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ABSTRACT
In this paper, we consider the problem of combining link and
content analysis for community detection from networked
data, such as paper citation networks and Word Wide Web.
Most existing approaches combine link and content infor-
mation by a generative model that generates both links
and contents via a shared set of community memberships.
These generative models have some shortcomings in that
they failed to consider additional factors that could affect
the community memberships and isolate the contents that
are irrelevant to community memberships. To explicitly ad-
dress these shortcomings, we propose a discriminative model
for combining the link and content analysis for community
detection. First, we propose a conditional model for link
analysis and in the model, we introduce hidden variables to
explicitly model the popularity of nodes. Second, to allevi-
ate the impact of irrelevant content attributes, we develop a
discriminative model for content analysis. These two models
are unified seamlessly via the community memberships. We
present efficient algorithms to solve the related optimization
problems based on bound optimization and alternating pro-
jection. Extensive experiments with benchmark data sets
show that the proposed framework significantly outperforms
the state-of-the-art approaches for combining link and con-
tent analysis for community detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering

General Terms
Algorithms, Experimentation, Measurement, Theory
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1. INTRODUCTION
As online repositories such as digital libraries and user-

generated media(e.g. blogs) become more popular, analyz-
ing such networked data has become an increasingly im-
portant research issue. One major topic in analyzing such
networked data is to detect salient communities among indi-
viduals. Community detection has many applications such
as understanding the social structure of organizations and
modeling large-scale networks in Internet services [32]. While
there are different formulations for community detection, in
this work, we focus on the unsupervised learning, or the
clustering viewpoint, a commonly accepted and well studied
perspective.

A networked data set is usually represented as a graph
where individuals in the network are represented by the
nodes in the graph. The nodes are tied with each other
by either directed links or undirected links, which represent
the relations among the individuals. In addition to the links
that they are incident to, nodes are often described by cer-
tain attributes, which we refer to as contents of the nodes.
For example, when it comes to the web pages, online blogs,
or scientific papers, the contents are usually represented by
histograms of keywords; in the network of co-authorship,
the contents of nodes can be the demographic or affiliation
information of researchers.

Many existing studies on community detection focus on
either link analysis or content analysis. However, neither
information alone is satisfactory in determining accurately
the community memberships: the link information is usually
sparse and noisy and often results in a poor partition of net-
works; the irrelevant content attributes could significantly
mislead the process of community detection. It is therefore
important to combine the link analysis and content analy-
sis for community detection in networks. Recently, several
approaches have been proposed to combine link and content
information for community detection. However, as we will
survey in the next section, most of these approaches adopted
a generative framework where a generative link model and
a generative content model are combined through a set of
shared hidden variables of community memberships. We
argue that such a generative framework suffers from two
shortcomings. First, community membership by itself is in-
sufficient to model links—link patterns are usually affected
by factors other than communities such as the popularity
of a node(i.e. how likely the node is cited by other nodes).
Second, the content information often include irrelevant at-
tributes and as a result, a generative model without feature
selection usually leads to poor performance.
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In this paper, we propose a discriminative model of com-
bining link and content analysis for community detection
that explicitly addresses the above shortcomings of exist-
ing approaches. Our main contributions are summarized as
follows.

• We propose a conditional model for link analysis. In
contrast to generative models, our approach does not
attempt to generate the links; instead, the conditional
probability for the destination of a given link is to be
captured. To achieve this, in our model we introduce
a hidden variable to capture the popularity of a node
in terms of how likely the node is cited by other nodes.

• To alleviate the impact of irrelevant content attributes,
we adopt a discriminative approach to make use of the
node contents. We refer to this part as discriminative
content model. As a consequence, the attributes are
automatically weighed by their discriminative power
in terms of telling apart salient communities.

• We combine the above two models into a unified frame-
work and propose a novel two-stage optimization algo-
rithm for the maximum likelihood inference. In addi-
tion, we show how the proposed link model and content
model can be used to extend existing complementary
approaches. Additional algorithms are presented to
solve the extended models.

To the best of our knowledge, the model proposed in
this paper is the first that combines conditional link models
and discriminative content models for community detection.
We conduct extensive experimental studies by using several
benchmark data sets. The experimental results show sig-
nificant improvement over the state-of-the-art approaches.
Additional experiments are conducted to further verify the
effectiveness of each of our link model and content model,
respectively.

The rest of the paper is organized as follows. In section 2
we give an overview of the related work. In Section 3 we
present and analyze the conditional link model. In Section 4,
we extend the link model to include the content information.
Also in Section 4, we describe the two-stage optimization al-
gorithm. In Section 5, we show extensions by combining our
link model and content model with other existing content
and link models. In Section 6, we show extensive exper-
imental results on benchmark data sets. Finally, we give
conclusion in Section 7.

2. RELATED WORK
In this section, we review the existing work for community-

detection using link analysis, content analysis, and their
combination.

Link Analysis for Community Detection.
Approaches in this area can be classified into two cate-

gories: measure-based approaches and probabilistic model
based approaches. In the literature of measure-based ap-
proaches, a measure is proposed to quantify the quality of
partition, and the partition is obtained either by optimizing
the measure or by iteratively adding and removing edges or
nodes from the existing partitions to improve the measure.
Some of the most well-known measures include normalized
cut [26, 31] and modularity [24], which have been exam-
ined in many previous studies [26, 31, 6, 22, 23, 12]. Other

measures used for clustering can be found in [3, 29]. Be-
sides measure-based algorithms, many probabilistic models
are developed for community detection. One such model is
the stochastic block model [27], which assumes that links
are generated with the probabilities that only depend on
the communities of nodes. Variants of the stochastic block
model include mixed-membership stochastic block model [2]
and Bayesian stochastic block model [14]. In addition, some
other probabilistic models identify the optimal communities
by soft-graph clustering [33, 30, 25].

Most of the existing approaches either assume links are
nondirectional or treat directional links as nondirectional
ones. Additional studies are devoted to address directional
links in network analysis, including PageRank [28], HITS [17],
and PHITS [7]. In PageRank, each web page is assigned a
score based on the random walk model. HITS [17] derives
an authoritative and a hub score for each web pages from
the link structure. Cohn et al. [7] proposed the PHITS al-
gorithm that extends the HITS algorithm for community
detection by a probabilistic model that is similar to Prob-
abilistic Latent Semantic Analysis(PLSA) [14]. LDA-Link
model [10] extends Latent Dirichlet Allocation (LDA) for
link analysis by assuming a link distribution for each com-
munity. Other link models proposed in the framework of
LDA can be found in [9, 13]. R. Nallapti et al. [21] extend
the mixed membership stochastic block (MMSB) model [2]
to directional links.

Content Analysis for Community Detection.
One of the most well-known approaches for content anal-

ysis is the topic model, where each topic is naturally inter-
preted as a community in our framework. Two well-known
topic models are PLSA [15] and LDA [5]. Most topic mod-
els are generative and are vulnerable to the words that are
irrelevant to the target topics. To overcome this problem, S.
Lacoste-Julien et al. [18] proposed a discriminative LDA.
The main problem with discriminative LDA is that it is
a supervised learning algorithm and cannot be applied di-
rectly to a unsupervised learning setup, which is the case
of our problem. In contrast, the discriminative framework
proposed in this paper does not require the labeling infor-
mation. It automatically discovers an appropriate discrimi-
native model that fits best with the link information.

Combined Link and Content Analysis.
As aforementioned, neither link information nor content

information is sufficient to decide the community member-
ships. Combining link and content for community detection
usually achieves better performance, as revealed in stud-
ies [8, 11]. PHITS-PLSA combines PHITS with PLSA for
community detection [8]. E. Erosheva et al. [10] combine
LDA with LDA-Link for network analysis, referred to as
LDA-Link-Word model in this paper. R. Nallapti et al. [21]
combine the mixed membership stochastic block model with
LDA, and extend the LDA-Link-Word model by separating
the citing documents and cited documents with LDA-Link-
Word model on the citing documents and PLSA model on
the cited documents. Other approaches that exploit LDA
for combining link and content analysis include [9, 13]. One
major problem with these approaches is that they apply a
generative model for content analysis, which makes them
vulnerable to the irrelevant keywords. In addition to proba-
bilistic models, some other approaches that have been pro-
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posed to combine link and content information include ma-
trix factorization[35] and kernel fusion[34] for spectral clus-
tering.

3. CONDITIONAL LINK MODEL
In this section, we first present the proposed link model

and followed by a maximum likelihood estimation method
used to estimate the unknown parameters of the proposed
model. In Section 4, we incorporate the content information
into the proposed link model by a discriminative model.

3.1 Popularity-based Conditional Link Model
(PCL)

Before going to the mathematical model, we first establish
the assumptions and notations that are used in our model.
All nodes in the network form a node space V = {1, · · · , n},
where the nodes could represent web pages, online blogs,
etc. For each pair of ordered nodes (i, j), let sij record the
information of the link from node i to node j. sij could either
be {0, 1}, N+, or any nonnegative values dependent on the
type of the link. If sij �= 0, we say there is a directional
link from node i to node j, or node i cites j (equivalently,
node j is cited by node i). Let E = {(i → j)|sij �= 0}
denote all the directional links in the network. Each node
i has an associated “link-in” space denoted by LI(i) ∈ V,
which is the set of nodes that could possibly cite node i.
Similarly, each node i is associated with a “link-out” space
denoted by LO(i) ∈ V, which is the set of nodes that could
possibly been cited by node i. Although in most cases we
have LI(i) = LO(i) = V, in some scenarios such as citation
of publications, the link-out space of a paper is the set of
all papers that are older than the paper itself, and the link-
in space is the set of all papers that are newer than the
paper itself. Let I(i) = {j|sji �= 0} be the set of nodes that
actually cite node i, O(i) = {j|sij �= 0} be the set of nodes
that are actually cited by node i, and din(i) = |I(i)| be the
indegree of node i, dout(i) = |O(i)| be the outdegree of node
i. Finally, we denote by K the number of communities we
aim to find.

In our link model, we focus on modeling Pr(j|i), i.e., the
probability of linking node i to node j among all the other
candidates in LO(i). In other words, we model which node
j among LO(i) is more likely to be cited by node i. This
is in contrast to many existing approaches that explicitly
model the presence or absence of link i → j, i.e., Pr(i →
j). This modeling choice allows us to avoid modeling the
absence of links, which was observed in [2, 19] as a major
problem for link analysis. We introduce a set of hidden
variables zi ∈ {1, · · · , K} for each node i ∈ {1, · · · , n} to
denote the community of node i. On the other hand, to
model how likely a node will receive a citation in general,
in our model for Pr(j|i), we introduce a popularity variable
bi ≥ 0 for each node i: the higher popularity of one node, the
higher chance the node will be cited by other nodes. Given
the popularity and community memberships of all nodes,
the link probability Pr(j|i) conditioned on the community
variable zi of node i associated with this link is given as
follows

Pr(j|i; zi, b) =
γjzibj∑

j′∈LO(i) γj′zi
bj′

(1)

where γik gives the community membership of node i in com-
munity k. As indicated by the above expression, the condi-

tional link probability Pr(j|i) is proportional to bj , the pop-
ularity of the ending node of the link. By assuming a multi-
nomial distribution for zi, i.e., zi ∼ Mult(γi1, · · · , γiK), we
have Pr(j|i) written as

Pr(j|i; γ, b) =
∑

k

γik
γjkbj∑

j′∈LO(i) γj′kbj′
(2)

where γik = Pr(zi = k).
In Eq. (2), we assume that bi is independently from the

community variable. As a result, each node will only have
one copy of the popularity. An alternative approach is to
have the popularity variable bi conditioned on the commu-
nity variable. In other words, we have a different popularity
variable bik for each node i when it is in a different com-
munity zi = k. Using the community dependent popularity
bik, Pr(j|i) is computed as

Pr(j|i; zi, b) =
γjzibjzi∑

j′∈LO(i) γj′zi
bj′zi

or by integrating out zi

Pr(j|i; b) =
∑

k

γik
γjkbjk∑

j′∈LO(i) γj′kbj′k
(3)

Comparing Eq. (3) to (2), we see that Eq. (3) introduces the
freedom of modeling the community dependent popularity at
the price of increasing number of variables. As will be shown
in our empirical study, Eq. (2) achieves better performance
because of the reduced number of variables.

3.2 Analysis of the PCL Model
In this section, we analyze our link model by establishing

the relation and comparing to PHITS model [7]. For the
purpose of consistency, we assume LO(i) = V for all i.

In PHITS, each community is assumed to have a multi-
nomial distribution that specifies the probability for each
node to be cited by the other nodes in the same community.
We denote by βjk the probability for node j to be cited
by any nodes in the kth community. Pr(j|i) conditioned on
community variable zi of node i for this link, and β is then
expressed as

Pr(j|i; zi, β) = βjzi

Note that unlike our model in Eq. (1), the conditional link
probability in PHITS model has nothing to do with the com-
munity membership of node j. This leads to the problem
of undetermined community membership for nodes that do
not cite any other nodes for PHITS, as discussed in the next
section. By integrating out zi, we have Pr(j|i) written as

Pr(j|i; γ, β) =
∑

k

γikβjk (4)

where γik is the probability that node i is in the kth com-
munity.

The following proposition allows us to establish the re-
lationship between the PHITS model and the popularity-
based conditional link model.

Proposition 1. The PHITS model specified in Eq. (4) is
equivalent to the link model with Pr(j|i) specified in Eq. (3).

The above proposition is proved by observing the link be-

tween βjk and the quantity γjkbjk/
(∑

j′ γj′kbj′k

)
. As re-

vealed by the above proposition, PHITS is in fact a relaxed
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version of the proposed PCL model by assuming that the
popularity of each node depends on the community of the
node.

We can also derive the proposed model in Eq. (2) from
the PHITS model in Eq. (4) by considering the relationship
between γjk and βjk, as revealed by the following proposi-
tion.

Proposition 2. The popularity-based conditional link model
specified in Eq. (2) is equivalent to the PHITS model spec-
ified in Eq. (4) if βjk is interpreted as Pr(j|Ck), i.e., the
probability of selecting node j from the kth community.

The above proposition follows the Bayes’s rule, i.e.,

Pr(j|Ck) =
Pr(Ck|j) Pr(j)∑
j′ Pr(Ck|j′) Pr(j′)

=
γjkbj∑
j′ γj′kbj′

The above proposition once again reveals that the proposed
conditional link model is a restricted version of the PHITS
model. We believe that it is the constraints introduced in the
proposed conditional link model that lead to more reliable
performance.

3.3 Maximum Likelihood Estimation
In this section, we present the method of maximum like-

lihood for the PCL model specified in Eq. (2). Observing
the directional links E = {(i → j)|sij �= 0}, we write the
log-likelihood as

logL =
∑

(i→j)∈E
ŝij log

∑
k

γik
γjkbj∑

j′∈LO(i) γj′kbj′
(5)

where ŝij is normalized sij such that
∑

j∈LO(i) ŝij = 1. We

find optimal γ and b by maximizing the log-likelihood

max
γ,b

∑
(i→j)∈E

ŝij log
∑

k

γik
γjkbj∑

j′∈LO(i) γj′kbj′

s.t.
∑

k

γik = 1, γik ≥ 0, bi ≥ 0

To derive the EM algorithm, we first have the following
lemma for a low bound for logL.

Lemma 3. The log-likelihood logL in Eq. (5) at the tth

iteration is lower bounded as follows

logL ≥ Q(b, γ; bt−1, γt−1)

=
∑

(i→j)∈E
ŝij

∑
k

qijk

(
log γik + log γjk + log

bj

τik

+1 −
∑

j′∈LO(i)

γj′kbj′

τik

⎞⎠ −
∑

(i→j)∈E
ŝij

∑
k

qijk log qijk

where the parameters τik and qijk are computed as

τik =
∑

j′∈LO(i)

γt−1
j′k bt−1

j′ (6)

qijk ∝ γt−1
ik

γt−1
jk bt−1

j∑
j′∈LO(i) γt−1

j′k bt−1
j′

s.t.
∑

k

qijk = 1 (7)

and bt−1, γt−1 are the corresponding solutions in the t − 1th

iteration.

The above lemma follows from the Jensen’s inequality and
the inequality of − log x ≥ 1 − x. Using the result in the
above lemma, we search for b and γ at the tth iteration that
maximize the lower bound of logL, i.e.,

max
γ,b

∑
(i→j)∈E

ŝij

∑
k

qijk

⎛⎝log γikγjkbj −
∑

j′∈LO(i)

γj′kbj′

τik

⎞⎠
(8)

s.t.
∑

k

γik = 1, γik ≥ 0, bi ≥ 0

For this maximization problem, we have the following the-
orem. Before stating the theorem, we first establish the
notations for the purpose of representation:

nin(i, k) =
∑

j∈I(i)

ŝjiqjik nout(i, k) =
∑

j∈O(i)

ŝijqijk

nin(i) =
∑

k

nin(i, k) nout(i) =
∑

k

nout(i, k)

n(i, k) = nin(i, k) + nout(i, k) m(i, k) =
∑

j∈LI(i)

nout(j, k)

τjk

Theorem 4. The optimal solution to Eq. (8) satisfies the
following conditions
∀i, dout(i) �= 0, din(i) �= 0,

γik =
n(i, k)

m(i, k)bi + nout(i)
, bi =

nin(i)∑
k m(i, k)γik

(9)

∀i, dout(i) = 0, din(i) �= 0,

γik ∝ nin(i, k)

m(i, k)
, bi =

nin(i)∑
k m(i, k)γik

∀i, dout(i) �= 0, din(i) = 0,

γik =
nout(i, k)∑
k nout(i, k)

, bi = 0

∀i, dout(i) = 0, din(i) = 0,

γik is any non-negative value such that
∑

k

γik = 1, bi = 0

Due to the limit of space, we skip the detailed proof of the
theorem.

Remark: As revealed in Eq. (9), bi is proportional to
the number of nodes that cites node i, i.e., nin(i), which is
consistent with interpreting bi as “popularity” or “authori-
tative” for node i. Advantage of PCL over PHITS can also
be seen in the solution of γik. It can be shown that the
membership of node i in PHITS model only depends on
the membership of the nodes that are cited by node i, i.e.,
γik ∝ nout(i, k), and not affected by the nodes that cite
node i. When nout(i) = 0, i.e., node i has no outgoing links,
the membership γik is not determined. In contrast, in PCL
model, community membership of node i depends on the
membership of all the nodes connected to node i.

4. INCORPORATING CONTENT VIA A DIS-
CRIMINATIVE MODEL

In this section, we extend our link model to incorporate
the content information of nodes. As we discussed in Sec-
tions 1 and 2, most existing approaches combine link and
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content by a generative model that generates both links and
content attributes via a shared set of hidden variables re-
lated to community memberships. In this work, we propose
a discriminative model, referred to as Discriminative Con-
tent(DC) model, to incorporate the content into the pro-
posed link model. Let xi ∈ R

d denote the content vector
of node i. The content information is used to model the
memberships of nodes by a discriminative model, given by

Pr(zi = k) = yik =
exp(wT

k xi)∑
l exp(wT

l xi)
(10)

where wk ∈ R
d is a d-dimensional weight vector for commu-

nity k with each element corresponding to each attribute.
We can see that by incorporating the content model, the
community membership is no longer specified by parame-
ters γik, but rather conditioned on the content through yik

by a softmax transformation. Then, the conditional link
probability Pr(j|i) expressed in Eq. (2) is modified as fol-
lows

Pr(j|i; b, w) =
∑

k

yik
yjkbj∑

j′∈LO(i) yj′kbj′

where yik depends on w as given in Eq. (10). As revealed
in the above expression, we do not generate the content at-
tributes as most topic models do. Instead, by using the
discriminative model, with an appropriately chosen weight
vector wk that assign large weights to important attributes
and small weights or zero weights to irrelevant attributes, we
avoid the shortcoming of the generative models, i.e., being
misled by irrelevant attributes. Another benefit from the
discriminative model is that we can use a non-linear trans-
formation φ(x) : R

d → R
m on the content vector as the new

attribute to obtain a non-linear model. In the sequel, we use
φ(x) rather than x for presentation.

The log-likelihood of the combined model is written as

logL =
∑

(i→j)∈E
ŝij log

∑
k

yik
yjkbj∑

j′∈LO(i) yj′kbj′
(11)

We maximize the log-likelihood over the free parameters w
and b. Although we can use any gradient-based algorithm
to optimize with wk and bi, we propose an efficient two-
stage method as discussed in the next section, which helps
us better understand the relation of link model and content
model.

A Two-Stage Method for Optimization
In this section, we describe the method to maximize the
log-likelihood in Eq. (11). We still use the EM algorithm
to maximize the log-likelihood. In the E-step, we compute
τik and qijk from y and b. In the M-step, we maximize the
following problem:

max
w,b

∑
(i→j)∈E

ŝij

∑
k

qijk

⎛⎝log yikyjkbj −
∑

j′∈LO(i)

yj′kbj′

τik

⎞⎠
(12)

subject to non-negative constraints on b.
Instead of maximizing over w, we convert Eq. (12) into a

constraint optimization problem over y and b by

max
y∈Δ,b

∑
(i→j)∈E

ŝij

∑
k

qijk

⎛⎝log yikyjkbj −
∑

j′∈LO(i)

yj′kbj′

τik

⎞⎠
(13)

Algorithm 1 Algorithm for maximizing the log-likelihood

1. Input the number of iterations or convergence rate

2. Initialize wk to zeros, bi randomly, λ to a fixed value

3. in the E-step, compute τik and qijk as in Eq. (6) and (7)
using yik rather than γik

4. in the M-step,

• compute γik, and bi as in Theorem 4

• update wk by maximizing the objective in
Eq. (15) with γik in place of ỹik, and then com-
pute yik

5. repeat Step 3 and 4 until the input number of itera-
tions is exceeded or convergence rate is satisfied.

6. Output γik or yik as the final membership

where the domain Δ is defined as

Δ =

{
y|∃w, yik =

exp(wT
k φ(xi))∑

l exp(wT
l φ(xi))

}
(14)

By having the domain of y given in Eq. (14) as a convex set,
we can take a projection method to maximize the problem
of Eq. (13), which leads to the two-stage method. In the
first stage, we simply ignore the complex constraint for yik

imposed by the domain Δ and solve the optimization prob-
lem in Eq. (13) with only sum-to-one constraint on yik and
non-negative constraints on b using the result in Theorem 4.
In the second stage, we project the yik into the domain Δ.
Let ỹik denote the optimal solution obtained from the first
stage. The projection of ỹik, denoted by yik, is obtained
by minimizing the KL divergence between ỹik and yik ∈ Δ,
which is equal to the following optimization problem

max
w

∑
i

∑
k

ỹik log yik =
∑

i

∑
k

ỹik log
exp(wT

k φ(xi))∑
l exp(wT

l φ(xi))

This problem is similar to the log-likelihood in multi-class
logistic regression problem except that the class member-
ship ỹik is not just binary but between 0 and 1 . As in
logistic regression, we can add regularization term on wk to
make the solution more robust, which leads to the following
optimization problem

max
w

∑
i

∑
k

ỹik log
exp(wT

k φ(xi))∑
l exp(wT

l φ(xi))
− λ

2

∑
k

wT
k wk (15)

where λ is the regularization coefficient. This problem is
a convex problem [4] and has a unique optimal solution,
and can be maximized efficiently by the Newton-Raphson
method.

By converting the optimization problem over w into the
problem over y and taking the two-stage method, we are able
to have a better understanding of our combined model—the
link structure will first give us a noisy estimation of commu-
nity memberships ỹ, and the noisy memberships are then
used as supervised information for our discriminative con-
tent model to derive high-quality memberships y. These es-
timated memberships are further used in our EM iterations.
Algorithm 1 summarizes the overall algorithms for combined
link and content analysis for community detection. The al-
gorithm has a time complexity of O(M(eKC1+nKC2+T3)),
where M is the number of iterations, e is the number of links
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in the network, n is the number of nodes in the network, C1

is a constant factor in computing qijk and τik, C2 is a con-
stant factor in computing γik and bi, and T3 is the time for
maximizing problem in Eq. (15) by the Newton-Raphson
method.

5. EXTENSIONS
In this section, we discuss two variants of the proposed

framework for combining link information with content in-
formation. In the first variant, referred to as PCL+PLSA,
we present an approach that combines the proposed condi-
tional link model with the PLSA model for content analy-
sis. In the second variant, referred to as PHITS+DC, we
present an approach that combines the PHITS model for
link analysis with the proposed discriminative approach for
content analysis. These two combined models will serve as
baselines in our experimental study.

5.1 PCL + PLSA
Similar to [8] where the PHITS link model is combined

with PLSA content model, we combine our PCL link model
with PLSA. The combined log-likelihood is given by

logL = α
∑

i

∑
j∈W(i)

ŝw
ij log

∑
k

βw
jkγik

+ (1 − α)
∑

i

∑
j∈O(i)

ŝl
ij log

∑
k

γik
γjkbj∑

j′∈LO(i) γj′kbj′

where α is combination coefficient, ŝw
ij is the normalized

number of times that word j occurs in the content of node
i, W(i) denotes the set of unique words that occur in the
content of node i, and βw

jk = Pr(word j|Ck). To maximize
the log-likelihood, we derive the EM-algorithm as follows.
In the E-step, we compute qw

ijk, ql
ijk and τik as

qw
ijk ∝ γikβw

jk, s.t.
∑

k

qw
ijk = 1

τik =
∑

j′∈LO(i)

γj′kbj′

ql
ijk ∝ γik

γjkbj∑
j′∈LO(i) γj′kbj′

, s.t.
∑

k

ql
ijk = 1

In the M-step, we compute βw
jk, γik and bi as

βw
jk =

∑
i∈N (j) ŝw

ijq
w
ijk∑

j

∑
i∈N (j) ŝw

jkqw
ijk

=
nw

in(j, k)∑
j nw

in(j, k)

γik =
αnw

out(i, k) + (1 − α)nl(i, k)

αnw
out(i) + (1 − α)

(
nl

out(i) + biml(i, k)
)

bi =
nl

in(i)∑
k ml(i, k)γik

where N (j) denotes the set of nodes whose content have
the word j, and nw

in, nw
out, nl

in, nl
out, nl, and ml are defined

similar as before.

5.2 PHITS + DC
In this variant, we combine the PHITS link model with

our DC content model. The log-likelihood is given by

logL =
∑

(i→j)∈E
ŝij log

∑
k

yikβjk

where yik = exp(wT
k φ(xi))/

∑
l exp(wT

l φ(xi)). In the E-step,
we compute qijk as

qijk ∝ yikβjk,
∑

k

qijk = 1

In the M-step, we first compute βjk and the free form mem-
bership γik by

βjk =

∑
i∈I(i) ŝijqijk∑

j

∑
i∈I(i) ŝijqijk

=
nin(j, k)∑
j nin(j, k)

γik =

∑
j∈O(j) ŝijqijk∑

k

∑
j∈O(j) ŝijqijk

=
nout(i, k)

nout(i)

Then we maximize the following objective to get wk and yik,

max
∑

k

∑
i

γik log yik − λ

2

∑
k

wT
k wk

6. EXPERIMENT
In this section, we conduct several experimental studies.

We first compare the PCL model with the PHITS model
for the task of link prediction. Then we compare the perfor-
mance of the PCL model with that of several state-of-the-art
methods on the task of community detection by using two
citation data sets. Before going into the details, we first de-
scribe the data sets and the metrics used in the experiment
and evaluation.

6.1 Data Sets
We used four data sets in our experiments. They are

described in the following:
Political Blog Data Set is a social blog network, which

is a directed network of hyperlinks between webblogs about
the US political issues, recorded in 2005 by Adamic and
Glance [1]. There are totally 1490 blogs, and each blog is
labeled as either conservative or liberal. In the data set, we
only have the link information and have no content informa-
tion. So this data set is only used in the link prediction task
to compare the PCL model with the PHITS model. The
number of communities for this data set is set to K = 2.

Wikipedia Data Set is a web page network which was
crawled from Wikipedia web site by Gruber et al. [13]. This
data set has 105 nodes and 799 links. This data set contains
no explicit community label for each page. So we only use
this data set in the link prediction task, with K set to 20 as
suggested in [13].

Cora Data Set is a subset of the larger Cora citation
data set [20]. This data set includes publications from the
machine learning area, each of which is classified into 7 sub-
categories as: Case-based reasoning, Genetic Algorithms,
Neural Networks, Probabilistic Methods, Reinforcement Learn-
ing, Rule Learning and Theory. There are totally 2708
nodes, and 5429 links. Each node corresponds to one pa-
per and is described by a 0/1-valued word vector indicating
the absence/presence of the corresponding word from the
dictionary of 1433 unique words. We use this data set in
both the link prediction task and the community detection
task. The number of communities is set to be K = 7.

Citeseer Data Set is a subset of the larger Citeseer data
set1. The Citeseer data set consists of 3312 scientific pub-
lications labeled as one of 6 classes and 4732 links. Each

1http://citeseer.ist.psu.edu/
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publication is described by a 0/1 valued word vector. The
dictionary of word consists of 3703 unique words. This data
set is used in both link prediction and community detection
tasks. The number of communities is set to be K = 6.

6.2 Performance Metrics
In the comparison of the PCL model and the PHITS

model on the task of link prediction, we hide some links
from the network, and run the two models on the remaining
links. The performance is measured by the metric of Recall.

Recall is an Information Retrieval measure. For each
node, we compute the probabilities for the node to generate
links to the other nodes and then sort these probabilities in
the decreasing order. The recall is computed at each posi-
tion in the rank and defined as the fraction of target nodes
that correspond to the hidden links. The recall is reported
from positions 1 to 20 in the rank.

To measure the performance of community detection, we
used four metrics among which two are supervised and the
other two are unsupervised. The two supervised metrics
are normalized mutual information (NMI), and pairwise F-
measure (PWF). These two metrics use the supervised label
information. The other two unsupervised metrics are mod-
ularity (Modu) and normalized cut (NCut). These two met-
rics measure the partition performance in terms of the link
structure.

With the supervised label information, we can form the
true community structure C = {C1, . . . , CK}, where Ck con-
tains the set of nodes that are in the kth community. The
community structure given by the algorithms is represented
by C′ = {C′

1, . . . , C
′
K}. Then the mutual information be-

tween the two is defined as

M̂I(C, C′) =
∑

Ci,C′
j

p(Ci, C
′
j) log

p(Ci, C
′
j)

p(Ci)p(C′
j)

and the normalized mutual information is defined by

NMI(C, C′) =
M̂I(C, C′)

max(H(C),H(C′))

where H(C) and H(C′) are the entropies of the partitions C
and C′. The higher the normalized mutual information, the
closer the partition is to the ground truth.

Let T denote the set of node pairs that have the same
label, S denote the set of node pairs that are assigned to the
same community, |T | denote the cardinality of set T . The
pairwise F-measure is computed from the pairwise precision
and recall, as the following

precision = |S
⋂

T |/|S| recall = |S
⋂

T |/|T |

PWF =
2 × precision × recall

precision + recall

The higher the PWF, the better is the partition.
Modularity is proposed by Newman et al. [24] for measur-

ing community partitions. For a given community partition
C = {C1, . . . , CK}, the modularity is defined as

Modu(C) =
∑

k

[
Cut(Ck, Ck)

Cut(C,C)
−

(
Cut(Ck, C)

Cut(C, C)

)2
]

where Cut(Ci, Cj) =
∑

p∈Ci,q∈Cj
wpq . As stated in [24],

modularity measures how likely a network is generated due

to the proposed community structure versus generated by
a random process. Therefore, a higher modularity value
indicates a community structure that better explains the
observed network.

Normalized cut is the objective of the normalized cut algo-
rithm ([31], which we refer to as NCUT). Given a community
partition C = {C1, . . . , CK}, the normalized cut is defined
as

NCut(C1, · · · , Ck) =
K∑

i=1

Cut(Ci, C̄i)

vol(Ci)

where C̄i denotes the set of nodes that are not in Ci and
vol(Ci) =

∑
p∈Ci

∑
q wpq.

6.3 PCL vs. PHITS
To validate the advantage of the PCL link model over the

PHITS link model, we experiment them on the four data
sets described in Section 6.1. The performance is reported
in Figure 1 in terms of recall at positions 1 to 20. Each
number in the figure is averaged over 5 runs. The PCL
outperforms the PHITS in all the cases. To investigate the
effects of the popularity parameter, b, we also perform the
same experiments on PCL by setting bi = 1 for all i. The
results are labeled as “PCL-b=1” in the figure. The perfor-
mance given bi = 1 is worse than PCL and PHITS. It further
confirms the importance of the popularity parameter. Over-
all, this result validates our conjecture that the conditional
link model outperforms the generative link model, at least
for the task of link predication.

6.4 Partition Performance
In this section, we investigate the performance of our

model on the task of community detection. We perform ex-
periments on the two scientific publication date sets, which
have both link and content information.

To validate the advantage of our proposed model, we com-
pare it with several baselines. Based on what information is
used, the algorithms are categorized into 3 classes:
Based on Link, we compare the following models: PHITS,
PCL, LDA-Link, and Spectral Clustering (NCUT).
Based on Content, we compare the following: PLSA,
LDA-Word, and Spectral Clustering. In spectral clustering,
the similarity matrix is the kernel matrix computed from the
content of each publication. Here we report two kernels, one
is the RBF kernel, and the other is the probabilistic product
kernel proposed in [16].
Based on Link and Content, we compare the following:
PHITS-PLSA, LDA-Link-Word, Link-Content-Factorization
(LCF), Spectral Clustering, PCL-PLSA, PHITS-DC, and
PCL-DC. Notice that PHITS-PLSA refers to the combina-
tion of PHITS and PLSA proposed in [8], LDA-Link-Word
refers to the mixed membership model proposed in [10], LCF
refers to the model proposed in [35], Spectral Clustering is
applied to linear combined kernel from the link matrix and
content kernel, PCL-PLSA refers to the combination of the
PCL and the PLSA model as described in Section 5, PHITS-
DC refers to the PHITS model combined with the Discrimi-
native Content model, and PCL-DC refers to the PCL model
combined with the Discriminative Content model.

In the implementation, the feature vector used in our
model is the original word indicator vector without any trans-
formation; the spectral clustering we used is the normalized
cut algorithm [31] (NCUT). For the algorithms that are de-
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Table 1: Partition Measure on Cora and Citeseer dataset
Cora Citeseer

Algorithm NMI PWF Modu NCut NMI PWF Modu NCut

PHITS 0.0570 0.1894 0.3929 3.2466 0.0101 0.1773 0.4588 2.2370
LDA-Link 0.0762 0.2278 0.2189 4.5687 0.0356 0.2363 0.2211 3.7457Link
PCL 0.0884 0.2055 0.5903 1.9391 0.0315 0.1927 0.6436 1.1181
NCUT 0.1715 0.2864 0.2701 0.2732 0.1833 0.3252 0.6577 0.1490

PLSA 0.2107 0.2864 0.2682 4.2686 0.0965 0.2298 0.2885 3.2294
LDA-Word 0.2310 0.2774 0.2970 3.7820 0.1342 0.2880 0.3022 3.0165
NCUT(RBF kernel) 0.1317 0.2457 0.1839 4.7775 0.0976 0.2386 0.2133 3.7078Content

NCUT(pp kernel) 0.1804 0.2912 0.2487 4.6612 0.1986 0.3282 0.4802 1.8118

PHITS-PLSA 0.3140 0.3526 0.3956 3.2880 0.1188 0.2596 0.3863 2.7397
LDA-Link-Word 0.3587 0.3969 0.4576 2.8906 0.1920 0.3045 0.5058 2.0369
LCF 0.1227 0.2456 0.1664 4.8101 0.0934 0.2361 0.2011 3.6721

Link
+

Content

NCUT(RBF kernel) 0.2444 0.3062 0.3703 1.6585 0.1592 0.2957 0.4280 1.7592
NCUT(pp kernel) 0.3866 0.4214 0.5158 0.7903 0.1986 0.3282 0.4802 1.8118
PCL-PLSA 0.3900 0.4233 0.5503 2.1575 0.2207 0.3334 0.5505 1.6786
PHITS-DC 0.4359 0.4526 0.6384 1.5165 0.2062 0.3295 0.6117 1.2074
PCL-DC 0.5123 0.5450 0.6976 1.0093 0.2921 0.3876 0.6857 0.7505
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Figure 1: Recall on the four data sets

pendent on some parameters such as the σ parameter in
RBF kernel, the combination coefficient in PHITS-PLSA,
the combination coefficient of link matrix and content ker-
nel for spectral clustering, the combination coefficient in
PCL-PLSA, the regularization coefficient in PHITS-DC, we
experiment on a wide range of values and choose the best
one in terms of normalized mutual information and pair-
wise F-measure. For example, the combination coefficients
in PHITS-PLSA, PCL-PLSA, and combined link matrix and
content kernel are tuned from 0.1 to 0.9 with 0.1 as the step
size. The regularization coefficient for PHITS-DC is tuned
from 0 to 50 with 5 as the step size. The regularization co-
efficient for PCL-DC is set to a fixed value of 10. All the
iterative algorithms are run until the relative difference of
the objective is within 10−8.

Tables 1 show the results on the Cora data set and the
Citeseer data set. For both data sets, PCL outperforms
PHITS in all the cases, either using link only (PCL outper-
forms PHITS), or combining link and content (PCL-PLSA
outperforms PHITS-PLSA and PCL-DC outperforms PHITS-
DC). When considering content, the approaches that dis-
criminatively combine content (DC) outperform the approaches
that combine content using PLSA. That is, PHITS-DC out-
performs PHITS-PLSA, and PCL-DC outperforms PCL-PLSA.
These results further confirm that the discriminative models
(either the link model, or the content model, or the com-
bination of the two) achieve better performance than the
generative ones.

We also compared PCL and PCL-DC with the following
algorithms. In the link-only case, the spectral clustering
(NCUT) outperforms PCL. LDA-Link outperforms PCL in
some metrics. When combining link and content, PCL-DC
outperforms all algorithms except for the spectral cluster-
ing (NCUT) algorithm in the normalized cut (NCut) metric.

The main reason for the spectral clustering (NCUT) to have
the best performance in terms of normalized cut is that it di-
rectly minimizes this metric. However, we argue that people
would consider the NMI and PWF metrics as equally impor-
tant, because the NMI and PWF metrics measure how good
the partition derived by the algorithms matches the ground
truth.

Finally, to reveal the performance of our model under dif-
ferent parameters, we show the performance of the PCL-DC
model under different regularization coefficient λ on the two
data sets in Figure 2. In both data sets, the performance
achieves the highest level when λ = 5. After that, the PCL-
DC algorithm is not very sensitive to λ.
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Figure 2: Partition Measure of PCL-DC vs. λ

7. CONCLUSION
In this paper, we proposed a unified model to combine

link and content analysis for community detection. To ac-
curately model the link patterns, a conditional link model
is proposed to capture the popularity of nodes. In order to
alleviate the problem caused by the irrelevant attributes, a
discriminative model, instead of a generative model, is pro-
posed for modeling the contents of nodes. The link model
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and content model are combined via a probabilistic frame-
work through the shared variables of community member-
ships. We observed that the combined model obtains signif-
icant improvement over the state-of-the-art approaches for
community detection. For future work, we plan to consider
a full Bayesian model to compute the posterior of member-
ship and parameters rather than computing the maximum
likelihood estimation, and try to look at the performance of
the proposed model on more data sets.
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