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Abstract

This paper proposes a novel algorithm for solving discrete online learning prob-
lems under stochastic constraints, where the leaner aims to maximize the cumu-
lative reward given that some additional constraints on the sequence of decisions
need to be satisfied on average. We propose Lagrangian exponentially weighted
average (LEWA) algorithm, which is a primal-dual variant of the well known ex-
ponentially weighted average algorithm, and inspired by the theory of Lagrangian
method in constrained optimization. We establish expected and high probability
bounds on the regret and the violation of the constraint in full information and
bandit feedback models for LEWA algorithm.

1 Introduction

Many practical problems such as online portfolio management [1], prediction from expert ad-
vice [2] [3], and online shortest path problem [4] involve making repeated decisions in an unknown
and unpredictable environment (see, e.g., [5] for a comprehensive review). These situations can be
formulated as a repeated game between the decision maker (i.e., the learner) and the adversary (i.e.,
the environment). At each round of the game, the learner selects an action from a fixed set of actions
and then receives feedback (i.e., reward) for the selected action. The analysis of online learning
algorithms focuses on establishing sub-linear bounds on the regret that is the difference between
the reward of the best fixed action with the hindsight knowledge of the observed sequence and the
cumulative reward of the learner.

In many current literature, the application of online learning is mostly limited to problems without
constraints on the sequence of decisions made by the learner. However, in most scenarios, beyond
maximizing the cumulative reward, there are some restrictions on the decisions that need to be sat-
isfied on average. Therefore, one might desire algorithms for a much more ambitious framework,
where we need to maximize total reward under the constraints. As an illustrative example, let us con-
sider a wireless communication system where the agent chooses an appropriate transmission power
in order to transmit a message successfully. In this case, the goal of the agent may be to maximize
average throughput, while keeping the average power consumption under some required threshold.
Attempts for such extension were made in [6], where the online learning with path constraints has
been addressed and algorithms with asymptotically vanishing bound have been proposed.

An algorithm addressing this problem has to balance between maximizing the adversary rewards
and satisfying the constraint. If the algorithm be too aggressive to satisfy the constraint, then there
would be less hope to attain satisfactory cumulative reward at the end of the game and on the other
hand, just trying to maximize the cumulative reward will end up in a situation in which the con-
straints vanish linearly in terms of the number of rounds. To affirmatively address the problem, we
provide a general framework for repeated games with constraint, and propose a simple randomized
algorithm called Lagrangian exponentially weighted average (LEWA) algorithm for a particular
class of these games. The proposed formulation is inspired by the theory of Lagrangian method
in constrained optimization and is based on primal-dual formulation of the exponentially weighted



average (EWA) algorithm [3] [7]. We establish expected and high probability bounds on the regret
and the violation of the constraints on average for LEWA algorithm, and extend the results to the
bandit setting where only partial feedback about the rewards and the constraint are available. To the
best of our knowledge, this is the first time that a Lagrangian style relaxation has been proposed for
this type of problem.

Notations. Let us introduce some notations used in this paper. Vectors are indicated in lower case
bold letters such as x where x| denotes it transpose. By default, all vectors are column vectors.
For a vector x, x; denotes its ith coordinate. We use superscripts to index rounds of the game.
Component-wise multiplication between vectors is denoted by o. We use [K] as a shorthand for
the set of integers {1, 2, ..., K'}. Throughout the paper we denote by [-] the projection onto the
positive orthant. We shall use 1 to denote the vector of all ones. Finally, for a K-dimensional vector
x, (x)? represents (z7,...,2%).

2 Statement of the Problem

We consider the general decision-theoretic framework for online learning and extend it to capture the
constraints. In original online decision making, the learner is given access to a pool of K actions. In
each round ¢ € [T, the learner chooses a probability distribution p; = (pt, ..., p%;) over the actions
[K] and chooses an action ¢ randomly based on p;. In the scenario of full information feedback
model, at each iteration, the adversary reveals a reward vector r; = (rf,--- rt.). Choosing an
action 4 results in receiving a reward r{, which we shall assume without loss of generality to be
bounded in [0, 1]. In the partial feedback model or bandit setting only the cost of selected action is
revealed by the adversary. The learner competes with the best fixed action in hindsight and his/her
goal is to minimize the regret defined as max, >, p'rs — Y, p; rs. This problem is a well studied
problem and there are algorithms which attain an optimal regret bound of O(v/T In K) after T
rounds of the game. In this paper we focus on the exponentially weighted average (EWA) algorithm,
which will be used later as the baseline of the proposed algorithm. The EWA algorithm maintains
a weight vector w; = (w!, -+ wh) which is used to define the probabilities over actions. After
receiving the reward vector r; at round ¢, the EWA algorithm updates the weight vector according
to w! ™ = w! exp(nrl) where 7 is the learning rate.

In the new setting addressed in this paper, which we refer to as constrained regret minimization, in
addition to the rewards, there exist some constraints on the decisions that need to be satisfied. In
particular, for the decision p made by the learner, there is an additional constraint pTc > co Where ¢
is a constraint vector for specifying the constraint. We note that, in general, the reward vector r; and
the constraint vector c are different and can not be combined as a single objective. The learner’s goal
is to maximize the total reward with respect to the optimal decision in hindsight under the constraint
p'c > cp, e, ming, oy MaXpTe>e, Zthl p'r; — Zthl p; r:, and simultaneously satisfy the
constraint. Note that the comparator class includes fixed decision p that attains maximal cumulative
reward had he known the rewards beforehand, while satisfying the additional constraint.

Within our setting, we consider repeated games with adversarial rewards and stochastic constraint.
More precisely, let ¢ = (¢1,- -+, cx) be the constraint vector defined over actions. In stochastic
setting the vector c¢ is unknown to the learner and at each round ¢ € [T'], beyond the reward feed-
back, the learner receives a random realization ¢; = (ct, - -, ) of the constraint vector ¢ where
E[c!] = ¢;. The learner’s goal is to choose a sequence of decisions p;, ¢ € [T'] to minimize the regret
with respect to the optimal decision in hindsight under the constraint p' ¢ > ¢o. Without loss of
generality we assume c; € [0,1]% and ¢y € [0,1]. Formally, the goal of the learner is to attain a
gradually vanishing regret as

Regret; = max p'r— ijrt < O(Tl_ﬁl). (1)
plc>co Z Z
Furthermore, the decisions p;,¢ = 1,--- ,7T made by the learner are required to attain sub-linear

bound on the violation of the constraint in the long run, i.e.,

T
Violationy = [Z (co - ptTc) < O(Tl—ﬁz)' )

t=1

+



We refer to the above bound as the violation of the constraint. The two questions we seek to answer
are how to modify EWA algorithm to take the constraint under consideration and what would be the
bounds on the regret as well as the violation of the constraint attainable by the modified algorithm.

Related Works. There is a rich body of literature that deals with the online decision making problem
without constraints and there exist a number of online algorithms that have the optimal regret bound.
The most well-known and successful work is probably the Hedge algorithm [7], which was a direct
generalization of Littlestone and Warmuth’s Weighted Majority (WM) algorithm [3]. Other recent
studies include the improved theoretical bounds and the parameter-free hedging algorithm [8] and
adaptive Hedge [9] for decision-theoretic online learning. We refer readers to the [5] for an in-depth
discussion of this subject.

As the first seminal paper in adversarial constrained decision making, Mannor et al. [6] introduced
the online learning with simple path constraints. They considered the infinitely repeated two player
games with stochastic rewards where for every joint action of the players, there is an additional
stochastic constraint vector that is accumulated by the decision maker. We note that the analysis in
[6] is asymptotic while the bounds to be established in this work are applicable to finite repeated
games. In [10] the budget limited MAB was introduced where polling an arm is costly where the
cost of each arm is fixed in advance. In this setting both the exploration and exploitation phases are
limited by a global budget. This setting matches the stochastic rewards with deterministic constraints
without violation game discussed before. It has been shown that existing MAB algorithms are not
suitable to efficiently deal with costly arms. They proposed the € — first algorithm that dedicates
the first e fraction of the total budget exclusively for exploration and the remaining (1 — ¢€) fraction
for exploitation. [11] improves the bound obtained in [10] by proposing a Knapsack based UCB
[12] algorithm which extends the UCB algorithm by solving a Knapsack problem at each round to
cope with the constraints. We note that Knapsack based UCB does not make explicit distinction
between exploration and exploitation steps as done in € — first algorithm. In both [11] and [10] the
algorithm proceeds as long as sufficient budget existing to play the arms.

3 Full Information Constrained Regret Minimization

A straightforward approach to tackle the problem is to modify the reward functions of the learner
to include constraint term with a penalty coefficient that reduces the reward when the constraint
is violated. This approach circumvents the problem of a constrained online learning by turning
it into an unconstrained problem, but a simple analysis shows that, in the adversarial setting, this
simple penalty based approach fails to attain gradually vanishing bounds for regret and the violation
of constraints. The main difficulty arises from the fact that an adaptive adversary can play with
the penalty coefficient associated with constraint in order to weaken the influence of the penalty
parameter which results in linear bound on at least one of the measures, i.e. either regret bound or
violation of the constraints.

Alternatively, since the constraint in our setting is stochastic, one possible solution is to take an
exploration and exploitation scheme, i.e., to burn a small portion e of the rounds to estimate the
constraint vector ¢ by ¢ and then in the remaining (1—e¢)7 rounds follow the existing algorithms with
restricted decisions, i.e., p € Ag N pTE > ¢p, where A is the simplex over [K|. The parameter
€ balances the accuracy of estimating ¢ and the number of rounds for exploitation to increase the
total reward. One may hope that by careful adjustment of ¢, it would be possible to get satisfactory
bounds on regret and the violation of the constraint. But unfortunately this naive approach suffers
from two main drawbacks. First, the number of rounds 7' is not known in advance. Second, the
decisions are made by projecting into an estimated domain p' ¢ > ¢ instead of the true domain
p' ¢ > ¢o which is problematic as follows. In order to show the regret bound, we need to relate the
best cumulative reward in the estimated domain to that in the true domain, which however requires
imposing a regularity condition on reward and constrain vectors to be solvable [13]. Basically, we
can make the algorithm adaptive to 1" by using a similar idea to epoch greedy [14] algorithm that
runs exploration/exploitation in epochs, but it still suffers from the second drawback. Additionally,
projection to the inaccurate estimated constraint ¢ does not exclude the possibility that the solution
will be infeasible.

Here, we take a different path to solve the problem. The proposed formulation is inspired by the
theory of Lagrangian method in constrained optimization. The intuition behind the proposed al-



LEWA (7 and 9)
initialize: wy = 1l and Ay =0
iteratet =1,2,..., T
Draw an action accordingly to the probability p; =

Wi
25w)
Receive reward r; and a realization of constraint c;
Update w;11 = w; 0 exp(n(rs + Aict))
Update A¢ 1 = [(1 = dn)Ar — n(p{ ¢ — co)l+
end iterate

gorithm is to optimize one criterion (i.e., minimizing regret or maximizing the reward) subject to
explicit constraint on the restrictions that the learner needs to satisfy in average for the sequence
of the decisions. A challenging ingredient in this formulation is that of establishing bounds on the
regret and the violation of the constraints. In particular, our algorithms will exhibit a bound in the
following structure,

Violation3.

—— =T < o(TF 3
where Violationy is a term related to the violation of constraint in long term. From (3) we can derive
a bound for regret and the violation of constraints as

Regret, < O(T*7) 4)

Regret, +

Violationp < \/O ([T 4 T1=B]T1~o), 5)
where the last bound follows the fact —Regret,, < O(T).

The detailed steps of the proposed algorithm are shown in LEWA. The algorithm keeps two set of
variables: the weight vector w; and the Lagrangian multiplier A;. The high level interpretation of
the algorithm is as follows: if the constraint is being violated a lot, the decision maker places more
weight on the constraint controlled by A;; but he tunes down the weight on the constraint when the
constraint is satisfied reasonably. We note the LEWA is equivalent to the original EWA when the
constraint is satisfied at each iteration, i.e., ptTct > cp, which gives A\ = --- =X\ = ... =0. It
should be emphasized that in some previous works such as [10], the learner is not allowed to exceed
the pre-specified threshold for the violation of the constraints and the game stops as soon as the
learner violates the constraint. In contrast, within our setting similar to [15], the learner’s goal is to
obtain sub-linear bound on the long term violation of the constraint.

We now state the main theorem about the performance of LEWA algorithm.

Theorem 1. Let p1,p2, - ,Pr be the sequence of randomized decisions over the set of actions
[K] := {1,2,--- , K} produced by LEWA algorithm under the sequence of adversarial rewards
ri,re, - ,ry € [0, 1]K observed for these decisions. Let A1, Ao, --- , Ar be the corresponding
dual sequence. By setting 1 = \/41n K/(9T) and 6 = n/2 we have:
T T T
max ZpTrt —E lijrt <3VT'lhK, and E Z(CO —plc)| <o),
ple=co Dy t=1 t=1 +

where expectation is taken over randomness in cy,- - - , Cp.

Remark 2. From Theorem I we see that the LEWA algorithm attains the optimal bound for the
regret and an O(T3/ 4) bound on the violation of the constraint. We note that when deriving the
bound for Violationt, we simply use a weak lower bound on regret as Regret; > —T'. It is possible
to obtain an improved bound by considering tighter bound for the Regret. One way to do this is to
bound the regret by the variation of the reward vectors as Variation = Zthl llr: — Tr|| 0o, where
rr = (1/T) Zle r; denotes the mean of vy, t € [T]. As shown in the full-length version of this
paper [16], we can bound the violation of the constraints in terms of Variationt as

T
lZ(Co -x/¢)

t=1

< O(VT) + O(TY*/Variationr).

+




High Probability LEWA (1, § and ¢)
initialize: wy = 1l and Ay =0
iteratet = 1,2,..., T

Draw an action accordingly to the probability p; =

Wi
25w
Receive reward r; and a realization of constraint c;
Compute average constraint estimate ¢; = n Z Cs
Update w; 1 = wy o exp(n(ry + \iCy))

Update A1 = [(1 — dn)As — n(p/ € + a¢ — co)l4.
end iterate

This bound is significantly better when the variation of the reward vectors is small and in worst case
it attains an O(T>/*) bound as Theorem 1.

With a simple trick, we are able to modify the LEWA algorithm to attain high probability bounds on
regret and the violation of the constraint in the same order as in expectation. To this end, we slightly
change the original LEWA algorithm and instead of using c; in updating A\, we use the average
estimate and add a confidence bound to achieve a more accurate estimation of the constraint vector
c. The following theorem bounds the regret and the violation of the constrain in high probability for
the modified algorithm.

Theorem 3. Let a; = \[ (1/2)In(2/€), n = O(T~Y?), and § = n/2. By running LEWA, we
have, with probability 1 — €

T
max Zp r; — Zpt rt<OT1/2 and [Z co—pt
t=1

>
pTc>co =1

< O(T3/4)
+

where O(-) omits the log term in T.

4 Bandit Constrained Regret Minimization

In this section, we generalize our results to the bandit setting for both rewards and constraints. In the
bandit setting, at each iteration, we are required to choose an action ¢; from the pool of the actions
[K]. Then only the reward and constraint feedback for i, is revealed to the learner ie. rf In this

case, we are interested in the regret bound as maxp e, Zt 1 p'r, — Zt . In the classical
setting, i.e., without constraint, this problem can be solved in stochastic and adversarral settings
by UCB and EXP3 algorithms proposed in [17] and [12], respectively. The algorithm is shown
in BanditLEWA algorithm which uses the similar idea to EXP3 for exploration and exploitation.
Before presenting the performance bound of the algorithm, let us introduce two vectors: T; is all
zero vector except in i;th component which is set to be 7! = r! / p;, and similarly <; is all zero
vector except in 4;th component which is set to be ¢t G, = =t / p;, - Itis easy to verify that E;, [r;] = ry
and E;, [¢;] = c;.

1t Zt

BanditLEWA (7, v, and )
initialize: w; = land \{ =0
iteratet =1,2,..., T

Wi

t
2. w5

1
Draw action i; randomly accordingly to p: = (1 — v)q: + K

Setq; =

Receive reward 7, and a realization of constraint ¢}, for action 4
Update wi™" = w! exp(n(7t + \ich))
Update Apy1 = [(1—0m)Ae — n(a/ € — co)l+

end iterate




The following theorem shows that BanditLEWA algorithm achieves O(T3/*) regret bound and
O(T®/*) bound on the violation of the constraints in expectation.

)
Theorem 4. Let v = O(T~'/?),n = %m, by running BanditLEWA algorithm, we have
T T T
T ¢ 3/4 T 3/4
max r;— E r;, | <O(T and E cop— P; C <O(T .
L b tZ:; t ( ) LX—;( P )1 i ( :

5 Conclusions and Future Works

In this extended abstract we propose an efficient algorithm for regret minimization under stochastic
constraints. The proposed algorithm that is called LEWA, is a primal dual variant of the exponen-
tially weighted average algorithm. We establish expected and high probability bounds on the regret
and the long term violation of the constraint in full information and bandit settings. In particular, in
full information setting, LEWA algorithms attains optimal O(+/T) regret bound and O(73/*) bound
on the violation of the constraints in expectation, and with a simple trick in high probability. The
present work leaves open a number of interesting directions for future work. In particular, extending
the framework to handle multi-criteria online decision making is left to future work. Turning the
proposed algorithm to the one which exactly satisfies the constraint in the long run is also an inter-
esting problem. Finally, it would be interesting to see if it is possible to improve the bound obtained
for the violation of the constraint.
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Appendix A. Proof of Theorem 1

In order to prove Theorem 1, we state two lemmas that pave the way to the proof of theorem.
Lemma 5. [Primal Inequality] Let R; = R%—i—)\tRQ, where Rtl, R? S Rf, w1 = wioexp(nRy),
and p; = wi/w, 1. Assuming max(|R} ||oo, || R?||00) < s, we have the following primal equality

T T
In K T
> po R < M (”4 s Af) | ©
t=1

t=1

Proof. Let W, = Zszl wf We first show an upper bound and a lower bound on In Wrp 1 /W7,
followed by combining the bounds together. We have

il Wt+1 o W
=1mn

Wi

K T
= anwiT'H —InK > 1an,~wiT+1 —InK > inZRt —InK,
— i— t=1

where the last inequality follows from the concavity of the log function. By following Lemma 2.2
in [5], we obtain

t=1
T K Wt n? T n? T
t 2 2
Sn;§ﬁR §S (]-"_)‘t <nzpth gzs (1+)\t)
t=1 1= j=1 "3 t=1 t=1
Combining the lower and upper bounds and using the inequality (a + b)? < 2(a? + b%), we obtain

the desired inequality in (6). O

Lemma 6. [Dual Inequality] Let gi(A) = S22 + (B — o), Aev1 = [(Ae — Vg (Ae)] 4, and
A1 =0. Assuming n>0,0< B < By, we have

A2
Z At = AN)(Be — o) + Z ) < %‘F(Co‘f‘ﬁo) (7
=1

Proof. First we note that
Ae1 = [Ae = Vg (A)]+ = [(1 = 0n)Ae = n(Be — co)]+ < [(1 = dm)Ae + neo+
By induction on \;, one can easily show that A, < %0. Applying the standard analysis of online
gradient descent [18] yields
st = AP = [T (A = 96X + B — co)l = AP
<A = AP+ (8 = o) +08:]? = 2(A = (Vg (M)
< e = AP+ 207 + 20755 + 20(g¢(A) — ge(Ae))-

Then, by rearranging the terms we get
1
9t(Ae) — ge(A) < o (M1 = AP = [xe = AP?) +n(cg + 63)

Expanding the terms on L.h.s and taking the sum over ¢, we obtain the inequality as desired. O

Proof. [of Theorem 1] Applying R; = r; + A¢c; to the primal inequality in Lemma 5, where

max(||re|oo, [|ct]|oo) < 1, we have

In K T
4

(P—p:) " (re + Aicy) < T

NER

%\3

2

~
Il
—

~



Applying 8; = p; c; to the dual inequality in Lemma 6, where 3; < 1,¢o < 1, we have

d 5 — A2
Z()\f, — N (p{ ¢ —co) + 52(/\? -2 < % + 2nT.

t=1

-~

—

Combining the above two inequalities gives

3 - T 1
> ('t —p/r)+ Y AMco —p/er) - ( T > A2

t=1 t=1 2 2n
T
InK 99T 1)
<—+ /e + (77 — ) Z)\? —I—Z)\t(Co —plecy).
n 4 4 2 t=1 t=1
Taking expectation over ¢4, t = 1,--- , T, by using E[c;] = ¢ and noting that p; and \; are inde-

pendent of c;, we have

t=1 t=1 2n
In 9 n 9 d d
2 T
< ——+T+E (4 - 2) STXNHE D Mlco—p c)]
t=1 t=1
Let p be the solution satisfying p' ¢ > ¢. Noting that 1 - g < 0 and taking maximization over

A > 0in L.H.S, we get

T
max g p'r; — ptTrt
t=1

p'c>co

[23:1(00 - P:C)}i nK

E < +9
2(6T+1/n) - 4

+E nT.

By plugging the values of 1 and §, and noting the similar structure of above inequality as in (3) and
writing in (4) and (5) formats, we obtain the desired bound for the regret and the violation of the
constraint in a long run. O
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