification orderings:

Corollary:

Let R and S denote rewrite systems.

1. Let 2po denote any lexicographic path ordering. IfJ&pe and RO >rpo, then
R/S is Noetherian.

2. Let [] denote any polynomial interpretation. If [I] - ] O for every (I- r)QS
and [l]-[r] > O for every (I r)UR, then R/S is Noetherian.

Example:

1. (Nonfin)

Let S mef{cx — fcx}, R =gef{csx - cx}. In order to prove that R/S is Noetherian,
choose a polynomial interpretation: Take [BX, [sx] > x arbitrary, and let [fx] = x.

2. (Set, continued)
Recall the specification of subsets of {a, b}, with the empty set, an insertion function,
and the membership relation:
R =gef{elem(x, @) - false,
elem(x, ins(x, s))- true,
elem(a, ins(b, s))- elem(a, s),
elem(b, ins(a, s))-» elem(b, s)},
S =gef{ins(X, ins(x, S)) - ins(x, s), "left-idempotence”
ins(x, ins(y, s)) - ins(y, ins(x, s))}. "left-commutativity"
We claimed that R is relatively Noetherian to S. This is proven for example by the
polynomial interpretation defined by
[true] = [false] = [a] = [b] = [C] = 2,
[ins(x, s)] = [elem(x, S)] = X+s.
We have in particular for the left-idempotence rule:
[ins(x, ins(X, S))] - [ins(X, S)] = X+x+s-(x+s) = x > 0,
and for left-commutativity:
[ins(x, ins(y, s))] = xty+s = [ins(y, ins(x, S))],
This suffices to prove R relatively Noetherian to S, but not yet to pro\ Roetherian.
O
Let us now stop with the sufficient conditions of relative termination. The rest of this
section investigates when the existence of a Noetherian quasiorderingrie@ssary
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for relative termination. To begin with, relative termination is, in a straightforward way,
characterized by a pair composed of a quasiordering and a strictorderagd( » ):

Lemma: (two orderings)

Let R and S denote binary relations. R/S is Noetherian if and only if, there are a
Noetherian strictordering b3 R and a quasiordering [0 (» [ S), such that» [ »

holds.

Proof:
(0) Set » gef (RIS) and = =gef (ROSY'.
(O) It can easily be shown that [(B)* 0 > and then that (R)* O » holds. Since »
is Noetherian, R and thus R/S is Noetherian.

O
Instantiating » gef>, we obtain the "quasiordering lemma" again. But otherwise, we
must look for both, a quasiorderirgy and a Noetherian subrelation », in order to prove
relative termination now. Can we get out of this inconvenience? Here is an example of a
quasiordering= where > is not Noetherian but has Noetherian subrelations:

Example:
Let > denote the natural ordering c@*, the set of positive rational numbers. The
strictordering > gef 2\< is not Noetherian, as it admits the infinite derivation
1>1/2>1/3>... Onthe other hand, the strictorderinglefined by

P» P =def P>p+1,
is actually Noetherianl every derivation starting from p has length bounded by p.
Moreover it satisfies both 1»0 > and=»1 O »1. Another, less trivial, Noetherian
strictordering » on Q* is defined by

p»p =def N,iON. p>n+.2p .
Its termination proof relies on the fact that > restricted to the seti{ﬁn , ON} is
Noetherian, as it is order-isomorphic MxN with lexicographic order.

O

As we see, it is by no means obvious whethkercan always be chosen such that > is
Noetherian. We are lucky when the acyclic part S){Sof S is Noetherian. Then the

converse of the "quasiordering lemma" holds, choosing the straightforward ordering
> = (ROS).

Lemma: (quasiordering supplement)
If both S\ (S1)* and R/S are Noetherian, then there is a Noetherian quasiorgering
where RO >and 1 2.

Proof:
One easily proves by induction on n that (SL9n =3\ (S1)*. Hence the
transitive closure of S\ (§" is S\ (SY)". Itis Noetherian by premise.
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Because R/S is Noetherian, (R/S) irreflexive, and so
(RIS) n (ROSY)H) =@ .

This property will be used in the following reasoning.
Let > =qgef (ROS)". It remains to be shown that< is Noetherian.

> = (StO (R/SY) \ ((ROSYD)”
SF\((RISYH*\(SH* O (RISY
SF\(SYH)* O (R/ISY.
Since both 8\ (S1)* and (R/Sy are Noetherian, so is >. The reason is that an
infinite ROS-derivation either contains an infinitet §(S1)*-derivation, or contains

infinitely many R-steps, in which case there is an infinite R/S-derivation. (See also the
“inheritance by transitivity" lemma in section 3.1.)

O
On account of the "quasiordering supplement” lemma, it is useful to know whether
S\ (S1)" is Noetherian. This is the case, especially, when S\ (S, i.e. when S
is cyclic. Therefore the characterization is no problem in the termination modulo
approach, where S is always cyclic. The following criterion is a little more general:

Lemma: ([Guttag et al. 83])
If S*\(S1)* is finitely branching, then S\{®" is Noetherian.

Proof:
S\ (S1)* s transitive, and irreflexive. Then it is in particular acyclic. According to
[Huet 80], a finitely branching and acyclic relation is Noetherian.

O
The question remains open whether the condition "St)*(8loetherian" may still be
relaxed, in the following sense: For all R, S, where R/S is Noetherian, does there exist
some S0 S such that both R/S” and S'\{$" are Noetherian? In the following

example, there is still such an S’:

Example: (FF, continued)
Let the term rewrite systems Regr{ffx — fgfx} and S mef{fa — gfa} be given. RIS
is Noetherian but S\ (§" =S is not. SO S must be chosen such that S” satisfies

S"\ (S*1)" Noetherian. That can only be achieved if for suitable m >n, S” contains a
cycle of the form @fa —* g*fa. The value n =0 is badly chosen since it would cause

a cycle in R/S", implying that R/S” is not Noetherian. But for instance the choice
S’ = SO {ggfa - gfa} works.

O
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2.5. Relative termination in restricted systems

Now let us consider a special case which has been studied in the literature: If all infinite
R-derivations contain a cycle, then R is called quasi-terminating. In order to prove that a
quasi-terminating R is Noetherian, it is sufficient to show that R admits no cycles. This is
the underlying idea of the two-step termination proof technique in [Guttag et al. 83]. A
natural question is, whether the same technique is applicable for relative termination of R
to S.

The property "R finitely branching" is called "R globally finite" in [Huet 80] and
[Guttag et al. 83], and "R quasi-terminating” in [Dershowitz 87]. The termination proof
method in [Guttag et al. 83] says: In order to prove R terminating, first prove that R is
quasi-terminating, then prove that R satisfies some strictordering. The idea works for
proofs of relative termination, too.

Lemma: (for S = &, see [Guttag et al. 83])
Let ROS be quasi-terminating. R/S is Noetherian if and only if, there is a quasiordering
> such that both R > and S12>.

Example: (Set, continued)
Call arule |- r length-reducingif |Occ(l)| > |Occ(r)| and every variable occurs in | at
least as often as in r ([Guttag et al. 83]). The latter condition is called left-dominance in
[Drosten 89]; here it ensures closure under contexts and instantiation.
R =gef{elem(x, &) - false,
elem(x, ins(x, s)) - true,
elem(a, ins(b, s))-» elem(a, s),
elem(b, ins(a, s))-» elem(b, s)},
S mgef{ins(X, ins(x, s)) - ins(X, s), "left-idempotence”
ins(x, ins(y, s)) - ins(y, ins(x, s))}."left-commutativity"
R/S is Noetherian, because
(1) ROS is quasi-terminating, as length-reducing.
(2) All rules from R are evesitrictly length-reducing.

2.6. On the descriptive power of relative termination

Relative termination generalizes both termination and termination modulo, in the sense
that R/S Noetherian is implied by the Noetherian property’& Rr R/S In this section

we will show that the converse is not true, i.e. that there are indeed R and S such that R/S
is Noetherian, but neither S nor R/Sis.

The Set example may again serve as a motivation. Following [Huet 80], it is quite
natural to have a rewrite system S that describes the data structures, and another rewrit
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system R that describes the algorithms. Regarding this, left-commutativity and left-
idempotence certainly both belong to S. Now R/S is Noetherian, bi& R not

Noetherian, because left-commutativity is cyclic. Neither isRg8therian:

Example: (Set, continued)
Forming the symmetric closure of S turns out harmful to relative termination:
R is not relatively Noetherian ta, $e. R is not Noetherian modulq Because there is a
cycle

elem(a, ins(b, s))s elem(a, ins(b, ins(b, s))} elem(a, ins(b, s))

O

Nevertheless R/8loetherian could be maintained, if left-idempotence was removed from
S and put into R instead. Such a move would not work in the following examples:

Example:

1. (FF, continued)

Let R mef{ffx - fgfx} and S mef{fa - gfa}. We already proved that R/S is
Noetherian. S and[®S are obviously not Noetherian. Neither is R/Sloetherian (nor

R/S), since there is a cycle
ffa z fofa < ffa.
2. Consider the rewrite systems

R =gef{(xty)'z - x*zt+y*z}  and

S Tef {X*Xty*y - X*y+x*y}.
R is the right-distributive law, S is a rule like2#y2 — 2xy. Neither S nor $is
Noetherian, because the left and the right hand side have a common instance X*x+x*x.
So, particularly, neither RS nor R1S1 are Noetherian. Nor is R/ASNoetherian, nor
R/S, because of the looping derivation

XH(XHX) + X5 (X+X) g XN (XEX)(XFX) 5 XX F (XH(XFX) + X (X+X)).
R/S in turnis Noetherian, as can be proven by the polynomial interpretation

[x+y] = xty+c, [x*y] = x*y,
for arbitrary ¢ > 0. One gets

[(x+y)*zZ] - [x*z+y*z] = (x+y+C)z - (xz+yz+c) = (z-1)c > Oand

[X*x+y*y] - [Xfy+x*y] = x 2+y2+C - (2xy+C) = (x-y} = 0.
Of course one can find instantiations for x and y such that x-y =0, and likewise there
are instantiations such that 0. But none of the two cases holds uniformly.

O

The mentioned examples demonstrate that relative termination has strictly greater

expressive power than termination modulo.
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The previous chapter introduced relative termination and compared it to the related
notions of termination and termination modulo. The main question of this chapter will be,
how to obtain from a (relative) termination resulsti@ngerone. Two basic concepts are
investigated:

(1) Termination inheritance: Infer (IS Noetherian from R/S Noetheriaand

(2) Commutation and Cooperation: Infer R/S Noetherian from R Noetherian.
In the first case, the knowledge of relative termination is applied, whereas in the second
case, it is derived. We have seen in the previous chapter already that the implications are
not generally valid. So what we are after, is a set of sufficient conditions.
Inheritance of termination means the transferance of termination from the components R
and S to the termination of the composed systéi8.R ermination inheritance has been
studied successfully for the direct sum of term rewrite systems. Briefly speaking,
transitivity turns out to be another sufficient condition for inheritance:[IfSRs
transitive, then the termination of FS follows from the termination of both R and S.
This property gives rise to a couple of lemmas concerning the inheritance of relative
termination. One of these lemmas admits an interpretation as a termination proof method
by the lexicographic combination of termination orderings. A current major weakness of
this method leads us to the second problem area of this chapter:

Many currently available termination quasiorderings, for example path orderings, enjoy a
considerable expressive power, but on the other hand, have a small associatec
equivalence relation. They can rarely be directly used for relative termination. Having a
means to strengthen a result "R is Noetherian" to "R is relatively Noetherian to S" is
therefore very important.

If R commutes over S, then all R-steps in anRderivation can be shifted towards the
beginning. Thus a derivation that contains infinitely many R-steps can be transformed
into an infinite R-derivation. This reasoning led to criteria for termination modulo
([Jouannaud, Mufoz 84]) and relative termination ([Bachmair, Dershowitz 86],
[Bellegarde, Lescanne 86], [Bellegarde, Lescanne 87]). The essential commutation-like
property is calleccooperation We will generalize the cooperation idea, so as to infer
"R/(SUQ) Noetherian" from "R/S Noetherian" in a fairly general setting. Two local
conditions for cooperation are investigated here: The first one redraws the local
cooperation approach, which becomes the special case - Jl% second one is a
new property,strong cooperationlt is similar to Huet’s strong confluence. This
approach covers the quasi-commutation approach, setting S = @. All currently known

-30 -



Chapter 3: How to strengthen termination orderings

termination criteria based on commutation-like properties are thus instances of one
scheme.

In order to get effectively verifiable criteria, the term rewrite structure must finally be
taken into account, leading twitical pair criteria. This is a most typical step in term
rewriting. First the notion of critical pair criterion is explained in full generality. Then we
state some critical pair criteria for cooperation, and using some of the inheritance results,
critical pair criteria for termination of term rewrite systems. A couple of examples taken
from the field of algebraic specification conclude this chapter.

3.1. Termination inheritance

It is obvious that RIS Noetherian implies both R Noetherian and S Noetherian. The
converse is usually not the case. [ & Noetherian is equivalent to R Noetherian and S
Noetherian, then one may say thaf ®inherits terminationfrom R (and S). On this
account, the adjective "relative" in "relative termination” is justified, because on the one
hand, R is Noetherian if and only if, R is relatively Noetherian to @, and on the other
hand, RIS inherits termination from S by the relative termination of R to S.

A number of termination inheritance criteria exist for a rather special case: R and S use no
common function symbols. Then[ IS is also called thdirect sumof R and S ([Toyama

et al. 87], [Rusinowitch 87a], [Middeldorp 89]). In this section a quite different
termination inheritance result is presented which relies warssitivity requirement.

A few applications of the inheritance result are shown.

Theorem: (termination inheritance by transitivity)
Let R and S denote binary relations such tHasRs transitive. Then BS is Noetherian

if and only if, both R and S are Noetherian.

Proof:

(I sent the claim as a question to the "rewriting" mailbox at CRIN (Centre de Recherche
en Informatique, Nancy), and got several beautiful proofs, from Jean-Pierre Jouannaud,
Dieter Hofbauer, Thomas Streicher, Werner Nutt, Franz Baader, and George McNulty.
There were three kinds of proofs:

1. by the infinite version of Ramsey’s theorem,

2. by minimal counterexample, similar to the Nash-Williams proof of Kruskal's tree
theorem,

3. by a case analysis on R-normal forms.

The following proof (scheme 3) has been communicated by Dieter Hofbauer.)

For ease of notation, let denote the relation[RS. The proof is done by contradiction.
For this purpose let; t- to — ... denote an infinite, -derivation, i.e. jt- tj holds for
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all i<j, due to transitivity of>. Nextlet C gef{t1, to, ...}, andlet M denote the set
of all elements of C which are R-normal. We show by case analysis on the cardinality of
M that either an infinite R-derivation or an infinite S-derivation can be constructed, each
one yielding a contradiction.
Case 1M is infinite.
Then M = {, t, ...} where { <ix<... are ascending indices. Then-t tj, but ft,
is in R-normal form, soj,tS §, must hold. LikewisetS §, and so forth. Summarized,
ti, S§,S ... is an infinite S-derivation.
Case 2M is finite.
Let n gefmax {i. t 0 M}. Then for all k >n thereis k >k such thatRt¢ holds.
This way, one gets an infinite R-derivation.

O
Immediately a few applications of this criterion can be seen. For instance,
(RS)* = R* 0 (R*S*)*, so: RI/S is Noetherian if and only if, both R antSR are.
Some particularly interesting applications for relative termination are listed in the
following corollary. We will use them at the end of this chapter.

Corollary: (inheritance of relative termination)

Let R, S, and Q denote arbitrary binary relations.

1. (ROS)/Q is Noetherian if and only if, both RI{®) and S/Q are.

2. Let R, SO Q. Then (R1S)/Q is Noetherian if and only if, both R/Q and S/Q are
Noetherian.

3. Let SO Q. Then R/@QIS is Noetherian if and only if, both R/Q and S are Noetherian.

Proof:
1
(ROS)/Q) = (RIIS/Q)" = ((RIQ)(SIQ)j L (S/IQ) = (R/(SIQ))* U (S/Q)".
Note that R/(8Q) may not be replaced by the weaker (R/S)/Q, nor by R/(S/Q).
2:
Actually, this is just a reformulation of 1, by closure under subsets. It will be used in the
next chapter, last section.
3.
S"(RIQ)S = R/Q. So (R/QS)t = S ((R/Q)S)*01 St = (RIQY O S .
O
Lemma 1 in [Bachmair, Dershowitz 86] is a special case of our "inheritance of relative
termination” corollary, part 1, for Q = @:[FS is Noetherian if and only if, both R/S
and S are.
The interdependence of termination between some binary relations that can be built using
R and S, is illustrated in the following figure:
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R/S'S

RSN
o \‘R’LSJ’

R

Read a (single or double) arrow as "termination of ... and ... entails termination of ..."
or read it as "the transitive closure of ... together with the transitive closure of ... is a
superset of the transitive closure of ...". The diagram illustrates the central role of R/S
among R, RIS, and R/SIt shows that the knowledge R/S Noetherian is important, no
matter whether S later turns out Noetherian (thels®s Noetherian) or cyclic (then we

have equational rewriting, and R/8 Noetherian) or none of them (particularly
important, as we saw in section 2.6). On the one hand, such additional properties of S
are not really needed sometimes. For instance rewriting using R with interspersed S-steps
is already safe when R/S is Noetherian. Equational rewriting may be generalized on that
account. Anyway, it is advisable to leave the decision open whether to switch to R/S
("equational rewriting") or to RS (“classical rewriting") later.

3.2. Lexicographic combination proofs

Recall from the previous section the "inheritance of relative termination" corollary (part
1):

(ROS)/Q is Noetherian if and only if, both RI{®) and S/Q are.
This fact is linked to a certain termination proof methbdhe lexicographic combination
of Noetherian orderings. Indeed, the Noetherian ordering farlS)RQ is simply the
lexicographic combination of the orderings that prove R@¥%and S/Q Noetherian. So
we have a method to prove termination of rewriting stepwise, by relative termination. In
order to demonstrate the strength of the method, we will present two known examples
that can be proved Noetherian this way, but cannot be proven by the pure orderings.
The "inheritance of relative termination” corollary (part 1) can be visualized by "cake
diagrams":

R'S

SQ

-33-



Chapter 3: How to strengthen termination orderings

Shaded areas "relatively terminate to" the white ones. As a mnemonic, one may say thai
the cake diagram on the right is the cake diagram on the left where the white area is
replaced by the cake diagram in the middle. Thus, more and more from the white area
becomes shaded.

Provided that>; proves R/(§Q) Noetherian, i.e. that > and S 27, and
provided that>; likewise proves S/Q Noetherian, we can even state an ordering which
proves (R1S)/Q Noetherian. It is the ordering1(=2), thelexicographic combination

of 21 and =». Recall from the "two orderings" lemma, section 2.4, that relative
termination is characterized by a pair of quasiordering and strictordering. The reasoning
works also in this more general case: Assume Hhaand » together prove R/(3Q)
Noetherian, i.e. that (BQ 0 =7 and RO »1 hold, and moreover assume thgt and

»o together prove S/Q Noetherian, i.e. thattl@, and S » hold. Then the pair
210>, mO(=1n»p) proves (RIS)/Q Noetherian, by the reasoning (121, RO »,

S =1n»p. The notion of lexicographic combination may be extended in this respect,
towards a combination of pairs of quasiordering and strictordering.

The lexicographic combination of termination orderings for R@$and S/Q provides a
termination ordering for (RS)/Q. This fact suggests that we prove termination of rewrite
systems by lexicographic combination of termination orderings. Interestingly, this proof
method is already known, without the background of relative termination. It has been
introduced for combinations of polynomial interpretations in [Ben-Cherifa, Lescanne 87],
and for combinations of the lexicographic path ordering in [Dershowitz 87]. The
combination method sometimes even succeeds when the pure methods fail, as is
witnessed by the following two examples:

Example:
1. ([Dershowitz 87], Ex. 18)
Let f be a unary, g and h be binary function symbols, and let x, y be variables. R and S
are defined by

R =gef {h(f(x), y) - f(g(x,y))} and

S =ef{a(x,y) - h(x, y)}.
ROS cannot be proven Noetherian by any recursive path ordegyag It is easy to see
by checking the definition okp that the precedence quasiordegngust satisfy h > f
and h>g in order to prove R Noetherian. The precedenceghhowever, prevents
proving S Noetherian. But h ~ g suffices to provél $po which altogether yields
R/S Noetherian. S may be proven Noetherian separately for exampigppywith
precedence h<g.
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2. ([Lankford 79], Ex. 3, simplified)
Assume given the following piece of Peano arithmetic:

R =gef{X*(ytz) - (X*y)+(x*2)},

S =ef{0tx - X, s(X)ty - s(x+y)}

E =gef{xty - y+x, xt(y+z) - (x+y)+z}.
E is actually cyclic (1), and therefore [x+y] = [y+x] as well as [x+(y+z)] = [(x+y)+2z] is
to hold. By [Ben-Cherifa, Lescanne 87], Prop. 4, the interpretation of + must be either
[x+y] = x+y+b, or [x+y] = a(x+b)(y+b) - b, for some fixed &), a > 0. The
latter interpretation fails, by [x*(y+z)] - [x*y+x*z] < 0. The former interpretation
yields [s(X)+Y] - [s(x+Y)] = O which suffices for the proof of RIE) Noetherian, but
not yet of (RISYE Noetherian. This finally may be established by separately proving
S/E Noetherian, for example by the polynomial interpretation [s(x)] = x+1, [x+y] = xy.

O

With the notion of relative termination, there is another view of the combination method:
If RO> and S>3, then we already proved R/S Noetherian, even if we knew
nothing about>. This is important information, as the previous section stressed.
Iteration of the combination method leads taramementakermination proof technique:
Suppose the considered rewrite system R is split into slices..RR,. Try to prove
that R/ (Ro0...0Ry) is Noetherian. If this succeeds, Ray be completely discarded
for the rest of the termination proof. (If it fails, a rearrangement of the slices may help.) It
remains to be shown that 2R...0R is Noetherian. Next try to prove thats R
(R3...0Ry) is Noetherian, and so forth. In that sense, the termination proof may be
called incremental. (Compare this with the incremental proof method of [Detlefs,
Forgaard 85], which is incremental with respect to the precedencerz0f Phe main
problem is that proofs for & (Ro0J...0Ry) are hard to obtain, since the existing
termination quasiorderings are designed for a powerful strictordering >, disregarding
their equivalence relation ~. All path orderings have a weak equivalence relgtjon ~
(see [Steinbach 88]), hence path orderings are particularly poorly suited for our
purposes, the example above being a rare exception. As experience with small example:
has shown, polynomial interpretations work a little better than path orderings.

Example: ( INT2-ADD, cf. [Padawitz 88], p. 19)
Let R =gef{Xt0 - 0, x+s(y) - s(x+y)} and
S Jef{x+(-y) - -(-xty)}
together define addition on the integer numbers. The polynomial interpretation
[0] =2, [s(x)] =x+1, [x+y] =xy, [X] =X
proves
[x+0] - [0] > O, [x+s(Y)] - [s(x+y)] > O, butonly
[x+(-y)] - [-(-x+y)] = O.
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So it proves R/S Noetherian, but does not yet proMé& Rloetherian. Note that the
interpretation [-X] = x is perfectly admissible. In order to prove th#s s Noetherian,
we still have to prove that S is Noetherian. That can be done by another polynomial
interpretation, for instance [x+y] = (x-By[-x] = x+1. It yields

[X+HY)] - HOxHy)] = (L)(Y+LP - (L+xy2) = 2y(x-1)+x-2 > O,

O

The lexicographic combination method can be used, for instance, to show termination in
some associative theories, i.e. theories that contain an associativity axiom
A =gef{(X+y)+z - x+(y+z)}. Obviously, A forms a Noetherian rewrite system. Given
ROA, termination of R/A remains to be shown. The method is: Show thateRtinates
(remember that A=get AAD). It profits from the fact that for the termination of R/A
special powerful proof tools are available, for example the associative path orderings
([Bachmair, Plaisted 85], [Gnaedig 87]).

Example: (Associativity and Endomorphism, cf. [Bellegarde 86])
Let A =gef{(xty)*z - X+(y+2)},

E et {f(x)+f(y) - f(x+y)},

E" =aef {f0)+(f(y)+2) - f(x+y)+z}.
The rewrite rule E specifies that f is an endomorphism for +. E” appears in order to
have a locally confluent rewrite system; E” might be generated from A and E during the
run of a Knuth-Bendix completion procedure. The lexicographic path ordefjgcan
just prove that AIE is Noetherian, by precedence + >f, and status + lexicographic
left-to-right. But the proof extension to E” fails.;pg actually cannot prove that
AOEOE" is Noetherian.
AOEOE’ is Noetherian, because according to our methatE(lfA can be proven
Noetherian, for example by the polynomial interpretation [f(x)] = x+1, [x+y] = x+y.
Another polynomial interpretation proved &£0E" Noetherian at once: [f(x)] = 2x,
[x+y] = xy+x ([Lankford 79]).

O

The method fails when R/éannot be proven Noetherian, as in the following case, due to
Franz Baader (personal communication): Let 4& &/+(x+y) — x+x}. Then R/Ais not

Noetherian, witnessed by the cycle
at(at(ata)) ¢ at(@ta)ta) x (ata)t(ata) p at(at(ata)).

Recently, it has been shown by Frank Drewes (personal communication) that
nevertheless R/A is Noetherian, via the polynomial interpretation [f(x,y3Fxyx

3.3. Commutation and related properties

The commutation property and its local counterparts play an important role in the
interplay of binary relations R and S. Commutation goes back to Hindley ([Hindley 64]).
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Commutation and some of its variants are used in [Rosen 73] and [Staples 75] for
confluence proofs (see [Klop 87] for a collection of examples). Commutation is also an
essential ingredient in Peterson and Stickel’s "congruence class approach" ([Peterson
Stickel 81]). In [Raoult, Vuillemin 80] commutation is used for deriving the equivalence
of operational and denotational semantics of programing languages. [Dershowitz 81] and
[Guttag et al. 83] use commutation for proofs of termination by forward and overlap
closures. In [Toyama 88], commutation without termination assumptions is used for
confluence proofs.

In this section, we summarize some basic facts about commutation-like properties of
binary relations. These facts explain what makes commutation interesting in the
framework of relative termination.

Let us for the moment switch to arbitrary binary relations R and S.

Definition:
The following diagrams represent some properties which are related to commutation:

*
* * * *
S S S
R 5 R *o R 0
*

R commutes over S R locally commutes over S R strongly commutes over S

*
*
S
R 1)
+

R strictly commutes over S R strictly locally commutes over S R quasi-commutes over S

O
Bachmair and Derhowitz use the phrase with S" so as to say "... overlS. So

for instance "R locally commutes with S" means "R locally commutes oYeT8ey
also coined the notion of quasi-commutation. (Elsewhere, strict commutation is also

*
Py

+ +
c @)

called local commutation, and strict local commutation is also called local commutation.)
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Lemma:

In the following diagram, some logical dependencies between the various commutation-
like properties are drawn. A label at an implication sign is to indicate a sufficient
condition for that implication.

* * * *
s U . [ s
SR
R 0 ) Noetherian R 0
™ R ° e *
*
R strongly commutes over S R commutes over S R locally commutes over S
+
* * * *
s U [ s
S
R 0 ) R 0
R 4) +

R strictly commutes over S R strictly locally commutes over S

[

R Noetherian

R quasi-commutes over S

Proof:
Most of the implications are standard or even trivial. The equivalence in the topmost line
will be proven in the "local cooperation” lemma, in the next section. The curved arrow is
proven by straightforward induction alongt Bachmair, Dershowitz 86]).

O
If R is Noetherian, it is more convenient to check for strict local commutation than for
guasi-commutation: They are equivalent, and checking for strict local commutation is less
complex because 8" 0 R(ROS)".
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Commutation properties contain confluence properties as a special case. For instance, F
is confluent if and only if, R commutes ove’RR is locally confluent if and only if, R
commutes locally over  The arrows in the topmost row in the overview above then
collapse to the strong confluence lemma of Huet (left arrow), and Newman’s lemma,
respectively (right arrows; note that R/R % Rolds.)

Quasi-commutation is useful in the framework of relative termination, for the following
central fact:

Lemma: (quasi-commutation; [Bachmair, Dershowitz 86], lemma 2)
If R quasi-commutes over S, then R/S is Noetherian if and only if, R is Noetherian.

Proof:

"Only if* is trivial. For "if", assume R Noetherian and quasi-commuting over S. Then, as
we can gather from the overview above, R strictly commutes over S. Now suppose there
is a sequence; tlls t2 [JHs ... that contains infinitely many R steps. Then, the
following infinite diagram can be constructed (from left to right):

*

*
o——S—po—R—Ppo—S—Ppo—R—Ppo—S—po—R—Ppo

strict  * _ * _ «
R comm S strict S strict S
comm comm
o R 0 R o
+ + +

Thus there is an infinite ‘Rderivation which contradicts R Noetherian.

O
Since R/S strictly locally commutes over S, there is even the characterization:

Corollary:
R/S is Noetherian if and only if, there is R'R, such that both R" is Noetherian and

strictly locally commutes over S.
O

3.4. Cooperation

Commutation-like criteria that are even more interesting and powerful, can also be
developed for relatively Noetherian systems. Suppose R, S and Q are binary relations.
We seek a criterion for the proposition

"R/S Noetherian implies R/{8Q) Noetherian®,
in the spirit of the "quasi-commutation” lemma. In this section we will arrive at such a
sufficient condition which we will cattooperation
First observe that (R/[®Q))* = ((R/S)/ (¥£Q))* holds. So it is to be shown that
R/S quasi-commutes ovei1®. (Let us plead for this decision: The other choice "R/S
quasi-commutes over Q/S" is equivalent by (R/S) (F&S) = (R/S) (RISOQ)".
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"R/S quasi-commutes over Q" is also sufficient, but more restrictive. It forbids for
instance the situation where the diagram only joins by RQS .) Since R/S trivially quasi-
commutes over S, it still has to be shown that "Q$ 0 S'R (ROSLIQ)*. This is

achieved by showing that the diagram
S po—R o

*

R'SQ

holds.

The first step to local properties now is a separation of than8 R parts into two
diagrams. A naive candidate for the first diagram is commutation of S over Q. For the
second diagram, we define:

Definition:

R S-cooperates ove, if
R »o

*

R'SQ

So as to obtain the lemma:

Lemma: (cooperation)
Suppose that S commutes over Q, and that R S-cooperates over Q. THeQ)RLS

Noetherian if and only if, R/S is Noetherian.

Proof:
R/S quasi-commutes overl®:

*

S »* R pO

*

comm Q coop RSQ

S o S o R o

Application of the "quasi-commutation” lemma completes the proof.

O
This lemma demonstrates the prominent role of cooperation in proofs of relative
termination. Basically the same decomposition idea is briefly sketched in [Bachmair,
Dershowitz 86], proposition 1, however fymmetricS. The quasi-commutation lemma
iIs a special case, by S = @. Likewise, the criterion in [Jouannaud, Mufioz 84] is a
special case, with S = @ and Q symmetric. Another particularly useful special case is
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Q O S1. The notion of cooperation, coined in [Bellegarde, Lescanne 86] ("R S-
cooperates over-§" is called "R cooperatesith S" there), and investigated also in
[Bachmair, Dershowitz 86], theorem 4, describes the case Q.= There, the
commutation of S over Q becomes the confluence property for S. So we find out that the
scenario just sketched covers quite a number of special cases. The next sections will be
devoted to further localization, and to executable criteria for cooperation.

3.5. Local cooperation and strong cooperation

The cooperation diagram can be localized. Two localizations will be undertaken below.
The first one follows closely the local cooperation approach ([Bachmair, Dershowitz
86]), which it contains for the setting Q =lS The second approach is new; it uses a
local property ("strong cooperation") in the spirit of Huet's strong confluence, and may
therefore be applied without additional termination requirements. It contains the quasi-
commutation approach as a special case (for S = @).

Local cooperation is defined thus:

Definition: (cf. [Bellegarde, Lescanne 86], where Q #)S
R locally S-cooperates oveD, if
R po

*

R'SQ

O
Lemma: (local cooperation)

If Q-1/S is Noetherian, S locally commutes over Q, and R locally S-cooperates over Q,
then R S-cooperates over Q.

Proof:
We first prove that S commutes over Q, by induction using the ordering » on pairs (t, n),
defined by
(t,n) » (t',n) < def
t (b o) U0
t (‘QD <) Ut On>xn,
Observe that » is indeed Noetherian. Suppsgét < ". The case where m =0 or

n =0 is trivial. The remaining case is shown by the first diagram below. The inductive
hypothesis in the small box is justified througl:b tt’, the other one through & t”,

n > n-1.
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Next we prove that R S-cooperates over Q Wheneafért g+ by induction using

(Q'Y/S)t on t. This is done by the second diagram below. The inductive hypothesis is
justified through ts s .

t n-1 t R PO
* *
local v
() local Q Q coop R'SQ
comm t
t S o ind. g S, R '
* x * A, hyp. * * g
¢ ind g D comm Q hyp Q
hyp.
S S R
S s )\ s ! (¢} ! 0 h o) 4}
* *
O

Choosing Q =8, one gets a technically simpler result:

Corollary: ([Bachmair, Dershowitz 86], lemma 5)
If S is Noetherian and locally confluent, and R locally S-cooperates oveth€n R
S-cooperates overs

O
Sometimes cooperation can still be proven-i#/®is not Noetherian, but like for strong
confluence, one needs a more restrictive local diagram.

Definition:
R strongly S-cooperates oveQ, if

holds.

Lemma: (strong cooperation)
If S commutes over Q and R strongly S-cooperates over Q, then R S-cooperates over Q.

Proof:
By induction on the length n of the Q-derivation. The case n =0 s trivial. The case
n> 0 is treated by the diagram
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X_R_.o*

Q prem RSQ

hyp.

o R )

O
Certainly, commutation of S over Q is, in such a situation, proven by strong
commutation. Note, finally, the special case where S = @. There strong cooperation
becomes quasi-commutation (of R over Q), and the lemma coincides with the "quasi-
commutation" lemma again.

3.6. Critical pair criteria

Now we come to the second phase in the development of a criterion. The first phase

provided us with a local propertys z U - say. Even if R is &nite rewrite system,
its rewrite relation » is usually still arinfinite relation, by context and instantiation

closure. In other words, the claim is to be shown for infinitely many cages, tt". In

order to obtain an effective test for the local property, the pairs (t, t") are grouped into
two sets. The first set contains those (t, t") where the redices do not overlap, which
therefore can be solved by a standard construction. Sometimes suitable syntactic
restrictions must be obeyed in order to succeed there. The second set assembles thos
(t, t') where the redices in ¢ 5 t* do overlag] thecritical pairs. If R and S are

finite, then there are only finitely many critical pairs. The check for a local property needs
to be done for the critical pairs only. This way it becoeféective

Let us begin with the notion of critical pair:

Definition: (overlap, critical pair; [Knuth, Bendix 70])

Let | - r and g— d be rewrite rules. Without loss of generality, assume that
Var(l - r) n Var(g - d) = @, via appropriate renaming.

1. goverlaps! in u, if g is @-unifiable with 1/dX.

2. The pair (@, (I[u ~ d])o) of terms is called eritical pair of | - r aboveg - d, if

g overlaps | in u, ana is the most general (3-)unifier of g and l/u, i.& =g

(lu)o and for allt where g = (l/u)t, thenT >gyp0.

3. Let R and S denote rewrite systems. The set of all critical pairs of rules from R above
or below rules from S is denoted by CP(R, S).

O
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Note that according to this definition, I/u may not be a variable. In contrast, g may well
be a variable (i.e. g d may be #&eft-isolatingrule). In the latter situation the critical

pair is also called @ariable critical pair. The quasi-commutation criterion of [Dershowitz

81] erroneously assumed that these critical pairs might be neglected. They used a critical
pair lemma for restricted rules, but by rule inversion left-isolating rules came up.
[Ganzinger, Giegerich 87] gave a correction. Again it turns out to be more elegant to
admit left-isolating rewrite rules anyway.

If R and S are finite, then CP(R, S) is finite as well. (In the literature, usually the set of
critical pairs of RabovesS is distinguished, and called SCP(R, S). We have CP(R, S) =
SCP(R, SYI SCP(S, R}t )

Critical pair criteria are developed following a well known procedure. Because of its
technical nature and its standard form, it is worthwhile to put the essence of critical pair
criteria into aschemeand to have all special aspects as a parameter to the scheme. The
scheme is, so to speak, a proof skeleton, which has to be augmented by a number o
syntactic assumptions on the rewrite systems involved. The instantiated scheme togethe
with a few trivial considerations will provide a proof "from the stock".

Known instances of the critical pair scheme are:

(1) the Knuth-Bendix critical pair criterion ([Knuth, Bendix 70]). For finite and
Noetherian rewrite systems R, to check whether all critical pairs join is a decision
algorithm for confluence.

(2) the strong confluence criterion ([Huet 80]),

(3) the "confluence modulo™ approach ([Huet 80]). (The congruence class approach relies
on equational critical pairsthis requires much more sophistication, and is not treated
here.)

(4) construction of forward closures ([Dershowitz 81]) and overlap closures ([Guttag et
al. 83]). Finally,

(5) commutation and cooperation properties ([Bellegarde, Lescanne 86]; proper critical
pairs are excluded in [Bachmair, Dershowitz 86]). These criteria play a prominent role in
the framework of relative termination. We have already arrived at local conditions for
cooperation; their critical pair criteria will be the subject of the next section.

Next the general scheme of critical pair criteria is described. We will do the proof

informally, although a rigorous formal proof can be done (see for example [Huet 80]).
The properties required for. are usually trivially satisfied.
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Theorem: (general critical pair scheme)
Let R, S, and T denote (not necessarily finite) term rewrite systems. Let
Lrgste.
2. for all m, AN, where
m > 0, if R is right-nonerasing,
m< 1, if Ris right-linear, and
n =0, if Ris left-linear,

then SJ‘ 5 mg O o holds,

3. for all m, AN, where
m > 0, if Sis right-nonerasing,
m< 1, if Sisright-linear, and
n=0, if Sis left-linear,

then RJ‘ oy mﬁ U« holds,

4.CPRR,S)0 - .

Then s R O o holds.

Proof: ([Knuth, Bendix 70], [Huet 80])
Let t«‘é F%, t" be given. Now t. t" is to be proven. We perform a case analysis on the

positions of u and v relative to each other:
Case 1:u and v are incomparable, i.e. neithegplav nor v<preu holds.
Then we have the following situation:

A{ R\‘
R S

The R-step and the S-step commute. Premise 1 caregthatl] - holds.
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Case 2: &preV.
Without loss of generality, u &, other cases follow immediately by context closure.

Let | denote the left hand side of the applied rule from R. Now it has to be distinguished

whether there is an overlap with |.
Case 2.1: MFOcc(l), i.e. the rules from R and S do not overlap.

Then the situation is like sketched in the following diagram:

ok ™ €

where m >0, if R is right-nonerasing,
m< 1, if Ris right-linear,
n =0, if Ris left-linear.
Premise 2 cares thag,n rMs U

-
holds.

S
n m
Case 2.2:vIFOcc(l), i.e. the rules from R and S overlap.

Then, by Huet's critical pair lemma, the pair (t,t") is an instance of a critical pair from

CP(S, R). The well-behaviour of the critical pair is ensured by premise 4, the critical pair
criterion CP(S, RPJ ». Closure under instantiation cares that the pair (t, t") works

A A

T

accordingly.
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Case 3. preV.
like in case 2, with the following changes:

(1) u and v are exchanged,

(2) R and S are exchanged,

3) - is replaced byT ,

(4) "Premise 2" is replaced by "premise 3",

(5) CP(R, S) is replaced by CP(R;1S)

O

Every time critical pairs are encountered in the literature, the proof is done more or less
according to the above scheme. Thanks to the "general critical pair scheme”, we can now
successfully dodge all technical details, and need not write down any more critical pair
proofs. The “critical" pairs where[(@X and u =A can actually be dropped since they
are already covered. Trivial critical pairs (r, ) CP({l - r}, { - r}) can often be
excluded explicitly, but they impose no problem.
The premises 1, 2, and 3 in the critical pair scheme are responsible for the syntactic
restrictions put onto the rewrite systems R and S. For instance, in a local confluence

* %

proof, we have the settings R =S angd = 5" " . Here premise 1 means

RRHOR ®
For a proof that S strictly locally commutes ovet, Rhowever, for instance premise 2

means " 5z Mg O ﬁ,* T . Its proof does not work in general; it needs m >0, i.e.

it works only under the assumption that R is right-nonerasing.

3.7. Criteria for local cooperation

In the previous sections, we developed a notion called cooperation, which allows to
strengthen termination of R/S to termination of RI(Y, and we approached two local
conditions for cooperationl local cooperation and strong cooperation. This section
presents critical pair criteria for local cooperation, and illustrates them by examples. In
particular, the criterion of Bellegarde and Lescanne is generalized, and a new criterion for
local cooperation is added.

By the critical pair scheme, which was the subject of the previous section, we obtain a
new straightforward criterion for local cooperation of term rewrite systems.

Theorem: (first local cooperation criterion)

Let R and S be left-linear rewrite systems and let Q be a right-linear and left-nonerasing
term rewrite system. If @/S is Noetherian, and every {Q S)-critical pair locally
commutes, and every (§ R)-critical pair locally S-cooperates, then(®S) is

Noetherian if and only if R/S is Noetherian.
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Proof:

"Only if* is trivial. "If" is assembled by critical pair properties and the previously proven
lemmas on cooperation. Since S is left-linear and Q is right-linear, the local commutation
of (Q1, S)-critical pairs implies the local commutation of S over Q. Likewise, R locally
S-cooperates over Q, because atfl(®)-critical pairs do, and R is left-linear and Q is
right-linear and left-nonerasing. According to the "local cooperation" lemma, R S-
cooperates over Q. Together with the termination of R/S, the cooperation lemma vyields
the wanted result.

O
If in addition S is Noetherian, the result can be strengthened:

Corollary:

Let R and S be left-linear rewrite systems and let Q be a right-linear and left-nonerasing
term rewrite system. If @0S is Noetherian, and every {Q S)-critical pair locally
commutes, and every (€ R)-critical pair locally S-cooperates, then(@®1S)S is
Noetherian if and only if R/S is Noetherian.

O
The following is a typical application of it:

Example: (cf. Ex. 27 in [Dershowitz 87])
Let E =gef{X*(y+1) - X*(y+1*0)+x,
x+0 - X, x*1 - x, x*0 - 0}.

E is Noetherian, but no simplification ordering can prove it, since the first rule contains
an embedding 1 into 1*0. A proof could be given by means of the semantic path ordering
([Kamin, Lévy 80], [Dershowitz 87]), setting precedence * > +, and using the natural
interpretation for summands.
A proof can also be given alike the transformation ordering method (which will be
explained below): We intend to provide rewrite systems R, S and Q such that both
ROQ10S is Noetherian and El (ﬁ/% [ o)* holds. A first attempt with

R =gef {X*(yt1) - Xx*y+x, x*1 - x},

S Hef{X+0 - X, x*0 - 0}, and

Q =gef St = {x - x+0, 0- x*0}
fails, "just" because the second rule in Qefs-erasingl] x disappears at the left hand
side of the second rule. Hence for example the (non-critical pair) branching diagram

0 5 KO0 g KYRYO

does not join appropriatel$ao it is advisable to design £S1. We are now going to
demonstrate that the corollary to the "first cooperation criterion" works. Let us choose
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R =gef {X*(y+1) - Xx*y+x, Xx*1 - x},
S mgef{X*0 - 0}, and
Q =gef{X - x+1*0, x- x+0},
with the intention that HJ (ﬁ/% 0 )" holds:

X*(y+1) e X*(y+1*0)+x x*1 g X
- xry+x Dgﬁ Chmiym U

The remaining two rules from E are already in S. Both R and S are left-linear, and Q is
right-linear and left-nonerasing. [(R)-10S is Noetherian, proven for example by some

lexicographic path ordering. The{QS)-critical pairs locally commute:

X g X+1*0 g x+0

EDMMMM@]MMMMD

The (Q1, R)-critical pairs locally S-cooperate since there are no such critical pairs. So the
corollary to the "first local cooperation criterion" applies yielding RIHOS

Noetherian. In particular, E is Noetherian.

O
The restriction "R and S left-linear" in the critical pair conditions to local cooperation is
rather uncomfortable. Exchanging one restriction for another one, it may be disposed of
when QU " <. Then, R/S and @S are Noetherian if and only if (RQ-1)/S is, by the
"inheritance of relative termination” corollary, part 1, of section 3.1. Thus we arrive at
another criterion:
Theorem: (second local cooperation criterion)
Let R and S be arbitrary rewrite systems, and ’Qg a right-linear and left-nonerasing
rewrite system. If (RQ-1)/S is Noetherian, and every {Q S)-critical pair locally
commutes, and every (& R)-critical pair locally S-cooperates, then even
R/(SOQ) O Q1Y/S is Noetherian.

O
Again, it can be shown frequently that S is Noetherian. This allows one to tighten the

result:
Corollary: (for Q = S1, see [Bellegarde, Lescanne 87))
Let R and S be any term rewrite system, and ’Qé a right-linear and left-nonerasing

term rewrite system. If RS is Noetherian, and every {Q S)-critical pair locally
commutes, and every (§ R)-critical pair locally S-cooperates, then even R3O S
is Noetherian.
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Proof:
ROS is Noetherian, which by Q* « IS equivalent to RSOQ1 Noetherian, which
by the "inheritance" lemma implies [(R)-1)/S Noetherian and S Noetherian. The
"second local cooperation criterion" then supplies that IR)81 QY/S is Noetherian.
From R/(S1Q) and S Noetherian we may infer that RI@ O S is Noetherian, by
“inheritance of relative termination”, number 3.

O

This corollary is the basis of a method to prove termination of a term rewrite system P,
by showing that P (ﬁ/% U §)+ holds, and by proving that the corollary applies.

The method has (for Q =19 been investigated by Bellegarde and Lescanne, who called

it transformation orderingand it has been implemented at CRIN by Bruno Galabertier.
The implemented procedure works in a way similar to the Knuth-Bendix completion
procedure: Given the rewrite systems P and S, the system R is constructed computing
critical pairs step by step. There is a rich set of examples of transformation orderings in
[Bellegarde, Lescanne 86] and [Bellegarde, Lescanne 87], among them a couple of
termination proofs even for self-embedding term rewrite systems. Let us just recall their
favourite example.

Example: (Associativity and Endomorphism, continued)
Let A =det{(x+y)*+z - x+(y+z)},

E =gef {fC)+f(y) - f(x+y)},  and

E" =ef {{()+(f(y)+2) - f(x+y)+z}.
The rewrite rule E specifies that f is an endomorphism for HEBE" cannot be
proven Noetherian by rz. It can be proven Noetherian, using a suitable transformation
system ([Bellegarde, Lescanne 86]):

S =ef{f)+y - f(xty), x+f(y) - f(x+y), (X+y)+z - x+(y+z)}.
Informally speaking, S is a transformer who cares that f is moved outside, and
parentheses are moved to the right. Choosinggd@S, we get Q right-linear and left-
nonerasing as required. It is certainly a matter of intuition to find good Q and S. Next it is
easy to prove that S terminates, so we may hope to apply the corollary to the "second
local cooperation criterion”.
S is locally confluent. Now we have to design R, in a way that

ALOEOE" O (ﬁ»/% il §>)+
holds. A is already covered by [AS. Since S is Noetherian and confluent, S-normal
forms exist and are unique. We may so choose the unique S-normal forms of E-rules and
E -rules for R-candidates.

-850 -



Chapter 3: How to strengthen termination orderings

f)+(fy)+z) H-  f(xty)+z

1S 1S
f(x)+f - f
X#10) [DE] b) f(x)+f(y+z) (f(x)+y)+z
S ™R
foxefly) T f(Hoxey)) 'S N
{109 +(y+2) f0)+(y+2)
1S 1S

ff(x+(y+2))) - f(x+(y+2))

We see that R should be extended by a rule f(f(x+y))x+y), in order to solve the
two diagrams. (Also possible: f(f(x)) f(x) .) >po proves RIS Noetherian. Now it
remains to be shown that (S, R)-critical pairs locally S-cooperate:

ffe)+y M- fO)+y
1S 'S

f(f()+y) f(x+y)
T fiey) O U

O
Another example of a self-embedding rewrite system, which | communicated to Pierre

Lescanne, has recently been solved by Lescanne, Bellegarde, and Galabertier (private
communication) with support of their tool:

Example: (conversion into binary numbers)
Assume we want to specify a conversiori\ointo the set of binary numbers. Binary
numbers are sequences of bits. The rewrite system uses two constants "O" and "I" (the
bits zero and one), the unary function symbols "half" (integer division by two) and
"lastBit" (to yield "O" for even numbers, and "I" for odd numbers), the constant "empty"
(the empty bitstring), and finally the binary function symbol "&" (append a bit at the right
to a bitstring; in infix notation). Note the difference between the natural number 0 and
the bit O. The rewrite system looks as follows:
C =gef{half(0) - O,

half(s(0)) - O,

half(s(s(x))) - s(half(x)),

lastBit(0) - O,

lastBit(s(0)) - I,

lastBit(s(s(x))) - lastBit(x),

conv(0) - empty & O,

conv(s(x)) - conv(half(s(x))) & lastBit(s(x)) }.
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The rewrite system C is Noetherian, as we will demonstrate. All rewrite rules, but the last
one, can be easily shown Noetherian byso>provided with a suitable precedence >.
Let us fix a particular choice which will be useful in the following, too:

s > half, s>conv> &, conv > lastBit> O,

lastBit>1, 0>0O, 0>empty, 0>&.
The last rewrite rule causes a problem for all simplification orderings, because it contains
an embedding s(x) into half(s(x)). Now the essential idea is to invent a unary auxiliary
function symbol q with precedence conv >q > &, and to have a transformer system

S mgef{conv(0) - empty & O,

conv(half(x)) - q(x)}.

The rest is routine. (Actually Galabertier's system computes the following proof.)
SU >rpo, and therefore S is Noetherian. S is confluent since it has no nontrivial critical
pairs. Also, S is left-linear and right-nonerasing. Next we have to choose R such that
C O (g/l=sU §)+. The rules for "half" and "lastBit" are already in S-normal form,
therefore it is advisable to put them into R. Now consider the last two rules from C:

conv(0) c empty & O conv(s(x)) c conv(half(s(x))) & lastBit(s(x))

Thmpm D IR 's
a(s(x)) & lastBit(s(x))

We find that R needs the rule conv(s(x))q(s(x)) & lastBit(s(x)) to handle the diagram
to the right. Finally, R has to be extended in a way that R locally S-cooperateslover S
The (R, S)-critical pairs are

conv(half(0)) R conv(0) conv(half(s(0))) R conv(0)
'S 'S 'S IS
q(0) g empty & O q(s(0)) g empty & O

conv(half(0)) ] conv(s(half(x)))
O asse) OGP

New R-rules are:

q@0) -~ empty & O,

q(s(0)) - empty & O, and

q(s(s(x))) - conv(s(half(x))).
They cause no more critical pairs, so we are finished. Luckily,] 3o still holds
now, so RIS is Noetherian. The corollary to the "second local cooperation criterion”
appliest] C is proven Noetherian.

O
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Finally, here is an example where (@3B! but Q# S1 holds.

Example: (Ex. 27 in [Dershowitz 87], continued)
Let E =gef{X*(y*+1) - Xx*(y+1*0)+x,
x*1 - X, xt0-x, x*0 - O}

E is Noetherian, but self-embedding. Cooperation failed when @& =T&e "first local
cooperation criterion" was successful. Now let us apply the "second local cooperation
criterion”. Choose

R =gef {X*(y+1) - x*y+x, x*1 - x},

S Jgef {X+0 - X, x*0 - 0}, and

Q =def{x - x+1*0},
with the intention that B ( o/ % 0 )% holds. R can actually be constructed like

in the examples above. (Likewise, one might chooseqgd@{x*y - x*(y+1*0)}, or

Q =gef{0 - 1*0}.)

Both R and S are left-linear, and Q is right-linear and left-nonerasing. We are now going
to prove that R/(QS)JS is indeed Noetherian. The requirement] Q§ Is satisfied
because

X s X+0 s X+1*0

holds. (Note that the inclusion is strict here.) The (Q)-critical pairs locally commute:
X g X+1*0 g x+0
Thonnogomnmm U

Since there are no (§ R)-critical pairs, the local properties are satisfied. There is no
problem proving RIS Noetherian by a suitable simplification ordering. We may apply
the corollary, and we get the stronger RI(H [ S Noetherian. So E terminates, which
was the claim.

O

3.8. Criteria for strong cooperation, and their applications

So far about thocal cooperatiorcriteria. In contrast, strong cooperation does not need
the termination of €/S. This section finishes the cooperation approach; a critical pair
criterion for strong cooperation is given. We have as interesting special cases, a new
criterion for termination modulo from relative termination'¥@ S), and the quasi-
commutation criterion (S = @). It turns out that quasi-commutation is hardly suited for
termination proofs.

Critical pair criteria for the "strong cooperation" lemma raise the following theorem.
Unlike the "second local cooperation criterion”, it cannot dispense with the syntactic
condition "R left-linear".
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Theorem: (strong cooperation criterion)

Let R and S be left-linear rewrite systems, and Q be a right-linear and left-nonerasing
term rewrite system. Suppose that S commutes over Q, and that everR)Qritical

pair strongly S-cooperates. Then RI(Q) is Noetherian if and only if, R/S is
Noetherian.

Example: (Nonfin, continued)
Let f, c, s denote unary function symbols, x a variable, and let

S 1ef{fcx - cx},

Q =gef{cx - fcx}, and

R =gef{CcsSx - cx}.
Remember that parentheses may be dropped in the case of constant and unary functio
symbols exclusively. RS terminates. To prove that RIS Noetherian, also a strong
cooperation argument works. S commutes over Q, i.e. S is confluent. The rewrite
systems R, S, and Q are linear and nonerasing, and there is just’pri®){Qitical pair
to consider:

csn g fcsn R fcn

Eha—» cn ng
Therefore R strongly S-cooperates over Q, and, since R/S is Noetheriah) QRES
R/Sis Noetherian.
O
Consider the setting Q =Sand assume that there are no (R, S)-critical pairs and R and
S are left-linear. In this frequent case, thanks to the "strong cooperation criterion”, we do
not need the termination of S so as to prove termination of R/S

Corollary:
Let R be a left-linear, S be a confluent, left-linear, and right-nonerasing term rewrite
system, and suppose there are no (R, S)-critical pairs. Thers Ri8etherian if and
only if, R/S is Noetherian.
O

Example: (cf. Ex. in [Bockmayr 88])
Let the addition oriN be specified by

S Tef{0+X - X, s(X)ty— s(x+y)},
and square numbers by

R =gef{sa(0) - 0, sq(s(x))- s(x+(x+sq(x)))} .
The last rule is suggested by the binomial equation &+1)1 + 2x + X. R/S (even
ROS) terminates, shown for instance by, with precedence sq >+ >s. Both R and

S are confluent, because they are left-linear, and there are no (R, R)- nor (S, S)-critical
pairs. As there are no (R, S)-critical pairs, R is left-linear, and S is right-nonerasing, we
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may employ the above corollary to the "strong cooperation criterion" so as to infer R/S
Noetherian. Note that termination of S has indeed not been used in this reasoning. An
alternative termination proof of Ri8ay be obtained using the polynomial interpretation

[sOQ] = x+1, [x+y] = x+y, [sq(x)] = 2%+3.

O

As mentioned earlier, strong cooperation becomes quasi-commutation in the case S=0@
Likewise, critical pair criteria for strong cooperation become criteria for quasi-
commutation. Dershowitz” quasi-commutation is so another special case (where
CP(Ql, R) = @) of the "strong cooperation criterion":

Corollary: (quasi-commutation criterion; without critical pairs, see [Dershowitz 81])

Let R be a left-linear, Q a right-linear and left-nonerasing rewrite system, such that all
(Q-1, R)-critical pairs quasi-commute. Then R/Q is Noetherian if and only if R is
Noetherian.

Example:
1. (Integer numbers; cf. INT2 in [Padawitz 88])
Let Q =gef{-0 - 0, --x > X, s(-s(x)) - -x}
be a piece of a specification @, the integer numbers, and let
R =gef{x+*0 - X, xts(y) - s(xty), Xx+(-y) - -(-x+y)}
specify integer addition. R quasi-commutes over Q, since R is left-linear, Q is right-linear
and left-nonerasing, and the-{QR)-critical pairs strictly locally commute:

X+(-0) g x+0 g X x+(--0) g x+0 g X
IR 1Q IR 1Q
00 g {(x+(-0)) X
IR 1Q

—~(--x+0) - -

xHsy) g xts(y) g s(xty)

IR 1Q
(x+(5() s(x+Y) N g g O
R 1Q - ety) 0gh
~exsy) TR -slxy)

xis(s()) g X)) g )

IR 1Q
sx+(s(y))) g sS(xts(y)) g s(s(-xty))

-55 -



Chapter 3: How to strengthen termination orderings

R is Noetherian, as has been demonstrated in the previous chapter. By the fact thal
R quasi-commutes over Q, R/Q is Noetherian. Q is Noetherian by the polynomial
interpretation

[x] = x+1 = [s(x)].
Together with R/Q Noetherian, we havel®@ Noetherian.

2. (FF, continued)

Let R mef{ffx — fgfx}, Q =gef{a — ga}. R is Noetherian. There are no overlaps
betwen ffx and ga. So there are nol{(@)-critical pairs. R is left-linear, and Q is
right-linear and left-nonerasing. Therefore R/Q is Noetherian. All termination criteria
based on direct sums (for instance the one in [Toyama et al. 89]) fail simply because g is
a common function symbol in R and Q.

O
Next, we show a small example from the algebraic specification domain.

Example: (Maps)
Assume primitive specifications BOOL (for truth values), DATA (some data domain
together with a conditional "if"), and INDEX (a set of tokens provided with a total
equality function "eq"). The new functions "empty" (constant), "put” (binary), and "get"
(unary) are specified by the rewrite system

MAP =def{ get(put(m, i, d), j) - if(eq(, j), d, get(m, j)) }.
Informally, expressions built with "empty" and "put” represent tables or finite mappings
from indices to data; "put" is an update operator, and "get" a retrieval operator on maps.
Since MAP is left-linear and Noetherian, the following statement may be made: Provided
that BOOLL DATA O INDEX is right-linear, MAP / (BOOLL DATA 0O INDEX) is
Noetherian, because there are no overlaps between left hand sides from MAP and right
hand sides of the primitive specifications.

O

The quasi-commutation technique suffers from hard syntactic restrictions. Critical pairs
may cause additional problems.

Example: (Stack ofiN)
Let Peano arithmetic be specified by a rewrite system NAT as usual:

NAT =gef ADD [ MULT,

ADD =def {0ty - vy, s(X)ty —» s(x+y)},

MULT =gef{0*y - 0, s(x)*y - (X*y)+y}.
NAT is Noetherian, a fact which we can prove for example by the lexicographic path
ordering using precedence * >+ >s. In order to specify stacks, we use further function
symbols "empty" (constant), "first", "rest”, "length" (unary), and "app" (binary). Stacks

-56 -



Chapter 3: How to strengthen termination orderings

are constructed hierarchically on the natural numbers. Let x and w denote variables.
Consider the rewrite system
STACK =qef {first(app(x, w)) - X, rest(app(x, w))- w,
length(empty) - 0, length(app(x, w))- s(length(w))}
STACK is obviously Noetherian (proven bgr,o using precedence length > s,
length >0).1s STACKI NAT Noetherian as well?

Let us first try to prove that STACK quasi-commutes over NAT. Except for critical pairs
like

first(O+app(x, w)) Eﬁ@" first(app(x, w)) %_. X,

which may be ruled out for reasons of well-sortedness, there are no overlappings
between left hand sides of STACK and right hand sides of NAT, although there are
common function symbols 0, s in STACK and NAT ([Ganzinger, Giegerich 87]). By
the quasi-commutation criterion, we may infer that STACK quasi-commutes over ADD,
and therefore that STACK ADD is Noetherian. But the same reasoning does not

apply to STACK and MULT, as the first multiplication rule is left-erasing in y, and the

second rule is not right-linear in y.

Now, in a second attempt, let us try to prove that NAT quasi-commutes over STACK.
NAT is left-linear, and STACK is right-linear, but left-erasing. Moreover, there are the
following (STACK-1, NAT)-critical pairs:

first@pp(0, W)+y L~ Oty - Y
first@pp(s(x), W))+y LEHidd-  sCO+y L~ s(x+y)
first@pp(0, w))*y  Lgidg- 0%y N~ 0
first@pp(s(x), W)’y LEd- M)ty L= Ocy)ty
rest@pp(w, 0)+y  [ERlidy- Oty -
rest(@pp(w, s)))+y [Efd-  sC)+y O~ s(x+y)
rest(appw, 0y I 0%y Ogi- O
rest@pp(w, s())*y - sy O~ (y)+y
length(empty)+y [Ldd~ Oty N Y

length(app(x, w))+y %_» s(length(w))+y EEQ;_) s(length(w)+y)

length(empty)*y %_» 0*y E%q 0
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length(app(x, w))*y  [EEIL)~  s(length(w))*y - (length(w)*y)+y

Again the critical pairs that contain "rest" symbols might be ruled out, using well-
sortedness information. None of the mentioned critical pairs quasi-commutes. Adopting a
Knuth-Bendix-like technique, one may add these critical pairs to NAT, and may even
succeed to prove that NAT remains Noetherian. But then further critical pairs emerge.
Summarizing, the use of quasi-commutation heavily depends on which rewrite relation
quasi-commutes over which one. (Indeed STACKIAT is Noetherian, which can
simply be proven by a standard termination ordering at once.)

O
Although quasi-commutation is far from being a powerful criterion, its obvious
advantage is an easy check by syntactic criteria. For syntactically restricted rewrite
systems, it is an interesting termination proof method.
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Confluence, also called the Church-Rosser property, is probably the most important, and
the most typical notion of term rewriting. Informally speaking, the order of the rewrite
steps is irrelevant for a confluent relation. It is known that confluence of rewriting is
undecidable ([Huet 80]), even for the class of systems where the function symbols have
arity 0 or 1 ([Book et al. 81]). Confluence is decidable for the class of ground rewrite
systems ([Dauchet et al. 87], [Oyamaguchi 87]). According to [Knuth, Bendix 70],
confluence is also decidable for the class of Noetherian systems: A Noetherian rewrite
system R is confluent if and only if for each (R, R)-critical pair (t, t"), the normal forms
of t and t° are (syntactically) equal. Knuth and Bendix designed a procedure that
attempts (and sometimes succeeds) to convert a system of equations into a confluent an
Noetherian term rewrite system. For non-Noetherian rewrite systems, confluence can be
attacked by strong confluence criteria ([Rosen 73], [Huet 80]). The strong confluence
approach originates from the confluence proof of lambda calculus; it disposes completely
with the termination property, but compensates it with a considerably harder local
condition.
It has been a major goal since the beginnings of confluence theordetotapos¢he
confluence proof of a reductiori’FS into those of R and S, or at least, to profit from the
confluence of S, say. This goal has brought up a variety of sufficient conditions, see
[Klop 87] for examples. The surprisingly powerful criterion "if rewrite systems R and S
have no function symbols in common, then R and S confluent impli&S denfluent”
is given in [Toyama 87b]. If R and S have no common function symbols, thénik
also called the direct sum of R and S. We allow that R and S have common function
symbols, but impose the restriction that R/S is Noetherian instead.
Confluence criteria for composed systems R where R/S is Noetherian, may be
developed along the proof methods of "confluence modulo”. Since confluen¢étof R
(E symmetric) is the same as the E-Church-Rosser property of R, Jouannaud’s approacl
for "confluence modulo” can be compared to the confluence approach here.
The objective of this chapter is

(1) to show how to localize[RS-confluence diagrams step by step,

(2) to point out the limits of localization,

(3) and finally to come down to critical pair criteria.
A confluence proof for S may be delayed, or strong confluence may be used for it.
Klop“s confluence criterion ([Klop 87]) is of the latter kind. Such a criterion may be seen
as a common generalization of the Newman criterion and strong confluence criterion.
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4.1. The role of coherence

Let R and S denote relations, and let R/S be Noetherian. How can we prove confluence
of ROS? As we will see, in a way very similar to confluence modulo. There for
symmetric E, essentially confluence dfiR is sought. Noetherian relations are proven
confluent by the Newman lemma. In this spirit, we start to localize gl (10"

-diagrams. Localization gets stuck in a diagram that has a counterpart in the "confluence
modulo" approach. The key notion that helps to continue localizing then, has been called
coherenceCoherence means, roughly speaking, that R-steps may always be put before
E-steps. We will set up a suitable notion of coherence for R and S where S is an arbitrary
rewrite system, rather than symmetry closed.

In order to simplify talking about confluence diagrams, let us agree to say that a relation
Qjoins, if Q O (ROS)" ((ROSYL)”" holds. Confluence of BS in this respect means

that (ROSy1)" (ROS)" joins:

In the case where S is some symmetric relation E, the property of E-confluence in
[Jouannaud 83] precisely means joinability. The property which corresponds to the
Church-Rosser property in the case of equational rewriting, the E-Church-Rosser
property, precisely means confluence di® The liberal notion of rewrite system
makes this possible.
For the inductive proofs of this chapter, we will use the Noetherian ordering » on pairs
(t, n), defined by
(t,n) » (', n") < def

t(g /)t D

tEQ§*t' On>yn'.
In the naive attempt to localize as much as possible from the confluence diagram for
ROS, one arrives at the following lemma. It characterizes confluence in the case of
relative termination:
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Lemma: (first localization)
Let R/S be Noetherian. ThenFS is confluent if and only if the following diagrams
hold:
— S "po o—Spo—Rpo
R RS RS

RS o RS o

* *

Proof:

In order to show that

t RS m

R RS

n RS 3 *

holds for all t, and all @ n, we use induction » on the pair (t, n). The case m=0

is trivial. Now assume that :n1. Since we may use the inductive hypothesis in the case
tHs t', n>n-1, the proof is done if we arrive to show that in the proof attempt
m

t —RS po

R (o Rs
show

td RS o
*
hyp.

n—J! R'S o*

*

the upper part holds. There are two cases to consider, according to the equality
(ROS)y = S O S R(RIS).

case 1: case 2:

o. S pO. R PO RS po

Rl PreM ps R pffm- RS
* *
RS o

* *

R'S

Case 2 needs again a case analysis: Whether the downgoing grey arrow contains al
R-step or not. The achieved part of the proof diagram becomes black, because it may
now be taken as a premise.

-61 -



Chapter 4: Confluence criteria

case 2.1(no R-step) case 2.2(at least one R-step)
’ t % t
o— S po R po RS Tpo
prem. R'S
2
RS O* ind. RS
* hyp.
ind. R'S
The inductive hypothesis is justified by hyp. .
t§>* o t. RS o RS o

* *

The inductive hypothesis is justified by

te” o gtandby o7 5 t7.
O

The strength of this lemma is shown by the counterexample (R/S is not Noetherian) at the
left hand side below, wherelFS is not confluent, although both R and S are confluent

and Noetherian, and the diagram at the right hand side below holds:

Notice that the diagram forg = * g fits to the "confluence modulo” diagram for
& E g in [Huet 80]. Next we want to get rid of the composed reducgo’h g In

that diagram. But the conditions for confluence ofSrcan be continued localizing only
under further restrictions. This is demonstrated by another counterexargplse*( B

-diagrams do not join) at the left hand side below, whér& i not confluent, although
R/S is Noetherian, R and S are confluent, and the following diagram holds:

S

In order to break §* r -diagrams apart, we have to take care that there is no infinite

S-derivation which connects R-redices. The basic idea is to use a Noetherian ordering »
that guards such S-derivations. For simplicity reasons, we will not develop this concept
in general, but instantiate » by (RYS)(It is useless to choose »efS If Sis
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Noetherian. In this case, fully local conditions are achieved, applying Newman’s lemma
for ROS.)

For "confluence modulo”, Jouannaud ([Jouannaud 83]) coined the notion of coherence,
which we widen for the purpose to prove confluence @fSRwhere R is relatively

Noetherian to S:
Definition:
Assume that R, R’, and S are given, and] R" 0 S'R holds. A triple (, t1, tp) of
terms is calledcoherentif one of the following cases holds:

Q) t §»**%t2 or

@ty He  "&lita or

(3) 3. to %ﬁt:g Ot §>* t3 EE%»* *% to.

O

Note that if S is cyclic (as in the "confluence modulo" approach), cases 1 and 3 cannot
occur since they would immediately cause a cycle in the R/S relation, and thus contradict

R/S Noetherian. The remaining case 2 in our case enumeration then coincides with
Jouannaud’s notion of coherence. Jouannaud calls R E-coher*e%t,g D':Dﬁ.* is

coherent. The coherence 6feE g does already the same job. This motivates the

following definition:

Definition:
R is calledS-coherentif t1* stogt2 implies that g, t, to are coherent.

Using S-coherence, we can continue to localize confluencel8f R

Lemma: (second localization)
Let R and S denote binary relations and let R/S be Noetherid®.iRkconfluent if and
only if, there is R” such that RR" O R/S holds, the diagrams

hold, and R is S-coherent.

Proof:

Let us call the two mentioned diagrams premise 1, premise 2, respectively. By induction
on the (Noetherian) lexicographic ordering ( (R/S)) on (t, min(m, n)), we prove
simultaneously
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1. thatMELL tEH=" joins, and

(As here the expression min(m,n) is not
defined, we rather use the first transfinite
ordinal numberw.) .

2. the diagram t

R'S o

Claim 2 is needed precisely as premise 2 for the "first localization" proof. For the proof
of claim 1, we may so take a copy of the proof of the "first localization" lemma, where
we replace "premise 2" by "inductive hypothesis 2". This already finishes the proof of
claim 1. We have, so to speak, "reused" the proof of the "first localization" lemma.
Claim 2 remains to be proved.*A§ g -diagram may join in 3 different ways, where

the first case is covered the third one. We employ case analysis along the remaining two

alternatives:
case 1 case 2
t S—po— R po tg—S—"po— R po
R PTMRS RIS S con RS
*
R cohto RS o R + o RS o
* t'
. coh. ;
RS ind. RS RS ind. RS
hyp. hyp.
* * * %
¥ RS o RS o Y RS o RS o
* * * *
The inductive hypothesis is Justification: tl)o* t".

justified by to® o 1.

O
(Jouannaud uses for his proofs essentially the same Noetherian ordering as we do here
Following [Jouannaud 83], we introduced an auxiliary relation R” whereRRO S'R
holds. This has a number of technical advantages:
1. If we instantiate R” by*®, we get a copy of the "first localization" lemma. Thus, we
can keep the "if and only if" for the next lemmas.
2. The instantiation R* = R leads us to a result in the spirit of Huet’s "confluence
modulo" approach. At the end of this chapter, we will present two critical pair criteria for

this case.
3. In the case where R and S denote rewrite systems, finally, the rewrite rglatroay

be instantiated by a class rewrite relati%», extending Jouannaud’s "congruence

class approach”. Here
t% t holdsif tO3- .03 5t for some w=preV, ..., thZpreV .
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The class approach is however not continued within this thesis. See also the discussion ir
the conclusion.

4.2. Further localization

Suppose that S might be a primitive rewrite system, and R might be defined hierarchically
on top of S. In such a situation, it is reasonable to assume a prio%t@a‘t joins. The

only non-local condition for confluence oftFS on this account, is the S-coherence
diagram. A very natural choice is to adopt the restriction that S is "almost" confluent, not

too hard a restriction after all. Then we get a confluence result for local
< g diagrams. The section is concluded with critical pair criteria for this case.

Definition:
R” is calledocally S-coherentf t; s o 12 implies that g, t, to are coherent.

O
Local S-coherence is a local version of S-coherence. In the same’veiny ®e called
locally S-coherent if its to §>* to implies that g, t1, to are coherent. This property
contains confluence of S as a special case. Using these new notions, the next localizatior
step takes place:

Lemma: (third localization)
Let R/S be Noetherian. TheriFs is confluent if and only if, there is some R” such that
ROR OR/S, the diagram

holds, and both R” and @re locally S-coherent.

Proof:
"Only if" is easy by R gef R/S. Cases 1 and 2 in the coherence definition cover all

t1 EBJ?* * &1L t2 in question.
For "if", we perform induction using ( (R/8)>) upon (t, n) to show simultaneously

that for all t, §, and b,
1. " &Il tE0=" joins (there we set ne), and

2. 4" tIIHd- t2 implies that t,4, to are coherent.
Claim 2 implies that t,1t to are coherent fort* s tg t2 which is needed in order to

reuse the proof of the "second localization" lemma for claim 1.
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We enter now the proof of the second claim. The proof is by a case analysis along the 3
cases in the last premise. In each case, we need in addition a case analysis depending ¢
which case, the inductive hypothesis yields.

case 1: case 1.1: case 1.2:
t E/--S * Ve C D,..Q *
3 o :
* *
vt s o y s ;
ind.
& |
$ h)Z/p, RS ¢ R'S
n- :! .. *
R S -, * .. *
* ° y R > RS o
*
Justification: t§ t', n>n-1.
case 1.3: case 2
t o R * t RS * po
$ R local RS
coh.
* t,, *
.4 = t R o5 RS o
* *
| ind. ind.
$ R/S RS hyp. RS hyp. RS
. . 2 1
. n-
*¥ S o RS o RS o RS o
* t77 * * *

As required, ti}e* t” holds,
. . b
via t§>t @§> .

Ind. hyp. 2 justified by t t, n>n-1,
ind. hyp. 1 justified by & t" o t7.

case 2.1: case 2.2:
tc D,_Q* D,..Q*
$ R $ R
* *
Y =y @ : &S
* *
$ RS RS $ RS RS
* * * * * *
Y s L, RS o ¥ R o RS o RS o
s * *

As required, tj-* t”" holds,

- * rrs
via t§>Rﬂ> EE%» [N
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case 2.3: case 3:
t © RS * t RS * po
$ R R/S local g
coh.
| . * + *
.4 = po—RS v S o RS o
* * *
! i i ind. ind.
$ R/S RS RS hyp. RS hyp. RS
* + - * n 2 " 1
.. .. - *
¥ s o RS o RS o RS o RS o
* t * * * *
As required, tlle*t"" holds, via Ind. hyp. 2 justified by t t', n>n-1.
te et ind. hyp. 1 justified by EL)o* t”.
case 3.1: case 3.2:
t * t a D,..Q *
R $ S R
* + *
RS b4 S RS
* * *
$ RS RS $ RS RS
* * * * * *
Y s 4 RS ¥ R s RS o RS o
LI * * *

As required, tj-* t”" holds,

via tlhs* Qélgf .

case 3.3:
t
R
*
RS
*
$ R/S RS RS
* + * *
Y S z RS o RS o
* 7 * *

As required, tlle ™t holds, via to [Lle ™t

O
Note that case 3 in the coherence notion is indispensable for the proof, case 2.1, even i
we skipped case 3 in local S-coherence. This points to the fact that the coherence notior

is well-chosen.

-67 -



Chapter 4: Confluence criteria

For rewrite systems R and S, coherenceofs is supported by a critical pair criterion.

One arrives at the theorem:

Theorem: (first confluence criterion)

Let R be a left-linear rewrite system, S a confluent rewrite system, and R/S Noetherian.
If for every (S, R)-critical pair (t, t'), either 4" " &Il t" or t5 g™ " LIl U

holds, and all (R, R)-critical pairs (t, t') satisfylJflo™ " 11 t', then RIS is

confluent.

Example: (Nonfin, continued)
Let f, c, s denote unary function symbols, x a variable, and let

S mef{cx - fcx}, and

R =gef{CSX - cXx}.
S is left-linear and there are no (S, S)-critical pairs. So S is confluent. By the same
argument, R is confluent. For confluence dil& the following critical pair is to
consider:

CSX =4 CX

1S 1S
fcsx R fcx

This diagram satisfies case 2 of the "first confluence criterion", therefdr® iR
confluent.
In comparison to the commutativity criterion in [Toyama 88], corollary 3.1, S needs not
be left-linear. So for example, our criterion treats the systems

R =def{c(s(x), s(y)) - c(x, y)},

S =ef{c(x, x) - f(c(x, X))}
(where c stands for a binary function symbol now) in the same way as above, whereas
Toyama’s criterion would fail.

O
The "first confluence criterion" can also be compared to [Huet 80], theorem 3.3. In
contrast to Huet, we may not replacge " " &Il t by t5" " "< " t', since

we cannot move an R-step before an S-step. In order to justify such moves, we would in
addition need coherence gf 5 . Without going into details, Huet’s theorem can easily

be instantiated (E =)Sn this spirit:

Theorem: ([Huet 80], theorem 3.3)
Let R be a left-linear rewrite system, S a confluent rewrite system, and R/S Noetherian.

If every (SOR, R)-critical pair (t, t') satisfies £* <" "« " t', then RIS is

confluent, and moreoverres = ° §* * s " holds.

O
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* *

Confluence of S may still be weakenedte <" 0 5" " "« " here (proof

omitted).

4.3. On a confluence criterion of Klop

If we want to localize even the (SS)-diagrams, then we must enforce still stronger
conditions, very much like Huet’s strong confluence. This is an idea due to [Klop 87]. In
this section, we will first recall Klop“s confluence criterion, which is the first mentioned
confluence criterion for relative termination in the literature. Then, we will show in two
steps how Klop“s criterion can be generalized further. The first step aims at a
reformulation of Klop“s result in simpler terms. Starting from the lemma in the previous
section, the second step develops a "strongly localized" descendant which obviously
generalizes that reformulation. This descendant is particularly interesting even for another
reason: It is a common generalization of Newman’s lemma and Huet's strong confluence
lemma. The result is based on the new notion of "strong coherence”, which has no
counterpart in the equational approach.

Definition: ([Klop 87], Ex. 1.7.11)

A relation S that commutes overlRis said tchave splitting effecfto R), if there are
t < RHe t', suchthatall n which satisfygggﬁ* &L U are greater than 1.

O
Klop arrives at the theorem:

Theorem: ([Klop 87], Ex. 1.7.11)
Let Q, i{1, ..., n}, denote a crowd of binary relations, and let Q£1Q.. I Qn.
Suppose that for all i, the following two conditions hold:

(1) Q commutes over @, and,

(2) if @ has splitting effect to Q, then; @ relatively Noetherian to Q.
Then Q is confluent.

O

Now we are going to show that this is a special case of an even further localized variant
of the "third localization" lemma of the previous section. First, the condition to have
splitting effect becomes much easier to understand when turned into its contrary:

Definition:
Call a relation $ion-splitting(to R), if the following diagram holds:
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Note that "non-splitting” is a property similar to "strongly commuting" (cf. the overview
in the previous chapter, third section).

Fact:
Let S commute over R Then S is non-splitting to R if and only if, S has no splitting
effect to R.

O
Now let all Q which have splitting effect, be assembled into a binary relation R, and let S
denote Q\R. The property "all @hich have splitting effect, are relatively Noetherian to
Q" can be replaced by "R is relatively Noetherian to Q", thanks to the "inheritance of
relative termination” corollary, part 3, in section 3.1. Thus we get:

Lemma:
If R/S is Noetherian, R locally confluent, and S non-splitting, the® i confluent.

O
Already this lemma is a slight generalization of Klop“s lemma, since it does not require

that R commutes with S. But it still admits an interesting relaxation, which can be derived
from the "third localization” lemma in the previous section. Namely[if.¢ is an R-

step, or an S-step that is guarded by a proper R/S-derivation, then furtBestBps
may follow:
Definition:
R’ is calledstrongly S-coherentf t; slop t2 implies that
1) & g»e*%tz or
(2) 1 EE[%»* * &ld 2 or
(3) O3 toLle*t3 Oty o8 t3 ™ " &1L to.
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Notice the e symbols in cases 1 and 3. There is also a notion of strong E-coherence in
[Jouannaud 83], with a different meaning, however. Strong S-coherence actually has no
counterpart in the equational approach. (S-coherence and strong S-coherence coincide i
S is cyclic and R/S is Noetherian.) Strong S-coherence of S essentially means strong
confluence of S. Strong coherence satisfies the following result:

Lemma: (full localization)
Let R” be such that R R" 0 R/S holds. If R/S is Noetherian, the diagram

holds, and RIS is strongly S-coherent, theiil8 is confluent.

Proof:
Using the inductive ordering ( (R/S)») on (t, n), we show simultaneously
1. the joining of the diagram &Il t 0o " (let n getw here), and

2.all't, 4, to with t1 n<§ tg:lélg_» to are strongly coherent.

For claim 1 we reuse the proof of the "second localization" lemma. So claim 2 remains to
be proven. If n = 0, then everything is trivial (case 1 of the claim holds). Let now n > 0.
Then we can apply the premise, which leads to a case analysis very similar to that in the
“third localization™ lemma.

case 1: case 1.1: case 1.2:
. E— —C -
strong "1
'R S .
coh. $ R
* * *
t S PO Y S
ind.
hyp. RS
» 3 RS
n- . * * * *
R'S o * ,
* ™ x R fe} R'S te]

Justification: t§> t', n>n-1.
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case 1.3:
t o RS
$ R
*
Y S
$ RJ/S RS
* + *
¥ s 5 RS o
™t *
. + 4
As required, tl]e*t
. + 4
holds, via ts qgg t.
case 2.1:
t o RS
$ R
*
Y R po RS
*
$ RS RS
*
y S o* RS o*
™ *
) b
As required, tlle ™t
. ) grrs
hOIdS, via t§> R EE]g» t

case 2.3:
RS
t
$
o
$ R/S RS
* + %
.4 S » RS o RS
™ {77 *

As required, tllo*t"" holds, via

tg hig ™7

Ind. hyp. 2 justified by t t', n

PO

.. *
RS o

strong
coh. RS
t" *

R o RS
*
ind. | ind. |
hyp. RS hyp. RS
2 1
RS

* *

o}

o}

ind. hyp. 1 justified by t - t”.

case 2.2:
RS
$ R
| po— RS
*
$ RS RS
* *
¥ R 5 RS s RS o
* *
case 3:
t R'S ' 2%
R/S strong RS
coh.
+ *
t S o RS o
™ *
ind. ind.
hyp. RS hyp. RS
2 1
n- *
RS s RS °
* *
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case 3.1: case 3.2:
t Q RS t @ RS
$ R $ R
* *
Y RS b4 RS
* *
$ RS RS $ RS RS
* * * * * *
Y s o RS ¥ R < RS o RS o
™ {7 % * *

As required, fl]e*t"" holds,

via tihle* o™t

case 3.3:
t Q RS
$ S R
+
b.4 S R'S *
™ *
$ R/S RS RS
* + * *
¥ s : RS o5 RS o
™ * *

As required, tlle*t"" holds, via to [Lle ™t

O
Note that case 2.1 in the proof relies on case 3 in the definition of strong coherence (cf.
the note after the "first localization" lemma in the previous section).
Let now R and S denote rewrite systems, and let R” = R. By the critical pair theorem,
we get:

Theorem: (second confluence criterion)
Let R be a left-linear rewrite system, S a left- and right-linear rewrite system, and R/S
Noetherian. If for every (S, RS)-critical pair (t, t'), either 8" 1L t" or
tx e " #&Ld U holds, andall (R, R)-critical pairs (t, t') satisfyglle ™ ™ &1L
then RIS is confluent.

O
This result can be seen as a common generalization of the Knuth-Bendix criterion on the
one hand (except for the left-linearity requirement on R, which may be dropped when
S =), and Huet's first strong confluence criterion on the other hand (for R = &).

-73 -



Chapter 4: Confluence criteria

Example: (FF, continued)
Consider R gef{ffx — fgfx}, S =gef{fa - gfa}. We learnt in the previous chapter

that R/S is Noetherian and S is not. R is left-linear, S is left- and right-linear and has no
critical pairs. The only (R, R)-critical pair joins:
fiix &  foffx
IR IR

figx ] fgfgfx

The only (R, S)-critical pair is trivial. So it meets case 1 in the definition of strong
coherence. ThereforelS is confluent, according to the "second confluence criterion".

Toyama’s confluence criterion ([Toyama 87b]) for direct sums fails because R and S
share the function symbol g.

O
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This chapter presents two results about narrowing where relative termination plays a key
role. It is shown that narrowing with intermediate rewriting (not necessarily to normal
form; "reduced narrowing") is complete if the rules used for this rewriting are relatively
Noetherian to the whole rule set. Moreover it is shownrtbamal narrowingwhere
normalization is done with a normalizing subset of the rule set, is complete, if the normal
forms are finally preserved. (Recall that normalizing means that normal forms always
exist.) These two results generalize the classical theorem of [Fay 79] that normal
narrowing is complete for Noetherian rewrite systems. By a counterexample, a previous
claim of the completeness of normal narrowing in [Hul3mann 85] is shown wrong, and
the mistake in the proof is analyzed and repaired.

5.1. Oriented paramodulation and narrowing

Equational unification is the task to solve an arbitrary equation in a given equational
theory. Universal unification is accordingly a procedure that assigns to an equational
theory E and an equation (t, t), the set of E-unifiers of t and t". Paramodulation steps
and narrowing steps are basic steps of a complete universal unification procedure, where
completeness means that every solution is covered by a computed unifier. This section is
to introduce the notions of paramodulation and narrowing, their connection to each other,
and their role in rewriting and equational reasoning. The notion of paramodulation is
presented in a new style.

Paramodulation ([Robinson, Wos 69]) was invented in order to handle equality in
resolution in an adequate and fairly efficient way. See [Padawitz 88], [Furbach et al. 89],
and [Holldobler 89] for a comprehensive treatment of paramodulation. Commonly
paramodulation is defined for conditional, symmetric rewrite systems. Employing our
liberal understanding of term rewrite system, it appears technically more convenient to
drop the symmetry condition. (In other words: The orientation of rules is taken into
account. Elsewhere the notion@fented paramodulatioms used to stress this. Here
usual paramodulation is modelled by oriented paramodulation using a symmetry closed
rewrite system.) In this thesis, we will need paramodulation and narrowing only for the
unconditional case, and we will always mean the oriented variant.

Solving an equation (t, t") in an equational theory E means to finduaifier o of the

left hand side t and the right hand side t* of the equation, i.e. a substitutguch

that t =g t'c holds. (Recall that = denotes the congruence closureof.) Since we

adopt a liberal view of term rewrite system, we may assume that Eor $ome rewrite
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system R. Let us in the following assume that R is confluent. It is well known that R then
satisfies the Church-Rosser property:

to=rt'c ifandonlyif forsomet”, bottot,"t” and o 5" t".
For convenience, we encode the two derivatiang, t t” and o 5"t into one. For

this purpose, we fix the following convention (the idea to this encoding goes back to
[Hullot 80] who used the name "h" instead of "eq".):

Encoding convention:

Let there be a binary function symbol (&€ to express equality, with the reflexive
axiom (eq(x, x)- true)d R, and "true" and "eq" do not appear as a top symbol on
any other left hand side in R.

O
Now we may treat equations (t,t") as if they were terms eq(t, t'):

Lemma: (encoding)

Let R denote a confluent rewrite system where the encoding convention holds. Then a
substitution o is a Runifier of the equation (t, t') if and only if, eq(t,d'}_;\,* true

holds.

Proof:

@)

Because reflexivity is the only rule where "eq" occurs on the left hand side, the topmost
symbol "eq" cannot be removed from the goal, unless by application of reflexivity.
Reflexivity leads to the term "true", which is in normal form, and which can therefore

only be the last term in the rewrite derivation. So the derivation has for some suitable t””
the form eq(t, t¢ ﬁ* eq(t”, t7) g true, and all rewrite steps, except the last one,

happen strictly below the top. Therefore we have both, 1t” and t6 5" t”, ie. o
is indeed an Runifier of (t, t).

(@)

Let o denote an Rinifier of (t,t'), i.e.o satisfies bothat ™t and to "t~ for
some t”". So in particular eq(t,rt'%»* eq(t”, t”) g true holds, where the last applied

rule is reflexivity.

O
Systems of equations might be treated likewise, by means of an additional binary

function symbol andF, with the rewrite rule (and(true, x) x) 0 R, and "and" does
not appear as top symbol on any other left hand side in R. The system of equations

(tla tl,)1 Ty (t’h tn,)
could be encoded into

and(eq(t, t1°), ..., and(eqf}, ty), true) ...).
We will however stick to the single equation case in the following.
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So far, we have reduced the unification problem to the problem of finding all those
substitutions o which enable a certain derivation. Now it appears quite natural to
consider the single-step problem, and this is the key idea to paramodulation, as we will
see in a minute. Fix an occurrence u and a rewrite rule rfll0 R, which has been
renamed such that Vard r) n Var(t) = &, without loss of generality. We have to
enumerate the set

P ={o to [ (to)[u«ro]}
of all substitutionso such that the instance tadmits a rewrite step using the rule. Ir
at u. Obviously P contains all the information needed to compute E-unifiers step by
step. In the definition of P, we use already the fact that the right hand side of the rewrite
step is uniquely determined by u,-lr, ando, even when | r should be right-
erasing. (Here one must be careful because of the liberal notion of rewrite rule.) On this
account, P is characterized by

P={o (to)/u=~>Db}
P is often infinite, though a finite description is desirable. For instance, it can easily be
verified that for eacho [ P, alsoot [J P. On this account, it makes sense to define a
paramodulation step as a step that computes a set of most general (i.e. minimal with
respect to the subsumption orderigg,p) elements of P.

Definition:
Let t,t" be terms, u an occurrence, I a rewrite rule, ands a substitution. Then
t admits a paramodulation step @atvith o (tot” ), (in symbols ﬂEﬂ]ﬁlP ot") if

(1) wil. t, and

(2) o’ Q@? t” implies that there is a substitution such that bothon = to”

and th =t".

O

(Elsewhere this definition is called tlifting lemma since it appears as a consequence of
a different definition.) In short, one may say that, given aterm t, an occurrence u, and
arule |1- r, paramodulation describd®e most general instance of tthat admits a
rewrite stepat u using rule b r. For this reason, rewrite steps may be considered as a
special case of paramodulation steps.
Above we suggested that there is a finite presentation of P. The set of paramodulation
steps for fixed u and 4 r is actually finite, provided F is finite. So we c&ffectively
computeparamodulation steps, where we have to distinguish two cases:
Case 1:ulJFOcc(t).
Then (b)/u = (t/u)o, so P = {o. (t/lu)o = lo }. In other words, P is the set of
@-unifiers of t/u and I. As it is well known, @-unifiers are decidable, and the most
general @-unifier, if it exists, is unique up to renaming. Such a step is also called a
narrowing step(in symbols Cﬂl;ﬂ@r—»(j t).
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Case 2:ullFOcc(t).
Then there are occurrences v, w, and a variable x such that t/v e)¥,wWx= lo,
and u =v.w hold. Moreover v, w, and x are unique. Without going much into details,
let us state that here the finite set

{'w < 1] / x]. OWOFOcc(l"). W preW }
is equal (modulo renaming) to the set of most general elements from P. The term | is
calledthe prefix tol in I'|w ~ I] which is substituted for x. [Padawitz 88] shows that
prefixed rules I'[w— 1] - [I'[w < r] allow to simulate proper paramodulation steps
by narrowing steps.

Even if both R and F are finite, paramodulation is usually infinitely branching, i.e. from a
term t infinitely many paramodulation steps may start, due to infinitely many
occurrences WFOcc(t) below a variable x. This drawback is not shared by narrowing,

provided R is finite. Narrowing is a restricted form of paramodulation; it coincides with
paramodulation whero is normal. (A substitution is callednormal if xo is normal

for all x(OX .) This fact makes narrowing more attractive than paramodulation. | found it
instructive to perform all proofs for the paramodulation case first, and to add a corollary
for narrowing.

Example:
1. Let R gef{0O+x - X, s(X)+y— s(x+y)} and t gefz+z. Narrowing steps for t can
take place at occurrengeonly. Up to renaming, they are

t [[H?,;lg 0, and

t B S(Z+s(2),
where 0 =qef [0/X, 0/z], and 0" =qef [Z'/X, S(Z')ly, S(z')/z]. An infinite crowd of
further paramodulation steps (which are no narrowing steps) is for instance

t Bg o 9(0) +(0+0), 0N,
where u =1.....1 (i times), andl” =gef [0/X, 9(0+0) / z].

2. Let R mef{eq(x, X) - true} and g gefeq(f(y), z). The only R-paramodulation step
(actually a narrowing step) for the goal g is

g [[]EP,Q»G true,
where o =qef [f(Y)/X, f(y)/z].

O

A paramodulation step is the basic step cbmplete universal unification procedure
set U of E-unifiers of (t, t") is callecbomplete if every E-unifiert of t and t" is
coveredby some computed unifieoCU, i.e. eq(t, t9 =sup eq(t, t'p holds. (There
is a different notion of completeness in the literature, see [Fages, Huet 83], which uses
subsumptiommodulo E. Our procedures may produce some superfluous substitutions on
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that account.) Given an equational specification E and two terms t and t’, the
paramodulation procedure indeed delivers a complete set of E-unifiers of t and t.

Theorem: (completeness of paramodulation)
Assume that R is a confluent rewrite system satisfying the "encoding convention”. Let
U denote the set of substitutioms= 01...0n Where eq(t, t’l[Ekq o, - P g, true is

a paramodulation derivation. Then U is a complete setwiifers of (t, t").

Proof:

After the explanations above, the proof is not hard.

Correctnesst.e. U only contains Rinifiers of (t, t). Assume given a paramodulation
derivation eq(t, t')} Pk g, ... lPk g, true, and leto =01...0n. Paramodulation by

definition describes most general rewrite steps, so here there is a rewrite derivation
eq(t, t'o ﬁ* true. Employing the "encoding” lemma, this means thas an Runifier

of (t,t).

Completenesd:e. every Runifier of (t, t') is covered. Let denote an Rinifier of

(t, t"). Due to the "encoding" lemma, satisfies eq(t, t’r)ﬁ* true. According to the

definition of paramodulation, there exists a paramodulation derivation
eq(t, t') Py g, ... [P g, true and somey where 1 =01...0nN. Hencet is covered

by the computed unifieo =gef01...0n.

O
If the substitutiont is normal, every paramodulation step is actually a narrowing step.

Corollary: (completeness of narrowing; for R Noetherian, see [Hullot 80]; [HuR3mann
85])

Assume that R is a confluent rewrite system which satisfies the encoding convention. Let
U denote the set of substitutioms= 01...0, Where eq(t, t'h;l};I]'_? o, - N> g, true is a
narrowing derivation. Then U is a set ofuRifiers of (t, t') which is complete for
normal Runifiers of (t, t).

O

5.2. Normal narrowing is not complete

The pure narrowing procedure is very inefficient as theoretical considerations
([Bockmayr 86]) and practical use ([Geser, HuBmann 85], [Hammes 86]) have shown.
Various improvements have therefore been investigated: Basic narrowing ([Hullot 80]),
redex selection strategies ([Fribourg 84], [Padawitz 87], [Echahed 88]namnaal
narrowing, i.e. narrowing with intermediate normalization of terms ([Fay 79]).
Overviews of narrowing optimizations are given in [Rety 87], [Nutt et al. 87] and
[Padawitz 88].
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Normal narrowing has up to now only been considered when the whole set of rewrite
rules was terminating (except in [HuBmann 85]). However it is also an interesting
question whether narrowing with normalization bgamalizing subseR of the rules
remains complete, although the whole setSRof rules is potentially nonterminating.
This question is connected with relative termination, as we will see. In this section we
will show by a counterexample that, against all expectatRmmrmal RJS-narrowing

IS not completdor normal solutions, even when R terminates. This counterexample
falsifies a conjecture of [HuBmann 85] and shows that HuBmann’'s (correct) proof
attempt was insufficient.

A normal paramodulation step (and accordingly a normal narrowing step) for t consists
in reducing t to an R-normal forim for this reason let us assume that R is normalizing

O followed by a paramodulation step. Formally, normal paramodulation is defined thus:

Definition:
Let R be normalizing. AiR-normal R7S-paramodulation stefprom t to t* is defined
by:

tﬂﬂl%_s.ot’, if t ﬁ.NF [(PRle o t.

O

The optimizing effect is obvious as a normal paramodulation derivation is a special case
of a paramodulation derivation (by taking rewrite steps as paramodulation steps), and
some paramodulation derivations are cut off. For the same reason, normal
paramodulation is correct against the paramodulation procedure. The same reasoning
applies to normaharrowing It is commonly known that if S = @, completeness can be
easily proven by induction on R ([Fay 79]). The completeness proof in the gage S
nonterminating is, however, much more intricate. HuBmann attempted to give such a
proof for the conditional case with [HuBmann 85], lemma 5.6. We will reexamine the
reasoning for the unconditional case only. An unconditional version of the lemma which
HufRmann proved looks as follows:

Fact:
If R is confluent, then " true and t; t" imply t" " true.

O
Using this lemma, arbitrarily many R-normalization steps may be interleaved with the

narrowing steps without loosing completeness. But let us be precise:

Theorem:
Let R be a confluent rewrite system, andhn arbitrary. Let U denote the set of
substitutionso = 01...0x Where either

(1) ksn and eq(t, tYNPLLI T g, ... ONPRLITL g, true, or
(2) k>n and eq(t, tONPLLIT 6, ... ONPRLI T 6 (Peg,,, ... (B g, true
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hold. (Informally: As soon as the length of the normal paramodulation derivation exceeds
n, normalization is switched off.) Then U is a complete setwofifRers of (t, t).

O
The difference to normal paramodulation is very small: An arbitrary upper bound for the
number of normalizations exists. But this theorem does not say that normal
paramodulation is complete.

Lemma:
R-normal RIS-narrowing may bencompletealthough R is Noetherian, and R, S, and
ROS are confluent.

Proof:
By counterexample. Let a, b, ¢ be constants, and let
R =gef{a - b, eq(x, x) — true} and

S zef{fb - a, a- c}.
The goal g gefeq(b, c) has the trivial solutioml, the identity substitution (there is no
unknown to be solved). This solution is obtained by means of the following narrowing
derivation:

eq(b, c) MNgid eq@ c) MNgid eq(c, c) Mid true.
On the other hand, the only narrowing derivation with R-normalization is

eq(b,c) NF eq(b, c) MNgig

eq(@c) gNF eq(b, c) [MNgid

eq(a, c) ...
which becomes cyclic and therefore yields no solution.
(S contains a left hand side "a" which is not in R-normal form. It may seem that this was
the reason for incompleteness. However a slightly changed example points out the
contrary: Let f be a unary function symbol, and a, b, and c be constants. The setting

R =gef{f(a) — b, eq(x, X)- true},

S =gef{b - f(a), a- c},

g =def eq(b, f(c))
works the same way.)

O

What went wrong? The missing link idarnessargument. In the counterexample, the
application of a narrowing step after R-normalization destroyed R-normal forms again
and again. In other words, S did not finally preserve R-normal forms (this notion will be
defined below). Although every intermediate goal has the potential to reach the solution,
it is not certain whether sufficiently many steps decrease the distance to (i.e. the length of
the shortest derivation to) the solution. If S does finally preserve R-normal forms, then
the distance to the solution finally decreases, and completeness holds indeed, as we wil
prove in the last section.
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5.3. Relative termination and reduced narrowing

Before we prove a completeness result for normal narrowing based on the premise that £
finally preserves R-normal forms, let us first consider the special case R relatively
Noetherian to S. The issue becomes comparatively simple here since we need not car:
about normal forms. We actually need not performdRmalization but may perform
arbitrarily less R-rewrite steps. Padawitz ([Padawitz 88], section 8.7) calls this technique
"R-reduced RIS-paramodulation”. We will arrive at a surprisingly simple proof of
completeness of R-reducedlB-paramodulation and narrowing.

Definition:
An R-reduced R/S-paramodulation stefpom t to t is defined by:

tREQ;\%—S»Ot’, if t 5" [Pl o U

O

This definition does not yet cover the following fact: A procedure for reduced
paramodulation performs the R-reduction in a "trap door" way, i.e. it disregards
alternative R-reduction steps. But at a point where a paramodulation step &ldue,
possible paramodulation steps are considered. We may take this into account by the
following definition:

Definition:
A set D of reduced paramodulation derivations starting from t is catiehputed set
if it satisfies the following constraints:
(1) If some reduced paramodulation derivation in D has the prefix

t ORERIETL- o, - OREII S 0, g U PR o, 1
then for every paramodulation step HBf[l>s, t”", D contains a reduced
paramodulation derivation which has the prefix

t DREE!%—» oy - D[R]EQ%Q .. ﬁ* t PRle o, U
(2) Every reduced paramodulation derivation in D which has the prefix

t ORPRL -6, - ORBI 6., g 1,
continues with a rewrite step or a paramodulation step, provided that t* admits a
paramodulation step.

O

This definition will in the following only be used informally, however. The proof of the
following completeness theorem relies on the fact that, as long as R-steps are performed
the goal decreases with respect to the ordering/  )*, otherwise this ordering is

preserved and the length of the remaining derivation decreases.
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Theorem: (completeness of R-reduced/& paramodulation)

If ROS is confluent and R/S is Noetherian, then R-redudeé&Raramodulation is
complete, i.e. every computed set of R-reducédSRbaramodulation derivations
computes a complete set aflR-unifiers.

Proof:
We prove

If gt fHs Mtrue, then @REQ%%_,G* true where g <gypgt
by induction along the ordering » on pairg, (@, defined by

(t,n) » (t', n")= def

t(g/g)" U0
tRlHe U On>yn.
Case 1:grt = true.

Obvious
Case 2:t s FHe " true.

According to the definitions of reduced paramodulation and computed set, now
either an R-rewrite step or ari$-paramodulation step is done. It must be shown that
no matter which one is chosen, an approximanti®safely computed.

Case 2.1: An R-rewrite step is chosen.

Then g g and, since RS is confluent, g l;lg%* true. Because 19z g'T,
the induction hypothesis applies and yields the claim.
Case 2.2An "ordinary" paramodulation step is chosen.

By definition of a paramodulation step:[B, 9", HT" =T, 9T s n-1true.
The inductive hypothesis applies, becauselJde gt~ and n > n-1. It yields a
substitution 0© where g6" <supg't". One can choosg such that go” <gypgut”
holds. SO0 g <sypgt, where o =gefH0".

O

Corollary: (completeness of R-reduced/& narrowing)
If ROS is confluent, and R/S is Noetherian, then R-reduc¢é8-Rarrowing is complete
for normal substitutions.

Proof:
Like above. Notice that in case 2.2, the substitutibnis R1S-normal sincet is. So

the paramodulation step actually is a narrowing step.
O
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5.4. A completeness result for normal narrowing

As promised above, even the comparatively weak condition "S finally preserves
R-normal forms, and R normalizing" suffices for a completeness proof of R-normal
ROS-paramodulation. The section begins with a definition of final normal form
preservation together with a number of basic facts about it. The main problem which we
come across is then: Instantiation along a paramodulation derivation does not preserve
normal forms at all. How can we take use of final normal form preservation anyway? The
essential trick is to prove that finally there is no more strict instantiation. The proof is
rather technical in nature; any reader who is not familiar with substitution handling is
suggested to skip it. The remainder of the section is devoted to a detailed proof of the
completeness claim.
Definition:
1. SpreservesR-normal forms if for all t,t" such that %* t" and ENFR, also
t'ONFRr holds.
2. The relations +NF ("proper R-normalization'is defined by

t ﬁﬁNFt' =def tg*t O UONFR.
Note that as a consequenceNER. Accordingly ﬁ.”\": is Noetherian.
3. Sfinally preservefR-normal formsif every derivation

to FTNF §* ty ﬁ,NF §* t ﬁ,NF §*
contains only finitely many;@NFg.

O
These three notions are closely correlated:
Facts:
1. If S preserves R-normal forms, then S finally preserves R-normal forms.
2. S finally preserves R-normal forms if and only r;EfffNF/ s Is Noetherian.
3. If R/S is Noetherian, then S finally preserves R-normal forms.
(Proof: (ﬁ’fNF/ )P0 ()P =Fs))
O

The converse of the third lemma does not hold: S may preserve R-normal forms although
R/S is not Noetherian, as the following counterexample demonstrates:

S

R
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Now the main result of this chapter can be formulated:

Theorem:(completeness of R-normal (orientedy&®paramodulation)
If ROS is confluent, R is normalizing, and S finally preserves R-normal forms, then
R-normal (oriented) RS-paramodulation is complete.

O
Let us first attack the completeness proof informally. Suppose that goal g has a solution
T, i.e. there exists a derivatiort [fJ< " true for some [N. In order to compute a
unifier that coverst, we must step by step construct a normal paramodulation derivation
that approximates. The first normal paramodulation stedPLIIIl-, 9" brings up
the following goal g". The substitutiom must satisfy g=sypgd, otherwiset could
no longer be covered. (Such a normal paramodulation step really exists, as will be shown

below.) In other words, there is a substitutiori that satisfies = gut”. By
confluence of RIS, a derivation g” [JHs N true exists. Now the proof would be

finished if the inductive hypothesis could be applied to that derivation. This means, we
need a suitable Noetherian ordering > that compares the two derivations:

(gt JHo "true) > (gt oo true) .
Final normal form preservation means th§t+(\'F/ = )" is a Noetherian ordering. As

soon as normal forms are preserved, the normal paramodulation steps come down tc
"ordinary" paramodulation steps. So far, so good. But paramodulation steps may
instantiategoals[] instantiation may at any time destroy normal forms. This means a
severe problem to the proof since the normal form preservation property cannot work as
long as it is interfered by instantiation. Renamings are by the way harmless; they cannot
turn a normal form into a rewrite redex. The crucial fact that solves the problem is: Strict
instantiation cannot happen infinitely often. A Noetherian ordering > will be defined that
comparest with 1" such that eithert > 1" or 1" is essentially a renaming af.
Renaming can easily be factored away. So sooner or latett't must be reached, and

then normal form preservation ticks. The Noetherian ordering which we need will be
defined as a lexicographic combination on triplesg( n).

Let o be an approximant of, i.e. g =gut” holds for some suitable substitutian

One may then say that for g the substitutioris "missing” to the final instancet,g

and likewise 1" for gu. The "missing” substitutions are ordered by a Noetherian
ordering.

-85 -



Chapter 5: Applications of relative termination

Definition:
1. Multisetsare collections of elements where in contrast to sets also the multiplicity of
elements counts. Given an ordering > on elementsjuttset extensiorsyyt, an
ordering on multisets, is defined as the closure under + (the multiset sum) and under
transitivity of the relation:
{(lyl, m). y>x forall xJdm }.
It is known that the multiset extension of a Noetherian ordering is Noetherian on finite
multisets ([Dershowitz, Manna 79]).
2. Recall from chapter "Termination, termination modulo, and relative termination”,
section "Termination orderings for rewrite systems" the subterm ordering |> on terms:
t|>t means that t is a strict superterm of t.
Define the relation » on triples,(t, n) by
(. t,n) » 67,1, n") < def
[xo. xOVar(t)] |>muit [xo”. xOVar(t)] O
to=t0" O (t(xNF*/ )"t O
t(gNFO )"t On>yn'),
where square brackets denote multiset comprehension, for examplelif \far£t) are
distinct variables, and oy= zo, then y occurs twice in the multiset ¢x xOVar(t)].

O
For the proof of completeness, we need some facts about »:

Lemma:
1. If S finally preserves R-normal forms, then » is a Noetherian ordering.
2. Letthe term t be given, and lgtt't=tt. Then

Q) [xt. xOVar(t)] |>muit [xt". xOVar(ty)] or

(2) W isarenaming of t.

Proof:

1

The subterm ordering |> is Noetherian, so the relatigg{>s Noetherian on finite
multisets. If & =to”, then in particular[xo. xOVar(t)] = [xo". xOVar(t)]. The
relation (*NF/ - )* is Noetherian by the premise that S finally preserves R-normal

forms. The relation £ *NF/ +)* absorbs £NF O &)*. So the lexicographic

combination » is Noetherian as well.
2:

Assume a term t° such thatdyar(t) holds. Then t” |z yt" by definition of #.
Accordingly by definition of multiset extension, Tt |2muit [yt . ydVar(t’)] holds.
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With t" =gef X, xOVar(t), we get:
[xut". xOVar(t)] Bmut [yt . yOVar(xy) O xOVar(t)],
which is equivalent to

[xt. xOVar(t)] Bmuar [yt yOVar(tu)].
Finally we show that whenever txxVar(t)] = [yt". ydVar(ty)], then the termt is

just a renaming of t. So assume thatt.[xOVar(t)] = [yt". ydVar(tu)], or
equivalently, that [{kKIVar(t). xt = to}] = {yOVar(tn). xt” = tg}| holds for every term

to. Observe that the set of nontrivial sughst finite due to the finiteness of Var(t).
Choose a maximal nontrivial such, ti.e. if " |>t then {dVar(t). xt =19’} = @.

By definition, there is a bijection from {War(tu). xt” = o} to {xOVar(t). xt = 1g}.

This way the set can be exhausted, and the wanted bijection is the disjoint union of the
assembled pieces.

O
Due to confluence of RS, we may continue with a normal form of g, and may be sure

that from this normal form still a successful rewrite derivation exists. But that derivation
may turn out longer than n. Now because of final normal form preservation, finally g
must be a R-normal form itself. In that case, we can take the next step from the rewrite
derivation for g [H-" true, so we decrease the length of the derivation by 1. This is
the essential step. Let us now finish the proof:

Theorem:(completeness of R-normall/8-paramodulation)
If ROS is confluent, R is normalizing, and S finally preserves R-normal forms, then
R-normal RIS-paramodulation is complete.

Proof:
Fix some arbitrary (need not be most general) solutiorof the goal g, thatis,
gt fHe M true holds for some [fN. By induction on the triplest(g, n), using » as

Noetherian relation, we are now able to prove that there is a normal paramodulation
derivation g]]ﬂ[Eg%gao* true whereo <gpT.

Let o O NFR(Q) # @ be some arbitrary normal form of g. Note that in genergl, g
needs not be unique, for R is not necessarily confluent. BecalSasReonfluent, there

is a derivation gr o™ true. If already GNFRr(g), i.e. g =g, then we may

obviously take the given derivation of length n. (We will still need this fact below in
case 2.2.1.) There are the cases:
Case 1:got = true.

Obvious.
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Case 2:qot fHs FHe ™1 true, m>0.
By def. of paramodulation there agg 1°, g°, such that @(P», 9", uT° =T,
and gt EE§* true. A case analysis shows that in either of the following subcases, the
inequation ¢, g, n) » t', g, m) holds.
Case 2.1:xt. xtOVar(9)] |Pmuit [xt". xOVar(g)].
T and 1" differ by a strict instantiation.
Case 2.2:[xt. xtVar(g)] = [xt". xOOVar(g’)].
l.e. T and 1" differ only by a bijective renaming. So the paramodulation step
actually was a rewrite stepp fs 9", 97T EIE%* true. Since @ was R-normal, even
do » 9 holds.

Case 2.2.19=.

Then using the paramodulation/rewrite step taken from the derivation of length n,
g g and n>n-1=m-1 hold.
Case 2.2.2:.9% Qo.

Then g *NF/<)* g° holds.
In all subcases (2.1, 2.2.1, and 2.2.2) the inequatmrg, () » ¢, g", m) holds,
which justifies the inductive hypothesis fortgls ™ true. We may so continue with

case 2 in general. The inductive hypothesis supplies a normal paramodulation derivation
g D[I}II]EQ%%_.Of* true, where @ <supgT holds. The substitutionc” can be
chosen such thatug” <sypgut” holds. Thus there is a substitution=qgef uo~ together

with the step g NF go O NBJLIIL-;, g~ which completes the desired normal

paramodulation derivation [GNPLIITI- o true.

O
For normal narrowing, there is a corresponding result. Normal solutions are

approximated by normal substitutions only, and for normal substitutions, narrowing and
paramodulation steps coincide (this concerns case 2 in the above proof). So we have:

Corollary: (completeness of R-normal/8-narrowing)
If ROS is confluent, R is normalizing, and S finally preserves R-normal forms, then
R-normal R1S-narrowing is complete for normal solutions.
O

The following example demonstrates the strength of the theorem:
Example:
Let R =gef{a(X) - b(x), b(x) - c(x), eq(x, X)- true},

S et {b(x) - a(x), c(s(x))- a(x)}, and

g =def €q(c(n), c(0)).
R/S is not Noetherian because of the cycle g(0(x) o a(x). But R’/S is Noetherian,
where R gef{a(x) - c(x), b(x) -~ c(x)}. Therefore, particularly . *NF/ o is

- 88 -



Chapter 5: Applications of relative termination

Noetherian, and b¥{_»+NF = 5 +NF  also B +NF / ¢ is Noetherian . So R-normal

ROS-narrowing is complete.

Normal narrowing derivations are of the form
eq(c(n), c(0)) NF eq(c(n), c(0)) Mg [s(n,) / n]
eg(a(n), c(0)) NF eq(c(n), c(0)) MNg[s(n)/n]

eq@m). c(©) gNF eqem).c0) Mo/n e,
which deliver the full set of solutions ) / n]. KIN}. Note that the R-normal
forms c(%(0)) are destroyed k times during the rewrite process; this indicates that
normal forms are not preserved at once, but finally.

O
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Summary

The property ofrelative termination invented by [Bachmair, Dershowitz 86] and
independently by [Klop 87], is the topic of this thesis. Relative termination to a rewrite
system is a straightforward generalizatioteominationas well as ofermination modulo

an equational theory. The generalizatiostigt, as is proven by an example (section 2.6)
that is relatively Noetherian, but neither Noetherian nor Noetherian modulo. Necessary
syntactic conditions for relative termination are stated (section 2.2). It is shown that
existing techniques and methods to prove termination and termination modulo basically
can be reused to prove relative termination (section 2.3). This holds in particular for the
lexicographic recursive path ordering and for polynomial interpretations. The question,
whether there is a general characterization of relative termination by means of a
termination quasiorderings still open. But it is shown that, provided that the acyclic part

of the binary relation S is Noetherian (as is the case with termination modulo), then
relative termination to S is characterized by means of a termination quasiordering.
Relative termination is investigated in connection with finitely branching relations (section
2.4), among other things with tlogiasi-terminationproperty. Quasi-termination and
relative termination are similar notions. Another notion which is similar to relative
termination, idinal preservation of normal form$reated in section 5.4). These notions
arise quite naturally with considerations on relative termination.

The question, when termination of both R and S allows to infer the terminatidn&f R

in other words, when RS inherits terminationis of basic importance for composed
rewrite systems. In the case difect sumsi.e. disjoint sets of function symbols
occurring in R and S, there exist strong results for inheritance of confluence ([Toyama
87b]) and termination ([Toyama et al. 89]). As a consequence of the infinite version of
Ramsey’s theorem, another sufficient condition for inheritance is givearsjtivity of

RIS (section 3.1). An application of this result is itiigeritance of relative termination

The method to prove termination by tlexicographic combinatiorof Noetherian
orderings is discovered to mimic precisely inheritance of relative termination (section
3.2).

Path orderings show their weakness when applied to prove termination modulo, and so
do they for relative termination. On this account, commutation criteria along [Bachmair,
Dershowitz 86] are valuable, since they allow to infer relative termination from
termination. The commutation approach is attacked in a fairly general form, such that
both the approaches qtiasi-commutatiomndcooperationcan be described as special
cases (sections 3.3, 3.4, and 3.5). The value of the general form is demonstrated by ai
example proof that would not work in the present special cases (section 3.4). Proofs of
relative termination are also suitable to prove termination of certain rewrite systems. This
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is the basis of th&ransformation orderingporoof method. As is known, some self-
embedding rewrite systems can be shown terminating by transformation.

In the second part of this thesis, applications of relative termination are investigated, other
than termination proofs again. In chapter 4, m®nfluence criterisdbased on relative
termination are worked out. Section 4.1 introduces and motivates a property that matches
coherencen the confluence modulo approach. For symmetric S, indeed a substantial part
of the "confluence modulo" approach ([Jouannaud, Kirchner 86]) is covered. The last
one of these confluence criteria (section 4.4) reformulates and generalizes a confluence
result of [Klop 87], and generalizes moreover the two classical approaches of [Knuth,
Bendix 70] (local confluence of critical pairs) and [Huet 80] (strong confluence for linear
rewrite systems).

Chapter 5 finally presents two new results about narrowing with intermediate rewriting
("reduced narrowing and narrowing with intermediate normalizatiom@tmal
narrowing'’), where besides the rewrite system R, used for reduction, normalization,
respectively, there may still be other rules S. Reduced narrowing is shown complete
when R is relatively Noetherian to S (section 5.2), and normal narrowing is shown
complete when R is normalizing and S finally preserves R-normal forms (section 5.3).
Both results generalize the classical result about normal narrowing of [Fay 79]. A
previous conjecture of [HulBmann 85] which dispenses with final normal form
preservation, is shown wrong by a counterexample. The mistake is located and carefully
analyzed.

Apart from these main results, the thesis contains a number of small novelties. The well
known lexicographic path ordering is defined by means of a rewrite systenométh
hidden function (section 2.3). A dependency graph of commutation-like properties is
drawn (section 3.3). Ayeneral critical pair criterionis stated which assembles all
syntactic premises once and for all (section 3.6).

Altogether, it may be stated that thguational rewriting approackan be extended to

what might be called aéductional rewriting approach by simply dropping a symmetry
condition, and by dropping syntactic restrictions usually put on rewrite systems.

Extensions or: What has not been treated

Relative termination is just one of a number of possible generalizations of termination,
and many rewrite systems aret relatively Noetherian, for example rewrite systems for
while loops. Some terms can be normalized, though, applying a certain rewrite strategy.
Rewrite strategies, however, have not been considered in this thesis.

Some known termination orderings, like tiauth-Bendix orderind[Knuth, Bendix

70]) or thesemantic path orderinKamin, Lévy 80]), as well as recent improvements in
path anddecomposition ordering§Rusinowitch 87b]), had to be neglected for space
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reasons. (Interestingly though, transformation techniques can still handle some crucial
examples of improved path orderings.)

Many of the criteria presented in this thesis may be seen as correctness proifeods

to prove termination, confluence, etc., which still may be prepared to software tools.
Since concrete software was not an aim of this thesis, this work is left for the interested
reader and software developer.

A very promising method for "automated" inductive proving, {m®0f by consistenty
method ([Musser 80], [Huet, Hullot 82], [Jouannaud, Kounalis 86], [Kapur, Musser
87]), may also be extended towards relative termination, the guideline being that
strictorderings of the form (R/S)serve as inductive orderings. Many of the proofs (of
commutation and confluence properties) in this thesis are not far from being formalized
on that account. The details, of course, still have to be worked out. It may be expected
that the equational approach ([Bachmair 88]) again becomes a special case.

The confluence criteria in chapter 4 are far from being exhaustive cbhgruence class
approachi of [Peterson, Stickel 81] and [Jouannaud 83] shows a way to scrap the left-
linearity restriction. It can be carried over also to "descendants classes" of arbitrary
rewrite systems S. Applying Jouannaud’s technique, a rewrite system R’ satisfying
RO RO R/S is introduced. Such a starting point can still be found in the lemmas in
chapter 4. But the further development towards critical pair criteria would burst this
dissertation. In order to deal with them, one needs a couple of notions such as "class
rewrite relation”, "S-unifier" and "S-critical pair", generalized to arbitrary rewrite systems
S, rather than symmetric ones. Furthermore an unsymmetric unification algorithm, and
software support in computing examples, must still be made available:

The theory of equational term rewriting systems presented here lacks many
examples. We apologize for this drawback and explain the reason: interesting
examples are simply intractable by hand. Only computer experiments can
provide such examples.

(conclusion in [Jouannaud, Kirchner 86])

-92-



References

The following abbreviations are used:
Proc. Proceedings, Intl. International, Conf. Conference, J. Journal, Vol. Volume, No.

Number, pp. pages, LNCS Springer Lecture Notes in Computer Science

[Avenhaus, Madlener 90]
J. Avenhaus, K. Madlener: Term rewriting and equational reasoning. To appear in: R. B.
Banerji (ed.):Formal Techniques in Artificial Intelligence: A source-bo&ksevier Science
publishers B. V., Amsterdam, 1990.

[Bachmair 88]
L. Bachmair: Proof by consistency in equational theories. Phoc. Logic in Computer
Science 1988, pp. 228-233.

[Bachmair, Dershowitz 86]
L. Bachmair, N. Dershowitz: Commutation, transformation, and terminationPrat. 8th
Conf. on Automated Deductiop®xford 1986, LNCS 230, pp. 5-20.

[Bachmair, Plaisted 85]
L. Bachmair, D. A. Plaisted: Termination orderings for associative-commutative rewriting
systems. InJ. of Symbolic Computatiofi985) 1, pp. 329-349.

[Bellegarde 86]
Rewriting systems on FP-expressions to reduce the number of sequences yiel@etente

of Computer Programming (1986), pp. 11-34.

[Bellegarde, Lescanne 86]
F. Bellegarde, P. Lescanne: Termination Proofs based on Transformation Techniques.
Manuscript CRIN 86-R-034, 1986, to be published.

[Bellegarde, Lescanne 87]
F. Bellegarde, P. Lescanne: Transformation orderingPtoc. 12th Colloquium on Trees in
Algebra and ProgrammindPisa 1987, LNCS 249, pp. 69-80.

[Ben-Cherifa, Lescanne 86]
Termination of rewriting Systems by polynomial interpretation and its implementation. In:
Proc. 8th Conference on Automated Deducti®B86, LNCS 230, pp. 42-51. Also in: Science
of Computer Programming 9 (1987), pp. 137-159.

[Bockmayr 86]
A. Bockmayr:Narrowing with inductively defined functianSEKI memo 25/86, Universitéat

Kaiserslautern, 1986.

-93 -



References

[Bockmayr 88]
A. Bockmayr: Narrowing with built-in theories. IRroc. Intl. Workshop on Algebraic and
Logic ProgrammingDresden, Mathematical Research 49, Akademie Verlag, Leipzig, 1988,
pp. 83-92. Also in LNCS 343.

[Book et al. 81]
R.V. Book, M. Jantzen, C. Wrathan: Monadic Thue systems.Theoretical Computer
ScienceVol. 19, No. 3, 1981, pp. 231-251.

[Church, Rosser 36]
A. Church, J. B. Rosser: Some properties of conversionTransactions of the American
Mathematical Societ89, pp. 472-482, 1936.

[Dauchet 88]
M. Dauchet: Termination of rewriting is undecidable in the one-rule case.Primc.
Mathematical Foundations of Computer ScieB8eKarlsbad, LNCS 324.

[Dauchet et al. 87]
M. Dauchet, T. Heuillard, P. Lescanne, S. Tyson: Decidability of confluence of ground term
rewriting systems. InProc. of the 2nd Symposium on Logic in Computer Scidtitaca,
New York, June 1987.

[Davis 73]
M. Davis: Hilbert’s 10th Problem is unsolvable. American Mathematic Monthi§0, 3
(March 1973), pp. 233-269.

[Dershowitz 79]
N. Dershowitz: A note on simplification orderings. Information Processing Letteigol. 9,
No. 5, 1979, pp. 212-215.

[Dershowitz 81]
N. Dershowitz: Termination of linear term rewriting systems. Hroc. 8th Intl. Conf. on

Automata, Languages, and Programmih§iCS 115, pp. 448-458.

[Dershowitz 82]
N. Dershowitz: Orderings for term rewriting systems. Theoretical Computer Science
Vol. 17, No. 3, March 1982, pp. 448-458.

[Dershowitz 85]
N. Dershowitz: Termination. InProc. 1st Intl. Conf. on Rewriting Techniques and
Applications Dijon, May 1985, LNCS 202, pp. 180-224.

[Dershowitz 87]
N. Dershowitz: Termination of rewriting. Inl. of Symbolic Computatio(l1987) 3,
pp. 69-116.

-94 -



References

[Dershowitz et al. 83]
N. Dershowitz, J. Hsiang, N. A. Josephson, D. A. Plaisted: Associative-commutative
rewriting. In:Proc. 8th Intl. Joint Conf. on Artificial Intelligengdarlsruhe, Aug. 1983,
pp. 940-944.

[Dershowitz, Manna 79]
N. Dershowitz, Z. Manna: Proving termination with multiset orderin@emmunications of
the ACM 22, pp. 465-476. Also in: Proc. Intl. Conf. on Automata, Languages, and
Programming, Graz, July 1979, pp. 188-202.

[Dershowitz, Jouannaud 89]
N. Dershowitz, J.-P. Jouannaud: Rewriting systemsHémdbook of Theoretical Computer
ScienceNorth-Holland, 1989.

[Detlefs, Forgaard 85]
D. Detlefs, R. Forgaard: A procedure for automatically proving the termination of a set of
rewrite rules. InProc. 1st Intl. Conf. on Rewriting Techniques and Applicatidvign,
May 1985, LNCS 202, pp. 255-270.

[Drosten 89]
K. Drosten:Termersetzungssysteme, Grundlagen der Prototyp-Generierung algebraischer

Spezifikationeninformatik-Fachberichte 210, Springer, Feb. 1989.

[Echahed 88]
R. Echahed: On completeness of narrowing strategierae: Intl. Colloquium on Trees in
Algebra and Programmindl988, LNCS 299, pp. 89-101.

[Fages, Huet 83]
F. Fages, G. Huet: Complete sets of unifiers and matchers in equational theoriesocln:
Colloguium on Trees in Algebra and Programmitt§83, LNCS 159, pp. 205-220.

[Fay 79]
M. Fay: First order unification in an equational theory. In: W. H. Joyner (Bdog. 4th
Workshop on Automated Deductigcademic Press 1979.

[Fribourg 84]
L. Fribourg: A Narrowing Procedure for Theories with Constructors.Ptac. 7th Conf. on
Automated DeductigrMay 1984, LNCS 170, pp. 259-281.

[Furbach et al. 89]
U. Furbach, S. Hdlldobler, J. Schreiber: Horn equality theories and paramodulatidnofin:
Automated Reasoninyol. 5, No. 3, Sept. 1989, pp. 309-338.

-95 -



References

[Ganzinger, Giegerich 87]
H. Ganzinger, R. Giegerich: A note on termination in combinations of heterogeneous term
rewriting systems. InBulletin EATCSNo. 31, Feb. 1987, pp. 22-28.

[Geser, HuRmann 86]
A. Geser, H. HuBmann: Experiences with the RAP sydiena specification interpreter
combining term rewriting and resolution. lProc. 1st European Symposium on
Programming March 1986, LNCS 213, pp. 339-350.

[Gnaedig 87]
I. Gnaediginvestigations on termination of equational rewritinBeport INRIA, Le Chesnay,
1987.

[Gnaedig, Lescanne 86]
I. Gnaedig, P. Lescanne: Proving termination of associative rewriting system by rewriting. In:
Proc. 8th Conf. on Automated Deducti@xford, LNCS 230, 1986, pp. 52-61.

[Guttag et al. 83]
J. V. Guttag, D. Kapur, D. R. Musser: On proving uniform termination and restricted
termination of rewriting systems. II8IAM J. on Computingvol. 12, No. 1, Feb. 1983,
pp. 189-214.

[Hammes 86]
D. HammesGleichheit in PROLOG: Ein FallbeispielArbeitspapiere der GMD, Vol. 228,
St. Augustin, Oct. 1986.

[Herbrand 30]
J. HerbrandRecherches sur la théorie de la démonstratidhése, Université de Paris, 1930.

In: Ecrits logiques de Jacques Herbrand, PUF Paris 1968.

[Hindley 64]
R. Hindley: An abstract Church-Rosser theorem. Partdl of Symbolic Logi84 (1969),
pp. 545-560; part 2 id. of Symbolic Logi&9 (1974), pp. 1-21.

[Hofbauer, Kutsche 89]

D. Hofbauer, R.-D. Kutsch&rundlagen des maschinellen Beweis&fisweg Verlag, 1989.
[Holldobler 89]

S. Hoélldobler:Foundations of equational logic programmirigNCS subseries Lecture Notes
in Artificial Intelligence 353, 1989.

[Huet 80]
G. Huet: Confluent reductions: Abstract properties and applications to term rewriting systems.
In: J. of the ACMVol. 27, No. 4, Oct. 1980, pp. 797-821.

- 96 -



References

[Huet, Hullot 82]
Proofs by induction in equational theories with constructors.J.lof Computer and System
Science®5, 1982, pp. 239-266.

[Huet, Lankford 78]
G. Huet, D. S. LankfordOn the uniform halting problem for term rewrite systenReport
283, INRIA, Le Chesnay, 1978.

[Huet, Oppen 80]
G. Huet, D. C. Oppen: Equations and rewrite rileA survey. In: R. Book (ed.Formal
Language Theory - Perspective and Open Prohlé&woademic Press (1980).

[HuBmann 85]
H. HuBmannuUnification in conditional-equational theoriesReport MIP-8502, Universitéat
Passau, 1985. Short version alsoRmnoc. European Conference in Computer AlgeBf
Vol. 2, LNCS 204 (1985), pp. 543-553.

[HuBmann 85/87]
H. HuBmannRapid prototyping for algebraic specifications RAP system user’s manual
Report MIP-8504, Universitat Passau, 1985. Revised version 1987.

[HuBmann 89]
H. HuBmannNichtdeterministische algebraische Spezifikation®issertation, Universitat
Passau, 1989.

[Jouannaud 83]
J.-P. Jouannaud: Confluent and coherent equational term rewrite systems. Applications to
proofs in data types. IProc. Colloquium on Trees in Algebra and Programm8gy
LNCS 159, pp. 269-283.

[Jouannaud, Kirchner 86]
J.-P. Jouannaud, H. Kirchner: Completion of a set of rules modulo a set of equations. In:
SIAM J. on Computing5, 1986, pp. 1155-1194.

[Jouannaud, Kounalis 86]
J.-P. Jouannaud, E. Kounalis: Automatic proofs by induction in theories without constructors.
In: Proc. 1st Logic in Computer Scienchine 1986, pp. 358-366. Also in: Information and
Copmputation, Vol. 8, No. 4, July 1989.

[Jouannaud, Lescanne 86]
J.-P. Jouannaud, P. Lescanne: La Réécrifur&erm rewriting. In:Technique et Sciences
Informatiques 5(6), 1986, pp. 433-452.

-97 -



References

[Jouannaud, Mufioz 84]
J.-P. Jouannaud, M. Mufioz: Termination of a set of rules modulo a set of equatidiiclin:
7th Conf. on Automated DeductjdtNCS 170, 1984, pp. 175-193.

[Kamin, Lévy 80]
S. Kamin, J.-J. LévyAttempts to generalize the recursive path orderitinpublished note,

Dept. of computer science, University of lllinois, Urbana, 1980.

[Kapur et al. 85]
D. Kapur, P. Narendran, G. Sivakumar: A path ordering for proving termination of term
rewriting systems. InProc. 10th Colloquium on Trees in Algebra and Programming
LNCS 185, pp. 73-185.

[Kapur et al. 87]
D. Kapur, P. Narendran, H. Zhang: On sufficient completeness and related properties of term
rewriting systems. InActa Informatica24 (4), Aug. 1987, pp. 395-415.

[Klop 87]
J. W. Klop: Term rewriting systems: A tutorial. IBulletin of the EATCSVol. 32,
June 1987, pp. 143-183.

[Knuth, Bendix 70]
D. E. Knuth, P. B. Bendix: Simple word problems in universal algebras. In: J. Leech (ed.):

Computational Problems in Abstract Algebr&ergamon Press, 1970, pp. 263-297.

[Lankford 75]
D. Lankford: Canonical inference Report Atp-25, Automated Theorem Proving Project,

University of Texas at Austin, May 1975.

[Lankford 79]
D. Lankford:On proving term rewrite systems are Noetherid®eport Mtp-3, Mathematics

Dept., Louisiana Technical University, 1979.

[Lankford, Ballantyne 77]
D. S. Lankford, A. M. BallantyneDecision procedures for simple equational theories with
permutative axioms: Complete sets of permutative reducti®eport Atp-37, Mathematics
Dept., Univ. of Texas at Austin, April 1977.

[Manna, Ness 70]
Z. Manna, S. Ness: On the termination of Markov algorithmsPtoc. of the 3rd Hawaii
Intl. Conf. on System Scienddonolulu, Hawaii, 1970, pp. 789-792.

[Middeldorp 89]
A. Middeldorp: A suffiecient condition for the termination of the direct sum of term rewriting

systems. InProc. 4th IEEE symposium on Logic in Computer ScieAsdomar, 1989.

- 98 -



References

[Newman 42]
M. H. A. Newman: On theories with a combinatorial definition of "equivalence"Ammals
of Mathematic13, 1942, pp. 223-243.

[Nipkow, Weikum 83]
T. Nipkow, G. Weikum: A decidability result about sufficient completeness of axiomatically
specified abstract data types. &th Gl Conf. on Theoretical Computer Sciengan. 1983,
LNCS 145.

[Nutt et al. 87]
W. Nutt, P. Réty, G. SmolkéBasic narrowing revisited SEKI-Report SR87-07, Univ.

Kaiserslautern, 1987.

[O"Donnell 77]
M. O"Donnell:Computing in systems described by equatidadCS 58, 1977.

[Oyamaguchi 87]
M. Oyamaguchi: The Church-Rosser property for ground term rewriting systems is decidable.
In: Theoretical Computer Sciencéol. 49, No.1, 1987.

[Padawitz 87]
P. Padawitz: Strategy controlled reduction and narrowingProc. 2nd Conf. on Rewriting
Techniques and Applicatiol®¥, LNCS 256, pp. 242-255.

[Padawitz 88]
P. Padawitz:Computing in Horn clause theoriesEATCS Monographs on Theoretical
Computer Science, Vol. 16, Aug. 1988.

[Peterson, Stickel 81]
G. E. Peterson, M. E. Stickel: Complete sets of reductions for some equational theories. In:
J. of the ACMVol. 28, No. 2, April 1981, pp. 233-264.

[Plaisted 83]
D. Plaisted:An associative path orderingReport University of Illinois, Computer science
dept., 1983.

[Porat, Francez 86]
S. Porat, N. Francez: Full-commutation and fair-termination in equational (and combined)
term-rewriting systems. IrProc. 8th Conf. on Automated Deductiduly 1986, LNCS 230,
pp. 21-41.

[Raoult, Vuillemin 80]
J. C. Raoult, J. Vuillemin: Operational and semantic equivalence between recursive programs.
In: J. of the ACM27, 1980, pp. 772-796.

-99 -



References

[Réty 87]
P. Réty: Improved basic narrowing. IRroc. 2nd Conf. on Rewriting Techniques and
Applications Bordeaux, LNCS 256, May 1987.

[Robinson, Wos 69]
G. A. Robinson, L. Wos: Paramodulation and theorem proving in first order theories with

equality. In:Machine Intelligencel, 1969.

[Rosen 73]
B. K. Rosen: Tree manipulation systems and Church-Rosser theorema. ofrthe ACM
Vol. 20, No. 1, 1973, pp. 160-187.

[Rusinowitch 87a]
M. Rusinowitch: On termination of the direct sum of term-rewriting systemdnflsrmation
Processing Letter26, 1987/88, pp. 65-70.

[Rusinowitch 87b]
M. Rusinowitch: Path of subterm ordering and recursive decomposition ordering revisited. In:
J. of Symbolic ComputatipiNo. 3, Vol. 1&2, Oct. 1987, pp. 117-132.

[Staples 75]
J. Staples: Church-Rosser theorems for replacement systems. In: J. Crosléyg@atd, and
Logic, Lecture Notes in Mathematics 450, 1975, pp. 291-307.

[Steinbach 88]
J. Steinbach: Extensions and comparisons of simplification orderingsPrdo: 3rd Intl.
Conf. on Rewriting Techniques and Applicatioh889, LNCS 355, pp. 434-448.

[Toyama 87a]
Counterexamples to termination for the direct sum of term rewriting systemisifoirmation
Processing Letter&5, 1987, pp. 141-143.

[Toyama 87b]
Y. Toyama: On the Church-Rosser property for the direct sum of term rewriting systems. In:
J. of the ACMVaol. 34, No. 1, 1987, pp. 128-143.

[Toyama 88]
Commutativity of term rewriting systems. IRrogramming of future generation computers

I, Amsterdam, North Holland, 1988, pp. 393-407.

[Toyama et al. 89]
Y. Toyama, J. W. Klop, H. P. Barendregt: Termination for the direct sum of left-linear term
rewriting systems (Preliminary version). IAroc. 3rd Intl. Conf. on Rewriting Techniques
and Applications1989, LNCS 355, pp. 477-491.

- 100 -



References

[Wirsing et al. 83]
M. Wirsing, P. Pepper, H. Partsch, W. Dosch, M. Broy: On hierarchies of abstract data types.
In: Acta Informatica20, 1983, pp. 1-33.

[Wirsing 90]
M. Wirsing: Algebraic specification: Semantics, parameterization, and refinement. In:
Handbook of Theoretical Computer Scienderth-Holland, 1990.

- 101 -



References

Index

acyclic 8
approximation 85
arity 8
arrow 7
associative 36
associative path ordering 36
auxiliary function symbol 52
binary numbers 51
binary relation
abstract binary relation 12
cake diagrams 33
cardinality 32
Church-Rosser property 59; 76
class approach 65
class rewrite relation 64
closed
under contexts 11
under instantiation 11
under subsets 16
closure
reflexive 7
reflexive-transitive 7
symmetric 7
transitive 7
under substitution 11
coherence 63
coherent 63
collapse-free 12
commutation 36; 37
complete 78
completeness 85
of narrowing 79
of paramodulation 79
of R-normal RIS-paramodulation 87
of R-normal RIS-narrowing 88
of R-reduced R S-narrowing 83

- 102 -



References

of R-reduced RIS-paramodulation 83
composition
of relations 7
of substitutions 10
confluence 39
confluent 7; 59; 76
congruence class approach 64
congruence closure 11
constants 8
conversion 51
cooperation 40
counterexample 62
covered 78
critical pair 43
critical pair criterion 46
critical pair lemma 46
critical pair scheme 44
cyclic 8
decidable 59
diagram 7
local 12
direct sum 31; 59; 74
domain
of a substitution 10
E-Church-Rosser property 60
E-confluence 60
encoding 76
encoding convention 76
endomorphism 10
equality 9
equational rewriting 13
example
Associativity and Endomorphism 36; 50
conversion into binary numbers 51
Ex. 54
Ex. 18 34
Ex. 27 48; 53
Ex. 335

- 1083 -



References

FF 23; 27; 29; 56; 74
INT2 35; 55
Maps 56
Nonfin 25; 54; 68
Queues 2; 3
Set 15; 17; 25; 28; 29
Stack of N 56
F-stability 11
fairness 81
finally preserves R-normal forms 84
finitely branching 8
first confluence criterion 68
first local cooperation criterion 47
first localization 61
full localization 71
function symbol 8
general critical pair scheme 45
general duality 13
generalized lexicographic path ordering 22
ground 9
hidden function 20
hierarchical 57
homeomorphic self-embedding 23
homomorphic interpretation ordering 20
idempotent 10
incremental 35
inheritance of relative termination 32
instance 10
join 60
Knuth-Bendix ordering 23
Kruskals tree theorem 20
left-commutativity 15
left-dominance 28
left-erasing 12
left-idempotence 15
left-linear 11
left-non-annihilating 12
left-nonerasing 11
left-nonisolating 11

- 104 -



References

left-nonlinear 12
left-to-right 21
lexicographic combination 34
of termination orderings 34
lexicographic path ordering 20
lexicographic status 21
lifting lemma 77
local 12
local commutation 37
local cooperation 41
localization 12
localize 12
locally S-coherent 65
looping 17
marker symbol 21
monotonicity 11
more general than 10
more special than 10
multiset 86
multiset extension 86
multiset status 21
narrowing optimizations 79
narrowing step 77
Nash-Williams proof 31
necessary condition 18
Noetherian 8
Noetherian ordering 19
Noetherian quasiordering 20
non-collapsing 12
non-splitting 70
nondeterministic 21
normal
object 8
substitution 78
normal form 8
normal form preservation 85
normal paramodulation step 80
normalization 8
normalizing 8

- 105 -



References

occurrence 9
functional 10
opposite term rewrite system 13
ordering 8
oriented paramodulation 75
overlap 43
paramodulation 75
paramodulation step 77
path ordering 20
permutation 21
polynomial interpretation 23
polynomial interpretation ordering 20
precedence 21
prefix ordering 10
prefixed rule 78
preserves R-normal forms 84
primitive rewrite system 65
primitive specification 56
quasi-commutation 37; 43
guasi-commutation criterion 55
guasi-commutation lemma 39
quasiordering 8
quasiordering lemma 24
quasiordering supplement 26
R-derivation 8
Ramsey’s theorem 31
range
of a substitution 10
recursive path ordering 20
with status 22
redex 11
redex occurrence 11
reduced paramodulation 82
reduction ordering 19
regular 12
relation 7
relative termination 14; 90
relative to 15
relatively Noetherian 14

- 106 -



References

relatively Noetherian to 14
renaming 10; 85
replacement 9

reuse of a proof 64

rewrite redex 85

rewrite relation 11

rewrite rule 11

rewrite system 11
right-distributive law 29
right-linear 12
right-nonduplicating 18
right-to-left 21

rule 11

S-coherent 63

second confluence criterion 73
second local cooperation criterion 49
second localization 63
self-embedding 23; 50
semantic path ordering 23
simplification ordering 20
splitting effect 69

stability 11

strict commutation 37

strict local commutation 37
strict superterm 86
strictordering 8

strong commutation 37
strong confluence 59

strong cooperation 42
strong cooperation criterion 54
strongly S-coherent 70
substitution 10

subsumption 10

subterm 9

subterm ordering 20; 86
symmetric rewrite system 13
syntactic restrictions 47

term algebra 8

term rewrite system 11

- 107 -



References

termination inheritance 31
by transitivity 31
termination ordering 19
termination quasiordering 20
termination quasiordering criterion 24
terms 8
third localization 65
Thue system 23
top symbol 9
transformation ordering 50
transformer system 52
two orderings 26
undecidable 20; 59
unification procedure 78
unifier 43; 75
computed 78
variable 8
well-founded ordering 19
well-quasiordering 20

- 108 -



Glossary

(Symbols and formulas are explained in the order, they appear in the text for the first
time.)

| " r  equation specification

| - r rewrite rule

Fp set of function symbols in the rewrite system P
R/S Rrelativeto S
N set of natural numbers

>N natural ordering .2y 32y 22y 12y O
RS composition of binary relations R and S
R-1  inverse of R

R symmetric closure of R

RE reflexive closure of R

R+ transitive closure of R

R* reflexive-transitive closure of R

{t. (t, t)OR}
set comprehension: The set of all those t° which satisfy that t and t* are
related by R

NFr set of all R-normal forms
NFR(t) setofall R-normal forms of t
RNF  R-normalization relation
< and> quasiorderings
< and> strictorderings, associated to the quasiordekng, respectively
«and»  other strictorderings
~ the equivalence relation associated to the quasiordering
L] ({f} x Termarity(f) )

fOF
(disjoint) union of all cartesian products between the singleton set {f} and the
n-th power of the set Term, where n = arity(f)

(f, t1, ..., ty) (n+1)-tuple, consisting of the symbol f and the terms.{ t.

X+y  may also denote the term +(X, y)

- X may also denote the term -(x)

t =def f(9(x, @), y) t will be used to denote the term ...
eq(t,t”) agoal that asks for solutions of "t equals t" "

=R semantic equality defined by the rewrite system R

O (X) powerset of X

Var(t) set of (free) variables in t
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Glossary 9/15/94

Func(t) set of function symbols in t
%] empty set

A empty occurrence

i.u composed occurrence

t/u subterm of t at occurrence u

tu « t7] replacement of the subterm of t at occurrence u by the new subterm t’
N* set of sequences of natural numbers

Occ(t) set of occurrencves of t

FOcc(t) set of functional occurrences of t

<pre prefix ordering on occurrences

o andt substitutions

[t1/Xx1, to/X2, ... ] the substitution that maps; *o t, etc.

w least transfinite ordinal number
to the instance of the term t under substitutmn
ot (diagrammatical) composition of substitutiooasand t

>syb Subsumption quasiordering on substitutions

dom o domain of substitutioro

ran ¢ range of substitutioro

rewrite relation generated by the rewrite system R

R
a rewrite step takes place in t at occurrence u, using the rewrite rule |
yielding the term t’

t1He 20Hg ... an infinite QD§>-derivation

(f(x) - f(y))OS the rewrite system S contains a rule f(x)(y)

S = {x - x} Sdenotes a rewrite system that consists of the single rulex x

|= subterm quasiordering

|> subterm strictordering

mi(t1, ..., th) application of a permutatiom to a sequence of terms
* also used as the marker symbol

>rpo  lexicographic path (strict)ordering

2rpo  lexicographic path (quasi)ordering

[ ] a function in mixfix notation; " " indicates the parameter position
N (X) set of polynomials in variables from X with coefficients fridm

[t] the polynomial interpretation of the term t

#t number of "ff patterns” in the term t

>» the relational composition a¢ and »

Qt the set of positive rational numbers

S\ (SH” the S relation without those pairs that are part of a cycle

Sn the n-th power of S, i.e. S...S ntimes
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6m t < n
a diagram instance where the numberé)fsteps may be assumed m, and
likewise the number ofs -steps may be taken as n. The term between the two

derivations is called t later on.

CP(R, S) the set of all critical pairs of rules from R with rules from S

tg g U
from a term that is not named, there is both a rewrite step at occurrence v using
a rule from S, yielding the term t, and another rewrite step at occurrence u

using a rule from R, yielding the term t’

QuU” < every rule in Q can be bridged by a sequence of S-rewrite steps in reversed

order
Z the set of integer numbers 0, 1, -1, ...
t (A6t
the term t admits a paramodulation step at occurrence u using thetule |
This paramodulation step uniquely defines the substituticand the term t’.
t D]EIIﬂ]:jrc t’ narrowing step, i.e. a paramodulation step when&Qcc(t) holds
si(0) s(s(...(0)...) i-times
t IISDEQ%_SG t* R-normal R1S-paramodulation
t H]Eg’;;ﬂﬁso t" R-reduced RIS-paramodulation
t g *NF ¢ proper R-normalization

>mult the multiset extension of the ordering > on elements towards multisets of
elements

m+n  for multisets m and n: their sum

[xo. xOVar(t)]
multiset comprehension; the multiset of ai xvhere XxIVar(t) holds.
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