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Abstract

Although a large body of work are devoted to finding
communities in static social networks, only a few studies
examined the dynamics of communities in evolving social
networks. In this paper, we propose a dynamic stochastic
block model for finding communities and their evolutions in
a dynamic social network. The proposed model captures
the evolution of communities by explicitly modeling the
transition of community memberships for individual nodes in
the network. Unlike many existing approaches for modeling
social networks that estimate parameters by their most
likely values (i.e., point estimation), in this study, we
employ a Bayesian treatment for parameter estimation that
computes the posterior distributions for all the unknown
parameters. This Bayesian treatment allows us to capture
the uncertainty in parameter values and therefore is more
robust to data noise than point estimation. In addition,
an efficient algorithm is developed for Bayesian inference to
handle large sparse social networks. Extensive experimental
studies based on both synthetic data and real-life data
demonstrate that our model achieves higher accuracy and
reveals more insights in the data than several state-of-the-
art algorithms.

keywords: Social Network, Community, Community
Evolution, Dynamic Stochastic Block Model, Bayesian
Inference, Gibbs Sampling

1 Introduction

As online social networks such as Facebook and MyS-
pace gaining popularity rapidly, social networks have
become an ubiquitous part of many people’s daily lives.
Therefore, social network analysis is becoming a more
and more important research field. One major topic
in social network analysis is the study of communities
in social networks. Analyzing communities in a social
network, in addition to serving scientific purposes (e.g.,
in sociology and social psychology), helps improve user
experiences (e.g., through friend recommendation ser-
vices) and provides business values (e.g., in target ad-

990

vertisement and market segmentation analysis).

Communities have long been studied in various so-
cial networks. For example, in social science an impor-
tant research topic is to identify cohesive subgroups of
individuals within a social network where cohesive sub-
groups are defined as “subsets of actors among whom
there are relatively strong, direct, intense, frequent, or
positive ties” ([16]). As another example, communities
also play an important role in Web analysis, where a
Web community is defined as “a set of sites that have
more links to members of the community than to non-
members” ([7]).

Social networks are usually represented by graphs
where nodes represent individuals and edges repre-
sent relationships and interactions among individuals.
Based on this graph representation, there exists a large
body of work on analyzing communities in static social
networks, ranging from well-established social network
analysis [16] to recent successful applications such as
Web community discovery [7]. However, these stud-
ies overlooked an important feature of communities—
communities in real life are usually dynamic. On a
macroscopic level, community structures evolve over
time. For example, a political community whose mem-
bers’” main interest is the presidential election may be-
come less active after the election takes place. On a
microscopic level, individuals may change their commu-
nity memberships, due to the shifts of their interests or
due to certain external events. In this respect, the above
studies that analyze static communities fail to capture
the important dynamics in communities.

Recently, there have been a growing body of work
on analyzing dynamic communities in social networks.
As we will discuss in detail in related work, some of these
studies adopted a two-step approach where first static
analysis is applied to the snapshots of the social network
at different time steps, and then community evolutions
are introduced afterwards to interpret the change of
communities over time. Because data in real world
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are often noisy, such a two-step approach often results
in unstable community structures and consequentially,
unwarranted community evolutions. Some more recent
studies attempted to unify the processes of community
extraction and evolution extraction by using certain
heuristics, such as regularizing temporal smoothness.
Although some encouraging results were reported, none
of these studies explicitly model the transition or change
of community memberships, which is the key to the
analysis of dynamic social network. In addition, most
existing approaches consider point estimation in their
studies, i.e., only estimate the most likely value for the
unknown parameters. Given the large scale of social
networks and potential noise in data, it is likely that
the network data may not be sufficient to determine the
exact value of parameters, and therefore it is important
to develop methods beyond point estimation in order
to model and capture the uncertainty in parameter
estimation.

In this paper, we present a probabilistic framework
for analyzing dynamic communities in social networks
that explicitly addresses the above two problems. In-
stead of employing an afterwards effect or a regular-
ization term, the proposed approach provides a unified
framework for modeling both communities and their
evolution simultaneously; the dynamics of communities
is modeled explicitly by transition parameters that dic-
tates the changes in community memberships over time;
a Bayesian treatment of parameter estimation is em-
ployed to avoid the shortcoming of point estimation by
using the posterior distributions of parameters for mem-
bership prediction. In short, we summarize the contri-
butions of this work as follows.

e We propose a dynamic stochastic block model for
modeling communities and their evolutions in a
unified probabilistic framework. Our framework
has two versions, the online leaning version that
iteratively updates the probabilistic model over
time, and the the offline learning version that
learns the probabilistic model with network data
obtained at all time steps. This is in contrast
to most existing studies of social network analysis
that only focus on the online learning approaches.
We illustrate the advantage of the offline learning
approach in our empirical study.

e We present a Bayesian treatment for parameter es-
timation in the proposed framework. Unlike most
existing approaches for social network analysis that
only computes the most likely values for the un-
known parameters, the Bayesian treatment esti-
mates the posterior distributions for unknown pa-
rameters, which is utilized to predict community
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memberships as well as to derive important charac-
teristics of communities, such as community struc-
tures, community evolutions, etc.

We develop a very efficient algorithm for the pro-
posed framework. Our algorithm is executed in an
incremental fashion to minimize the computational
cost. In addition, our algorithm is designed to fully
take advantage of the sparseness of data. We show
that for each iteration, our algorithm has a time
complexity linear in the size of a social network
provided the network is sparse.

We conduct extensive experimental studies on both
synthetic data and real data to investigate the perfor-
mance of our framework. We show that compared to
state-of-the-art baseline algorithms, our model is advan-
tageous in (a) achieving better accuracy in community
extraction, (b) capturing community evolutions more
faithfully, and (c) revealing more insights from the net-
work data.

2 Related Work

Finding communities is an important research topic in
social network analysis. For the task of community dis-
covery, many approaches such as clique-based, degree-
based, and matrix-perturbation-based, have been pro-
posed. Wasserman et al. [16] gave a comprehensive sur-
vey on these approaches. Community discovery is also
related to some important research issues in other fields.
For example, in applied physics, communities are im-
portant in analyzing modules in a physical system and
various algorithms, such as [14], have been proposed
to discover modular structures in physical systems. As
another example, in the machine learning field, finding
communities is closely related to graph-based clustering
algorithms, such as the normalized cut algorithm pro-
posed by Shi et al. [15] and the graph-factorization clus-
tering (GFC) algorithm proposed by Yu et al. [17]. How-
ever, all these approaches focused on analyzing static
networks while our focus in this study is on analyzing
dynamic social networks.

In the field of statistics, a well-studied probabilistic
model is the stochastic block model (SBM). This model
had been originally proposed by Holland et al. [11] and
have been successfully applied in various areas such as
bioinformatics and social science [1, 6]. Researchers
have extended the stochastic block model in different
directions. For example, Airoldi et al. [1] proposed
a mixed-membership stochastic block model, Kemp et
al. [12] proposed a model that allows an unbounded
number of clusters, and Hofman et al. [10] proposed a
Bayesian approach based on the stochastic block model
to infer module assignments and to identify the optimal
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number of modules. Our new model is also an extension
of the stochastic block model. However, in comparison
to the above approaches which focused on static social
networks, our approach explicitly models the change of
community membership over time and therefore can dis-
covery communities and their evolutions simultaneously
in dynamic social networks.

Recently, finding communities and their evolutions
in dynamic networks has gained more and more atten-
tion. Asur et al. [2] introduced a family of events on
both communities and individuals to characterize evo-
lution of communities. Chi et al. [5] proposed an evo-
lutionary version of the spectral clustering algorithms.
They used graph cut as a metric for measuring commu-
nity structures and community evolutions. Lin et al. [13]
extended the graph-factorization clustering (GFC) and
proposed the FacetNet algorithm for analyzing dynamic
communities. We will conduct performance studies to
compare our algorithm with some of these algorithms.
Here we want to point out that compared to our new
algorithm, none of these existing approaches has a rig-
orous probabilistic interpretation and they all are re-
stricted to an online learning framework.

3 The Dynamic Stochastic Block Model

Before discussing the statistical models, we first intro-
duce the notations that are used throughout this paper.
We represent by W) € R"*" the snapshot of a social
network at a given time step ¢ (or snapshot network),
where n is the number of nodes in the network. Each
element w;; in W® is the weight assigned to the link
between nodes ¢ and j: it can be the frequency of in-
teractions (i.e., a natural number) or a binary number
indicating the presence or absence of interactions be-
tween nodes 7 and j. For the time being, we focus on
the binary link, which will be extended to other types of
links in Section 6. For a dynamic social network, we use
Wr = {WO w® W} to denote a collection of
snapshot graphs for a given social network over T' dis-
crete time steps. In our analysis and modeling, we first
assume nodes in the social network remain unchanged
during all the time steps, followed by the extension to
dynamic social networks where nodes can be removed
from and added to networks.

We use a z; € {1,---,K}, where K is the total
number of communities, to denote the community as-
signment of node i and we refer to z; as the community
of node 7. We furthermore introduce z;; = [z; = k] to in-
dicate if node 4 is in the kth community where [x] output
one if z is true and zero otherwise. Community assign-
ments matrix Z = (z :i € {1,--- ,n}, ke {l,--- |K})
includes the community assignments of all the nodes in
a social network at a given time step. Finally, we use
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Zp ={ZW, ..., Z(M} to denote the collection of com-
munity assignments of all nodes over T time steps.

3.1 Dynamic Stochastic Block Model (DSBM)
We first briefly review the Stochastic Block Model
(SBM). SBM is a well studied statistical model that has
been successfully used in social network analysis [11]. In
the SBM model, a network is generated in the following
way. First, each node is assigned to a community
following a probability m = {m,..., 7k} where 7 is
the probability for a node to be assigned to community
k. Then, depending on the community assignments of
nodes ¢ and j (assuming that z;;, = 1 and z;; = 1), the
link between 7 and j is generated following a Bernoulli
distribution with parameter Pj;. So the parameters
of SBM are 7 € RX and P € RE*KX, The diagonal
element Py, of P is called the “within-community”
link probability for community k& and the off-diagonal
element Py, k # [ is called “between-community” link
probability between communities k& and .

Dynamic Stochastic Block Model (DSBM) extends
SBM to dynamic social networks. It is defined in a
recursive way. Assuming the community matrix Z(*=1)
for time step t-1 is available, we use a transition matrix
A € REXE 0 model the community matrix Z® at
time step ¢ in the following way. For a node i, if
zi(,i*l) =1, i.e., node i was assigned to community k at
time t-1, then with probability Agr node ¢ will remain
in community k£ at time step t and with probability
Ay, node i will change to another community [ where
k # [. We have each row of A sums to 1, i.e.,
> A = 1. Given the community memberships in
Z® | the link between nodes will be then decided
stochastically by probabilities in P as the SBM model.
The generative process of the Dynamic Stochastic Block
Model and the graphical representation are shown in
Table 1 and Figure 1, respectively. Note that DSBM
and SBM differ in how the community assignments are
determined. In our DSBM model, instead of following
a prior distribution 7w, the community assignments at
any time ¢ (¢ > 1) are determined by those at time ¢-1
through transition matrix A, where A aims to capture
the dynamic evolutions of communities.

Table 1: Generative Process of DSBM
For time 1:

generate the Social Network followed by SBM
For each time ¢ > 1:

generate zft) ~ p(zit)|zz(t—1)’ A)
For each pair (i, j) at time ¢:
()
ij

generate w,.’ ~ Beronulli(~|PZ(f,> Z(f,>)
i %3
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time step t-1

time step t

Figure 1: Graphical representation of Dynamic Stochas-
tic Block Model (DSBM)

3.2 Likelihood of the Complete Data To express
the data likelihood for the proposed DSBM model,
we make two assumptions about the data generation
process. First, link weight w;; is generated independent
of the other nodes/links provided membership z; and
zj. Second, the community assignment zi(t) of node 1
at time step ¢ is independent of the other nodes/links
provided its community assignment zi(t*l) at time t¢-1.
Using these assumptions, we write the likelihood of the

complete data for our DSBM model as follows

Pr(Wr, Zp|m, P, A) =
T
H Pr(W!
t=1

where the emission probability Pr(W®|Z®  P) and the
transition probability Pr(Z®|Z(*=1 A) are

T
D1z, P)[[Pr(Z2W| 2"V, A)Pr(Zz W)
t=2

Pr(W®|Z®, P) D10, 20, P)

= H Pr(w(

invj

2050

=1111 (P“’mu — Pt fj)) o

and

Pr(z®|z=Y 4) = Pr(z"|2{""Y, 4)

1[[

respectively. Note that in our model, self-loops are not
considered and so in the above equations, ¢ ~ j means
over all i’s and j’s such that ¢ # j. Finally, term
Pr(ZM|x) is the probability of community assignments
at the first time step and is expressed as

(t 1) (t)

1 ::]: ﬂ':j:

(1)

HH’ITk7k .

=1 k

Pr(ZWm) =
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4 Bayesian Inference

In order to predict memberships of nodes in a given dy-
namic social network, a straightforward approach is to
first estimate the most likely values for parameters w, P,
and A from the historical data, and then infer the com-
munity memberships in the future using the estimated
parameters. This is usually called point estimation in
statistics, and is notorious for its instability when data
is noisy. We address the limitation of point estimation
by Bayesian inference [3]. Instead of using the most
likely values for the model parameters, we utilize the
distribution of model parameters when computing the
prediction.

4.1 The Bayesian Model

Conjugate prior for Bayesian Inference We
first introduce the prior distributions for model param-
eters m, P, and A. The conjugate prior for m is the
Dirichlet distribution

Ye—1
Tk

(Zk%)
TL.T(w) H

where I'(+) is the Gamma function. For the P matrix, we

first assume it to be symmetric and therefore reduce the
n(n+1)
2

(4.1) Pr(m) =

number of parameters to . The conjugate prior
for each parameter Py; for [ > k is a Beta distribution,
and therefore the prior distribution for P is

H I'(ar + Bri)

bk (o) T (Bra)

Finally, the conjugate prior for each row A is a Dirichlet
distribution and the prior distribution for A is

(O Ht) o
HH ’ AlkLl' 1'

Mkl

(42) PI‘(P) = Pakl_l(l_Pkl)ﬁklfl.

(4.3)

Joint probability of the complete data To
make our presentation concise, we introduce the follow-
ing notations.

(4 ! = Zz;?
t1:t
(4.5) n,(cilz) = Z Zz zl
t=t;+1 i=1
to n
ty:t t—1
(16) m2 = 37 3al
t=t;+1 i=1
ti:t t) _(t t) _(t
(4.7) nfd 2 = ZZ z( )z(l)—i—z(l)zj())
t=t1 i~vj
(4.8) ﬁgﬂilifﬂ) _ Zzw(t) (t)z(f)—i—z(f)z(t))
t=t1 i~vj
Copyright © by SIAM.
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Using these notations, and with the prior distributions
of the model parameters, the theorem below gives the
closed form expression for the joint probability of the
complete data that is marginalized over the distribution
of model parameters.

THEOREM 1. With the priors of parameters 6 =
{m, P, A} defined in Equations (4.1)~(4.3) together with
the notations given in Equations (4.4)~(4.8), the joint
probability of observed links and unobserved community
assignments is proportional to

PI‘(WT,ZT) = /PI‘(WT,ZT|9) Pr(@)d@ X

Hr Y ) HHZ

H B (nkl D4 akl;nlg T)
k,>k

nk—»l) + )

+Zz [okt)
A(l 4 5kz)

I ( i
B

where B(-) is the Beta function.

(1:T) A (1:7T)
N~ — Mg
5 + 5kk>

+ akk,

Due to the limit of space, we skip the detailed proof. In
this Bayesian inference framework, to obtain the com-
munity assignment of each node at each time step, we
need to compute the posterior probability Pr(Z,|Wr).
This is in general an intractable problem. In the next
two subsections, we introduce two versions of the infer-
ence method, i.e., an offline learning approach and an
online learning approach.

4.2 Offline learning In offline learning, it is as-
sumed that the link data of all time steps are acces-
sible and therefore, the community assignments of all
nodes in all time steps can be decided simultaneously
by maximizing the posterior probability, i.e.,

(4.9)

Z7p = argmax Pr(Zp|\Wr) = argmax Pr(Wr, Zr)
ZT ZT

where Pr(Wr, Z7) is given in Theorem 1. Note that
in offline learning, the community membership of each
node at every time step t is decided by the link data of
all time steps, even the link data of time steps later than
t. Given this observation, we expect offline learning to
deliver more reliable estimation of community member-
ships than the online learning that is discussed in the
next subsection.

4.3 Online learning In online learning, the commu-
nity memberships are learned incrementally over time.
Assume we have decided the community membership
Z(=1) at time step t-1, and observed the links W® at
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time t. We decide the community assignments at time ¢
by maximizing the posterior probability of community
assignments at time ¢ given Z¢=Y and W® | ie.,

7 = argmax Pr(Z®|w® | z(t=1)

Z ()

Hence, to decide Z®, the key is to efficiently compute
Pr(Z®W|W® Z(t=1) except for time step 1 in which we
need to compute Pr(ZM|W M), The following theorem
provides closed form solutions for the two probabilities.
It is important to note that both probabilities are
computed by averaging over the distribution of the
model parameters.

THEOREM 2. With the priors of parameters 6 =
{m, P, A} given in Equations (4.1)~(4.3), the posterior
probability of unobserved community assignments given
the observed links and the community assignments at
previous time step is proportional to

Pr(Z1|W7) x HF(n,(cl) + Y&)
k

X H B (ﬁ,(ﬁ) + ozkl,ng)

k>k
(1) (1)

5 (1)
XHB <—+Oé mw+ﬁkk>

- n,(j) + ﬁkl)

(4.10) Pr(z®w® zt-Dy «

H <H P(ng—»zl Y + H) )

k . T(ny, (t 0 +Zzﬂkl)
X H B (ﬁl(cl) —|—akl,n,(€l) —nkl +6kl>
>k

(t) (t) A0
x H B +a 5 Pk ~ Pk 1 5,

We skip the detailed proof due to the limit of space.
In online learning, it is assumed that data arrives
sequentially and historic community assignments are
not updated upon the arrival of new data. Therefore,
the online learning algorithm can be implemented more
efficiently than the offline learning algorithm.

5 Inference Algorithm

To optimize the posterior probabilities in the offline and
online learning algorithms introduced in the previous
section, we appeal to Gibbs sampling method. In
Gibbs sampling, we need to compute the conditional
probability of the community assignment of each node
conditioned on the community assignments of other
nodes. We will first describe the algorithm and then
provide time complexity of the proposed algorithm.
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5.1 Gibbs sampling algorithm For offline learn-
ing, we need to compute the conditional probability
Pr(z"| 21 iy Wr), via Pr(Zr|Wr), where Zr ;.-
are the community assignments of all nodes at all time
steps except node ¢ at time step t. This can be com-
puted by marginalizing zi(t) in Equation (4.9). Similarly,
for online learning, we need to compute the conditional
probability Pr(zi(t)|ZZ.(f), w®, zt=1) where Zi(f) is the
collection of community assignments of all nodes, ex-
cept node i, at time step t. This can be computed by
marginalizing Pr(Z®|W® Z(¢=1) The following al-
gorithms describe a simulated annealing version of our
inference algorithm.

ALGORITHM 5.1. Probabilistic Simulated Annealing
Algorithm

1. Randomly initialize the community assignment for
each node at time step ¢ (online learning) or at all
time steps (offline learning); select the temperature
sequence {71y, --,Ty} and the iteration number
sequence {Ny, -+, Nas}.

2. for each iteration m = 1,...,M, run N,
iterations of Gibbs sampling with target dis-
tributions  exp{log Pr(Z®|W® Zt=1)/T, 1 or
exp{log Pr(Zr|Wr) /T }.

ALGORITHM 5.2. Gibbs Sampling Algorithm

1. Compute the following statistics with the
initial assignments:

n!)

(L:T) A (1:T) ) ~(t)

Mg Mgy 0T Ny s Ty

(1:T) (1:T) (t—1:t) (t—1:t)
kol 2. OT Mgy "5 Ty

2. for each iteration m; = 1 : N,,, and for each node
i =1:n at each time ¢

e Compute the objective function in Simulated
Annealing

exp {log Pr(z! |Zi(f), w, Z(tfl))/Tm} or

exp {10g Pr(zf |ZT,{i,t}* ) WT)/Tm}
up to a constant using the current statistics,

and then obtain the normalized distribution.

e Sample the community assignment for node @
according to the distribution obtained above,
update it to the new one.

e Update the statistics.
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5.2 Time complexity In our implementation, we
adopt several techniques to improve the efficiency of the
algorithm. First, since in each step of the sampling, only
one node 7 at a given time ¢ changes its community as-
signment, almost all the statistics can be updated incre-
mentally to avoid recomputing. Second, our algorithm
is designed to take advantage of the sparseness of the
matrix W® . For instance, we exploit the sparseness of
W® to facilitate the computation of ﬁffll:h). Without
details, we give the time complexity as the following.

THEOREM 3. The time complezity of our implementa-
tion of the Gibbs sampling algorithm is O(nT + T +
K2T + NT(eCy +nCs)) where e is the total number of
edges in the social network over all the time steps, N is
the number of iterations in Gibbs sampling , C1 and Co
are constants.

As can be seen, when the social network is sparse and
when the degree of each node is bounded by a constant,
the running time of each iteration of our Gibbs sampling
algorithm is linear in the size of the social network.

6 Extensions

In this section, we present two extensions to our basic
framework, including how to handle different types of
links and how to handle insertion and deletion of nodes
in the network. In addition, we discuss how to choose
the hyperparameters in our model.

6.1 Handling different types of link So far, we
have used binary links in our model, where the binary
links (i.e., either w;; = 1 or w;; = 0) indicate the
presence or absence of a relation between a pair of
nodes. However, there exist other types of links in
social networks as well. Here we show how to extend
our model to handle two other cases: when w;; € N
and when w;; € RT. If w;; indicates the frequency of
interactions (e.g., the occurrence of interactions between
two bloggers during a day, the number of papers that
two authors co-authored during a year, etc.), then w;;
can be any non-negative integer. Our current model
actually can handle this case with little change: the
emission probability

Pr(wilzi, ) = [ ] (P (1 = Pu)) ™™
k,l

(6.11)

remains valid for w;; € N, except that instead of a
Bernoulli distribution (i.e., w;; = 0 or 1), now wj;
follows a geometric distribution. Note that the (1 — Py)
term is needed to take into account the case where there
is no edge between i and j.

In other applications, w;; represents the similarity
or distance between nodes ¢ and j and therefore w;; €
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R7T, the set of non-negative real numbers. In such a
case, we can first discretize the w;; by using finite bins
and then introduce the emission probabilities as before.
Another way to handle the case when w;; € RT is
suggested by Zhu [18], which is to introduce a k-nearest
neighbor graph and therefore reduce the problem to the
case when w;; =0 or 1.

6.2 Handling the variability of nodes In dynamic
social networks, at a given time, new individuals may
join in the network and old ones may leave. To handle
insertion of new nodes and deletion of old ones, existing
algorithm such as [5] and [13] use some heuristics, e.g.,
by assuming that all the nodes are in the network all
the time but in some time steps certain nodes have no
incident links. In comparison, in both the online and
the offline versions of our algorithm, no such heuristics
are necessary. For example, for online learning, let .S,
denote the set of nodes at time ¢, I; = S¢[)Si—1 be
set of nodes appearing in both time steps ¢ and ¢t — 1.
U, = S; — S;_1 be the new nodes at time ¢t. Then
we can naturally model the posterior probability of the
community assignments at time ¢ as

(6.12) Pr(ZzO|w®, 21y o Pr(Zz®, Ww®|z(E-1)

= Pr(W® |20 Pr(Z| 2D Pr(Z))

and we can directly write the part corresponding to
Equation (4.10) in Theorem 2 as

Pr(z(lﬁ)“/[/(lﬁ)7 Z(tfl)) o
F(ngctillzlt) + ferr)
ek, + 0T (T
k o k 1 I‘(nff_}.jt) + 22 Bkt)

X H B (n,(fl)st + a, n;(fl)’st - fl,(:}),st + ﬁkl)
k>
nl(ctk) s nl(ctk) S, — Mkk,s
B 3t 3t 9t
X 1;[ <—2 + gk, — 5 + ﬁkk)

where n ¢ is the corresponding statistics evaluated on
the nodes set of S. Similar results can be derived for
the offline learning algorithm. In brief, our model can
handle the insertion and deletion of nodes without using
any heuristics.

(1)

6.3 Hyperparameters In this section, we discuss
the roles of the hyperparameters (v, «, 3, and u) and
give some guidelines on how to choose the values for
these hyperparameters. In the experimental studies, we
will further investigate the impact of the values of these
hyperparameters on the performance of our algorithm.
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~ is the hyperparameter for the prior of 7. We
can interpret the 7, as an effective number of obser-
vations of z;; = 1. Without other prior knowledge
we set all 7, to be the same. «,( are the hyperpa-
rameters for the prior of P. As stated before, we dis-
criminate two probabilities in P, i.e., Px; the “within-
community” link probability, and Py« the “between-
community” link probability. For the hyperparameters,
we set two groups of values, i.e., (1) akk, Bkk, Vk and
(2) @kt itk Brii+x. Because we have the prior knowl-
edge that nodes in the same community have higher
probability to link to each other than nodes in differ-
ent communities, we set opr > ariizk, Ber < Bri ik
& is the hyperparameter for A. Ag. = {Ak1, -+, Ak,
<+, Axi } are the transition probabilities for nodes to
switch from the kth community to other (including com-
ing back to the kth) communities in the following time
step. prs = {fk1, -+ s fkk, -+ 5 ik | can be interpreted
as effective number of nodes in the kth community
switching to other (including coming back to the kth)
communities in the following time step. With prior be-
lief that most nodes will not change their community
memberships over time, we set ppr > firii£k-

Finally, how to select the exact values for the
hyperparameters v,«, 3, and p is described in the
empirical studies.

7 Experimental Studies

In this section, we conduct several experimental studies.
First, we show that the performance of our algorithms is
not sensitive to most hyperparameters in the Bayesian
inference and for the only hyperparameters that impact
the performance significantly, we provide a principled
method for automatic parameter selection. Second, we
show that our Gibbs-sampling-based algorithms have
very fast convergence rate, which makes our algorithms
very practical for real applications. Third, by using a set
of benchmark datasets with a variety of characteristics,
we demonstrate that our algorithms clearly outperform
several state-of-the-art algorithms in terms of discov-
ering the true community memberships and capturing
the true evolutions of community memberships. Finally,
we use two real datasets of dynamic social networks to
illustrate that from these datasets, our algorithms are
able to reveal interesting insights that are not directly
obtainable from other algorithms.

7.1 Performance Metrics The experiments we
conducted can be categorized into two types, those with
ground truth available and those without ground truth.
By ground truth we mean the true community member-
ship of each node at each time step. When the ground
truth is available, we measure the performance of an al-
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gorithm by the normalized mutual information between
the true community memberships and those given by
the algorithm. More specifically, if the true commu-
nity memberships are represented by C = {C1,...,Ck}
and those given by the algorithm are represented by
C' = {C1,...,C}}, then the mutual information be-
tween the two is defined as

p(Ci, C%)

MIe,c)y= 3" p(Ci,C))log S eATI(eA)

Ci,C
and the normalized mutual information is defined by

MI(c,c')
max(H (C), H(C"))

MI(C,C) =

where H(C) and H(C') are the entropies of the partitions
C and C’. The value of MI is between 0 and 1 and a
higher MI value indicates that the result given by the
algorithm C’ is closer to the ground truth C. This metric
MI has been commonly used in the information retrieval
field [9)].

Where there is no ground truth available in the
dataset, we measure the performance by using the
metric of modularity which is proposed by Newman et
al. [14] for measuring community partitions. For a given
community partition C = {C1, ..., Ck}, the modularity
is defined as

Cut(Vk, Vk)
Cut(V,V)

- <Cut(Vk, V)>2

Modu(C) =Y Cut(V, V)

k

where V represents all the nodes in the social network
and Vj indicates the set of nodes in the kth community
Cr. Cut(Vi,Vj) = > ,cv, qev; Wpg- As state in [14],
modularity measures how likely a network is generated
due to the proposed community structure versus gener-
ated by a random process. Therefore, a higher modu-
larity value indicates a community structure that bet-
ter explains the observed social network. Many existing
studies, such as [4, 13], have used this metric for perfor-
mance analysis.

7.2 Experiments on Synthetic Datasets

7.2.1 Data generator We generate the synthetic
data by following a procedure suggested by Newman
et al. [14]. The data consists of 128 nodes that be-
long to 4 communities with 32 nodes in each commu-
nity. Links are generated in the following way. For each
pair of nodes that belong to the same community, the
probability that a link exists between them is p;,; the
probability that a link exists between a pair of nodes
belonging to different communities is pyy¢. However,
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by fixing the average degree of nodes in the network,
which we set to be 16 in our datasets, only one of p;,
and p,y¢ can change freely. By increasing poy:, the net-
work becomes more noisy in the sense that the com-
munity structure becomes less obvious and hard to de-
tect. We generate datasets under three different noise
levels by setting p;,=0.1452 (poyut=0.0365), p;=0.1290
(Pout=0.0417), and p;;=0.1129 (p,,+=0.0469), respec-
tively. The ratio of poyt/pin increases from 0.2512 for
level one to 0.3229 for level two and 0.4152 for level
three. The adjacency matrices for the datasets of the
three noise levels are shown in Figure 2.

(a) Level 1

(b) Level 2 (c) Level 3
Figure 2: The adjacency matrices for the datasets with
different noise levels.

The above network generator described by Newman
et al. can only generate static networks. To study
dynamic evolution, we let the community structure of
the network evolve in the following way. We start with
introducing evolutions to the community memberships:
at each time step after time step 1, we randomly choose
10% of the nodes to leave their original community and
join the other three communities at random. After
the community memberships are decided, links are
generated by following the probabilities p;, and poy:
as before. We generate the network with community
evolution in this way for 10 time steps.

7.2.2 Hyperparameters In the first experiment, we
study the impact of the hyperparameters on the per-
formance of our algorithm. Figure 3 shows the per-
formance of our algorithm, in terms of the average nor-
malized mutual information and the average modularity
over all time steps, under a large range of values for the
hyperparameters 7 (for the initial probability 7) and pu
(for the transition matrix A), respectively. As can be
seen, the performance varies little under different values
for v and p, which verifies that our algorithm is robust
to the setting of these hyperparameters. As a result, in
the following experiments, unless stated otherwise, we
simply set v = 1 and pgr = 10. Note that we only
show the results of our online learning algorithm for the
dataset with noise level 2. The results for the dataset
with other noise levels and for the offline learning algo-
rithm are similar and therefore are not shown here.
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(a) vy = 0.01, 0.1, 1, 5, and 10 (b) g = 1, 5, lel, 1e2, and 1e3
Figure 3: The performance, in terms of the average nor-
malized mutual information and the average modularity
over all time steps, under different values for v and g
(with pg; = 1,Vk # 1), which shows that the perfor-
mance is not sensitive to v and pu.

However, the performance of our algorithm is some-
what sensitive to the hyperparameters o and g for P,
which is the stochastic matrix representing the commu-
nity structure at each time step. In Figure 4 we show
the performance of our algorithm under a large range
of o and (3 values, which demonstrates that the perfor-
mance varies under different o and § values. This result
makes sense because o and (3 are crucial for the stochas-
tic model to correctly capture the community structure
of the network. For example, the best performance is
achieved when « is in the same range as the total num-
ber of links in the network. In addition, we see a clear
correlation between the accuracy with respect to the
ground truth, which is not seen by our algorithm, and
the modularity, which is available to our algorithm. As
a result, we can use the modularity value as a validation
metric to automatically choose good values for o and .
All the experimental results reported in the following
are obtained from this automatic validation procedure.

15

Il Average MI
[ ]Average Modu

JW IW IW Iﬁ IW
1 2 3 4 5

Figure 4: The performance, in terms of the average nor-
malized mutual information and the average modularity
over all time steps, under the cases with a and 3 valued
at a,ﬁ are (Ozkk = l,ﬁkl = 1), (akk = 5,ﬁkl = 1), (Oékk =
lo,ﬁkl = 1), (Oékk = 162,ﬁkl = 10), (akk = 164,ﬁk1 = 10),
and in all the cases aw,izr=1.

0.

%))

o

7.2.3 Comparison with the baseline algorithms
In this experiment, we compare the performance of

998

the online and offline versions of our DSBM algorithm
with those of two recently proposed algorithms for
analyzing dynamic communities—the dynamic graph-
factorization clustering algorithm (FacetNet) by Lin
et al. [13] and the evolutionary spectral clustering
algorithm (EvolSpect) by Chi et al. [5]. In addition,
we also provide the performances of the static versions
for all the algorithms—static stochastic block models
(SSBM) for DSBM, static graph-factorization clustering
(SGFC) for FacetNet, and static spectral clustering
(SSpect) for EvolSpect.

Figure 5 presents the performance, in terms of
the normalized mutual information with respect to
the ground truth over the 10 time steps, of all the
algorithms for the three datasets with different noise
levels. We can obtain the following observations from
the results. First, our DSBM algorithms have the best
accuracy and outperform all other baseline algorithms
at every time step for all the three datasets. Second,
the offline version of our algorithm, which takes into
consideration all the available data simultaneously, has
better performance than that of the online version.
Third, the evolutionary versions of all the algorithms
outperform their static counterparts in most cases,
which demonstrates the advantages of the dynamic
models in capturing community evolutions in dynamic
social networks. We obtain similar results for the
modularity metric and due to the limit of space, we
do not include them here.

Next, we investigate which algorithms can capture
the community evolution more faithfully. For this
purpose, since we have the ground truth on which
nodes actually changed their communities at each time
step, we compute the precision (the fraction of nodes,
among those an algorithm found switched communities,
that really changed their communities) and the recall
(the fraction of nodes, among those really changed
their communities, that an algorithm found switched
communities) for all the algorithms. Figure 6 shows the
average precision and recall for all the algorithms over
all the time steps for the three datasets with different
noise levels. As can be seen, our DSBM algorithms have
the best precision and the best recall values for all the
three datasets, which illustrates that our algorithms can
capture the true community evolution more faithfully
than the baseline algorithms.

7.2.4 Convergence rate In our algorithms, we
adopt the Gibbs sampling for Bayesian inference. In
this experiment, we show that this Gibbs sampling pro-
cedure converges very quickly. In Figure 7, we show
how the value of the objective function changes over the
number of iterations at each time step. As can be seen,
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Figure 5: The normalized mutual information with
respect to the ground truth over the 10 time steps, of
all the algorithms on the three datasets with different
noise levels.

the first time step requires more iterations but even for
the first time step, fewer than 20 iterations are enough
for the algorithm to converge. For the time steps 2 to
10, by using the results at the previous time step as
the initial values, the algorithm converges in just a cou-
ple of iterations. This result, together with the time
complexity analysis in Section 5.2, demonstrates that
our algorithm is practical and is scalable to large social
networks in real applications.

7.3 Experiments on Real Datasets In this section
we present experimental studies on two real datasets: a
traditional social network dataset, and a blog dataset.

7.3.1 The southern women data The southern
women data is a standard benchmark data in social sci-
ence. It was collected in 1930’s in Natchez, Mississippi.

999

(a) Average Precision (b)) Average Recall

Noise Level Noise Level

Figure 6: (a) The average precision and (b) the average
recall over all the time steps for the three datasets with
different noise levels.

Obiective Function

““o 20 80 100 120

40 60
Iteration Number

Figure 7: Convergence rate of Gibbs sampling proce-
dure in the online learning.

The data records the attendance of 18 women in 14 so-
cial events during a period of one year. The detailed
data is presented in Table 2. We obtain the social net-
work by assigning w;; for women i and j the number
of times that they co-participated in the same events.
We first apply the static stochastic model (SBM) to the
aggregated data and we set the number of communities
to be 2, the number used in most previous studies. Not
surprisingly, we obtain the same result as most social
science methods reported in [§], that is, women 1-9 be-
long to one community and women 10-18 belong to the
other community.

Next, based on the number of events that occurred,
we partition the time period into 3 time steps: (1)

Table 2: The southern women data, from [8].
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February-March, when women 1-7,9,10, and 13-18,
participated social events 2,5,7, and 11; (2) April-May,
when women 8,11,12, and 16 joined in and together
they participated in events 3,6,9, and 12; (3) June—
November, when events 1,4,8,10, and 13 happened for
which women 17 and 18 did not show up. We apply
both the offline and the online versions of our algorithm
on this dataset with 3 time steps. It turns out that the
offline algorithm reports no community change for any
woman. This result suggests that if we take the overall
data into consideration simultaneously, the evidence is
not strong enough to justify any change of community
membership. However, in the online learning algorithm,
if we decrease the hyperparameter pg, for A to a very
small value (around 1) and therefore encourage changes
of community memberships, women 6-9 start to change
their community at time step 3. By investigating the
data in Table 2 we see that this change is due to the
social event 8, which is the only event that women 6-9
participated at time step 3 and is mainly participated by
women who were not in the same community as women
6-9 at time steps 1 and 2.

7.3.2 The Blog Dataset This blog dataset was
collected by the NEC Labs and have been used in several
previous studies on dynamic social networks [5, 13]. It
contains 148,681 entry-to-entry links among 407 blogs
during 15 months. In this study, we first partition the
data in the following way. The first 7 months are used
for the first 7 time steps; data in months 8 and 9 are
aggregated into the 8th time step; data in months 10-15
are aggregated into the 9th time step. The reason for
this partition is that in the original dataset, the number
of links dropped dramatically toward the end of the time
and the partition above makes the number of links at
each time step to be evenly around 200.

Clustering performance We run our algorithms
on this dataset and compare the performance, in terms
of modularity, with that of the two baselines, the
dynamic graph-factorization clustering (FacetNet [13])
and the evolutionary spectral clustering (EvolSpect
[5]). Following [5], we set the number of communities
to be 2 (which roughly correspond to a technology
community and a political community). In terms of
hyperparameters for our algorithm, for ~ and p, we
simply chose some default values (i.e., v = 1, pp = 1,
and pgr = 10), and for « and 3, we chose the ones
that result in the best modularity. For the two baseline
algorithms, their parameters are chosen to obtain the
best modularity. Figure 8 shows the performance of the
algorithms. As can be seen, for this dataset, the offline
and online versions of our algorithm give similar results
and they both outperform the baseline algorithms.
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Figure 8: The performance, in terms of the modularity,
of different algorithms (including the naive method
using neighbor counting) on the NEC blog datasets.

Some meaningful community changes Actu-
ally, we found that most blogs are stable in terms of
their communities. However, there are still some blogs
changing their communities detected by our algorithms
based on the links information. Here, we present the
community memberships of four representative blogs.
Three of them (blogs 94, 192, and 357) have the most
number of links across the whole time and one of them
(blog 230) has the least number of links, only at two
time steps. To help the visualization, we assign one of
the two labels to each blog where the labels are obtained
by applying the normalized cut algorithm [15] on the
aggregated blog graph. Therefore, these labels give us
the community membership of each blog if we use static
analysis on the aggregated data. Then to visualize the
dynamic community memberships, for a blog at a given
time step, we show the fractions of the blog’s neighbors
(through links) that have each of the two possible labels
at the given time step.

Figure 9 illustrates how these fractions change over
time for these 4 representative blogs. On the top of
each subfigure, we show the community memberships
computed by our algorithms and at the bottom of each
subfigure, we show some top keywords that occurred
most frequently in the corresponding blog site. From
the figure we can see that blogs 94 and 132, for which
our algorithms detect no changes in community mem-
berships, have very homogeneous neighbor labels and
very focused top keywords. In comparison, blog 357
has relatively inhomogeneous neighbors during differ-
ent time steps and has more changes of community
memberships detected by our algorithm. It turns out
that blog 357 is a blog that reports news events in
the area of San Francisco, including both technology
events and political events. Finally, we look at blog
230. This blog is more technology focused. How-
ever, during the whole time period, it only generated
2 entry-to-entry links in time steps 3 and 8 respec-
tively. The link generated at time 3 pointed to a po-
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litical blog (blog 60, http://catallarchy.net) and
that at time 8 pointed to a technology blog (blog 362,
http://www.siliconbeat.com). Although the results
obtained by our algorithms are correct based on these
evidence, we can see that the link-based analysis can be
unreliable when the links are very sparse.

11 11 1 1 1 1 1 Onlie 22 2222 22 2ondine
L, 111 1.1 1 1 1 3°fe 2 2 2 2 2 2 2 2 2 Offine
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0

1 2 3 4 5 6 7 8 9
Blog 94 (http://gigaom.com)
WiFi, Nokia, DSL, Skype, Verizon, etc

12 3 4 5 6 7 8 9
Blog 132 (http://michellemalkin.com)
Bush, 911, Terrorist, Troops, Iraqi, etc

1 2 on-line
2 Off-line

1 2 3 4 5 6 7 8 9
Blog 230 (http://www.barneypell.com)
Google, Yahoo, Search, Website, etc

1 2 3 a4 5 6 7
Blog 357 (http://sfist.com)
Reports the news in the area of SF

Figure 9: Neighbor distributions of the four represen-
tative blogs, the community results of the offline and
online versions of DSBM, and some top keywords oc-
curred in the blogs.

Now seeing that the simple neighbor counting ap-
proach gives results consistent with our algorithms, one
may wonder if such a naive approach is good enough
for analyzing dynamic social networks. To answer this
question, in Figure 8 we also plot the performance of this
neighbor counting approach and we can see that such
a naive approach by itself does not give performances
comparable to our algorithms.

8 Conclusion

In this paper, we proposed a framework based on
Bayesian inference to find communities and to capture
community evolutions in dynamic social networks. The
framework is a probabilistic generative model that uni-
fies the communities and their evolutions in an intu-
itive and rigorous way; the Bayesian treatment gives
robust prediction of community memberships; the pro-
posed algorithms are implemented efficiently to make
them practical in real applications. Extensive experi-
mental studies showed that our algorithms outperform
several state-of-the-art baseline algorithms in different
measures and reveal very useful insights in several real
social networks.
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