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Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Tableaux 2007 – p.3/40



Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Tableaux 2007 – p.3/40



Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Hardware verification: theory of equality, of bit vectors.

Tableaux 2007 – p.3/40



Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
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Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Hardware verification: theory of equality, of bit vectors.

Timed automata, planning: theory of integers/reals.

Software verification/model checking, compiler
optimization: combinations of various theories.
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Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Hardware verification: theory of equality, of bit vectors.

Timed automata, planning: theory of integers/reals.

Software verification/model checking, compiler
optimization: combinations of various theories.

We refer to this general problem as (ground) Satisfiability
Modulo Theories, or SMT.
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Satisfiability Modulo a Theory T

Ground T -satisfiability problem for a theory T :
Is there a model of T that satisfies a given ground formula ϕ ?
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Satisfiability Modulo a Theory T

Ground T -satisfiability problem for a theory T :
Is there a model of T that satisfies a given ground formula ϕ ?

Some popular theories

Equality with “Uninterpreted Functions”

Arithmetic (Real and Integer)

Arrays

Bit vectors

Sets

Algebraic Datatypes (tuples, lits, etc.)
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Satisfiability Modulo a Theory T

Note: The T -satisfiability of ground formulas is decidable
iff the T -satisfiability of sets of literals is decidable
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Problem: In practice, dealing with Boolean combinations
of literals is as hard as in the propositional case
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Satisfiability Modulo a Theory T

Note: The T -satisfiability of ground formulas is decidable
iff the T -satisfiability of sets of literals is decidable

Problem: In practice, dealing with Boolean combinations
of literals is as hard as in the propositional case

Current solution: Exploit propositional satisfiability
technology

Favorite SAT technology: based on the
Davis-Putnam-Loveland-Logemann (DPLL) procedure
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Lifting SAT Technology to SMT
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Lifting SAT Technology to SMT

Eager approach [CBMC, UCLID, . . . ]:

translate ϕ into an equisat. propositional formula,

feed it to any SAT solver.
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Eager approach [CBMC, UCLID, . . . ]:

translate ϕ into an equisat. propositional formula,

feed it to any SAT solver.

Lazy approach [Barcelogic, CVC*, ICS, MathSAT, Verifun,
Yices, Z3, . . . ]:

treat ϕ as a propositional formula,

feed it to a DPLL-based SAT solver,

use a theory decision procedure to refine the formula,

use the decision procedure to guide the search of
DPLL solver.
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Lifting SAT Technology to SMT

Eager approach [CBMC, UCLID, . . . ]:

translate ϕ into an equisat. propositional formula,

feed it to any SAT solver.

Lazy approach [Barcelogic, CVC*, ICS, MathSAT, Verifun,
Yices, Z3, . . . ]:

treat ϕ as a propositional formula,

feed it to a DPLL-based SAT solver,

use a theory decision procedure to refine the formula,

use the decision procedure to guide the search of
DPLL solver.

This talk focuses on the lazy approach.
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An Abstract Framework for SMT

Lazy approach :

treat ϕ as a propositional formula,

feed it to a DPLL-based SAT solver,

use a theory decision procedure to refine the formula,

use the decision procedure to guide the search of DPLL
solver.

There are several variants of this approach.

They can be modeled abstractly and declaratively as
transition systems.
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An Abstract Framework for SMT

Using transition systems helps:

Skip over implementation details and unimportant control
aspects.
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An Abstract Framework for SMT

Using transition systems helps:

Skip over implementation details and unimportant control
aspects.

Reason formally about DPLL-based solvers for SAT and
for SMT.

Model modern features such as non-chronological
bactracking, lemma learning or restarts.

Describe different strategies and prove their correctness.

Compare different systems at a higher level.

Get new insights for further enhancements.
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DPLL Procedure vs. Tableaux

Grand claim of the day:

Modern variants of DPLL can be understood as highly
optimized proof procedures for the ground clause
tableau calculus
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DPLL Procedure vs. Tableaux

Grand claim of the day:

Modern variants of DPLL can be understood as highly
optimized proof procedures for the ground clause
tableau calculus

Modeling clause tableaux too as transition systems helps see
this connection
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Clause Tableaux as Transitions Systems

States:

fail or T || F

where T = {B1, . . . , Bk} is a set of branches Bi

Bi = (l1, . . . , lni
) is a sequence of (ground) literals

F = {C1, . . . , Cp} is a set of (ground) clauses.
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Clause Tableaux as Transitions Systems

States:

fail or T || F

Initial state:

{{⊤}} || F where F is to be checked for satisfiability

Expected final states:

fail , if F is unsatisfiable

T ∪ {B} || G where G is logically equivalent to F and B

satisfies G, if F is satisfiable

Tableaux 2007 – p.10/40



Clause Tableaux as Transitions Systems

States:

fail or T || F

Notation:

T ; B l || F,C stands for T ∪ {B · (l)} || F ∪ {C}

Convention:

We will treat consistent branches B as (partial) truth
assignments
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Transition Rules for a Basic Clause Tableau

Close
T ; B || F → T || F if B is inconsistent (i.e., p,¬p ∈ B)
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Transition Rules for a Basic Clause Tableau

Close
T ; B || F → T || F if B is inconsistent (i.e., p,¬p ∈ B)

Expand
T ; B || F, l1 ∨ · · · ∨ ln → T ; B l1; . . . ; B ln || F, l1 ∨ · · · ∨ ln if (∗)

(∗) =







B is consistent

B 6|= l1 ∨ · · · ∨ ln
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Transition Rules for a Basic Clause Tableau

Close
T ; B || F → T || F if B is inconsistent (i.e., p,¬p ∈ B)

Expand
T ; B || F, l1 ∨ · · · ∨ ln → T ; B l1; . . . ; B ln || F, l1 ∨ · · · ∨ ln if (∗)

(∗) =







B is consistent

B 6|= l1 ∨ · · · ∨ ln

Empty
∅ || F → fail

The rules define a transition relation → over states.
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Proof Procedures as Rule Application Strategies

A derivation (of a clause set F ) is a →-chain starting with
⊤ || F .

A finite derivation ⊤ || F → · · · → S is exhausted if S

is T ;B || G where B is consistent and
(propositionally) entails G (B |= G), or

is irreducible by the rules.

A rule application strategy is fair if it stops only with an
exhausted derivation.
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Proof Procedures as Rule Application Strategies

Proposition Every fair rule application strategy for ground
clause tableaux is:

Terminating: it generates only finite derivations.

Sound: it generates a derivation ⊤ || F → · · · → fail only
if F is unsatisfiable.

Complete: it can generate a derivation
⊤ || F → · · · → fail if F is unsatisfiable.

Proof confluent: it can extend any derivation of ⊤ || F

with unsatisfiable F to one ending in fail .

Model finding: it stops with state ⊤ || F → · · · → T || G

only if a branch of T is a model of F .
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Enhancements to Basic Clause Tableaux

Additional rules

Conflict
T ; B || F,C → T || F,C if B |= ¬C

C is a conflicting clause

Tableaux 2007 – p.14/40



Enhancements to Basic Clause Tableaux

Additional rules

Conflict
T ; B || F,C → T || F,C if B |= ¬C

C is a conflicting clause

Propagate

T ; B || F,C ∨ l → T ; B l || F,C ∨ l if

{
B |= ¬C

l is undefined in B
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Enhancements to Basic Clause Tableaux

Additional rules

Conflict
T ; B || F,C → T || F,C if B |= ¬C

C is a conflicting clause

Propagate

T ; B || F,C ∨ l → T ; B l || F,C ∨ l if

{
B |= ¬C

l is undefined in B

Split (atomic cut)

T ; B || F → T ; B l; B l || F if

{
l or l occurs in F,

l is undefined in B
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Enhancements to Basic Clause Tableaux

Proposition Any fair strategy remains fair when restricted to
use only Split , Propagate , Conflict , and Fail
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Enhancements to Basic Clause Tableaux

Proposition Any fair strategy remains fair when restricted to
use only Split , Propagate , Conflict , and Fail

Since these rules are branch local, we can build the tableau
lazily, one branch at a time
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Enhancements to Basic Clause Tableaux

Proposition Any fair strategy remains fair when restricted to
use only Split , Propagate , Conflict , and Fail

Since these rules are branch local, we can build the tableau
lazily, one branch at a time

Technically, we replace:

1. states T || F with states B || F where
B is now a sequence of annotated literals

2. Split with Decide

3. Conflict with Backtrack

4. Empty with Fail
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Enhancements to Basic Clause Tableaux

Proposition Any fair strategy remains fair when restricted to
use only Split , Propagate , Conflict , and Fail

Since these rules are branch local, we can build the tableau
lazily, one branch at a time

What we get at the end is a basic version of DPLL
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Enhancements to Basic Clause Tableaux

Split

T ; B || F → T ; B l; B l || F if

{
l or l occurs in F,

l is undefined in B

becomes

Decide

B || F → B l• || F if

{
l or l occurs in F,

l is undefined in B

Notation: l• is l annotated as a decision literal
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Enhancements to Basic Clause Tableaux

Conflict
T ; B || F,C → T || F,C if B |= ¬C

becomes

Backtrack

B1 l• B2 || F,C → B1 l || F,C if

{
B1 l• B2 |= ¬C,

l• rightmost dec. literal
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Enhancements to Basic Clause Tableaux

Empty
∅ || F → fail

becomes

Fail

B || F, C → fail if

{
B |= ¬C,

B contains no decision literals
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Our Abstract Version of the Original DPLL

Propagate

B || F,C ∨ l → B, l || F,C ∨ l if

{
B |= ¬C

l is undefined in B

Decide B || F → B l• || F if

{
l or l occurs in F,

l is undefined in B

Fail

B || F, C → fail if

{
B |= ¬C,

B contains no decision literals

Backtrack

B1 l• B2 || F,C → B1 l || F,C if

{
B1 l• B2 |= ¬C,

l last decision literal
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Smarter Backtracking

Backtrack

B1 l• B2 || F,C → B1 l || F,C if

{
B1 l• B2 |= ¬C,

l last decision literal

is replaced in modern implementations by

Backjump

B1 l• B2 || F,C → B1 k || F,C if







1. B1 l• B2 |= ¬C,

2. for some clause D ∨ k

F,C |= D ∨ k,

B1 |= ¬D,

k is undefined in B1,

k or k occurs in
B1 l• B2 || F,C
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From Backtracking to Backjumping

Backjump

B1 l• B2 || F,C → B1 k || F,C if







1. B1 l• B2 |= ¬C,

2. for some clause D ∨ k

F,C |= D ∨ k,

B1 |= ¬D,

k is undefined in B1,

k or k occurs in
B1 l• B2 || F,C

Whenever 1. holds, a backjump clause D ∨ k is com-
putable from C
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Basic DPLL System

At the core, current DPLL-based SAT solvers are
implementations of the transition system:

Basic DPLL

Propagate

Decide

Fail

Backjump
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Enhancements to Basic DPLL
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Enhancements to Basic DPLL

Learn

B || F → B || F, C if

{
all atoms of C occur in F,

F |= C
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Enhancements to Basic DPLL

Learn

B || F → B || F, C if

{
all atoms of C occur in F,

F |= C

Usually, C is a clause identified during conflict analysis
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Enhancements to Basic DPLL

Learn

B || F → B || F, C if

{
all atoms of C occur in F,

F |= C

Forget
B || F, C → B || F if F |= C
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Enhancements to Basic DPLL

Learn

B || F → B || F, C if

{
all atoms of C occur in F,

F |= C

Forget
B || F, C → B || F if F |= C

Restart
B || F → ⊤ || F
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Enhancements to Basic DPLL

Learn

B || F → B || F, C if

{
all atoms of C occur in F,

F |= C

Forget
B || F, C → B || F if F |= C

Restart
B || F → ⊤ || F

Modern DPLL = Basic DPLL + { Learn , Forget , Restart }
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Correctness of Abstract DPLL

Proposition For a rule application strategy to be fair it
suffices to

apply Learn /Forget only finitely many times,

apply Restart only with increased periodicity, and

stop with a state B || F only if

B |= F or

F is irreducible by Propagate , Decide and Backjump
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Correctness of Abstract DPLL

Proposition For a rule application strategy to be fair it
suffices to

apply Learn /Forget only finitely many times,

apply Restart only with increased periodicity, and

stop with a state B || F only if

B |= F or

F is irreducible by Propagate , Decide and Backjump

This rather weak sufficient condition can be weakened further
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Correctness of Abstract DPLL

Proposition For a rule application strategy to be fair it
suffices to

apply Learn /Forget only finitely many times,

apply Restart only with increased periodicity, and

stop with a state B || F only if

B |= F or

F is irreducible by Propagate , Decide and Backjump

This rather weak sufficient condition can be weakened further

Proposition (recall) Fair strategies are terminating, sound,
complete, proof confluent, and model finding
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Clause Tableaux Modulo Theories

Let T be a theory with a decidable ground satisfiability
problem
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Clause Tableaux Modulo Theories

Let T be a theory with a decidable ground satisfiability
problem

Assume we already have a T -solver, a decision procedure for
the T -satisfiability of conjunctions of ground literals
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Clause Tableaux Modulo Theories

Let T be a theory with a decidable ground satisfiability
problem

Assume we already have a T -solver, a decision procedure for
the T -satisfiability of conjunctions of ground literals

Then we can easily extend clause tableaux to deal with the
full ground fragment
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Clause Tableaux Modulo Theories

Let T be a theory with a decidable ground satisfiability
problem

Assume we already have a T -solver, a decision procedure for
the T -satisfiability of conjunctions of ground literals

Then we can easily extend clause tableaux to deal with the
full ground fragment

We can do the same with DPLL, and capitalize on efficient
DPLL engines
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Clause Tableaux Modulo Theories

Let T be a theory with a decidable ground satisfiability
problem

T -Close
T ; B || F → T || F if B is T -inconsistent

B is T -(in)consistent if the set of its literals is T -(un)satisfiable
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Clause Tableaux Modulo Theories

Let T be a theory with a decidable ground satisfiability
problem

T -Close
T ; B || F → T || F if B is T -inconsistent

Expand
T ; B || F, l1 ∨ · · · ∨ ln → T ; B l1; . . . ; B ln || F, l1 ∨ · · · ∨ ln if (∗)

(∗) =







B is consistent (propositionally)

B 6|= l1 ∨ · · · ∨ ln (propositionally)
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Clause Tableaux Modulo Theories

Let T be a theory with a decidable ground satisfiability
problem

T -Close
T ; B || F → T || F if B is T -inconsistent

Expand
T ; B || F, l1 ∨ · · · ∨ ln → T ; B l1; . . . ; B ln || F, l1 ∨ · · · ∨ ln if (∗)

(∗) =







B is consistent (propositionally)

B 6|= l1 ∨ · · · ∨ ln (propositionally)

Empty
∅ || F → fail
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Derivations Modulo T

A derivation (of a clause set F ) is a →-chain starting with
⊤ || F .

A finite derivation ⊤ || F → · · · → S is exhausted if S

is T ;B || G where B is T -consistent and
(propositionally) entails G, or

is irreducible by the rules.

A rule application strategy is fair if it stops only with an
exhausted derivation.
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Proof Procedures as Rule Application Strategies

Proposition Every fair rule application strategy for ground
clause tableaux modulo T is

Terminating: it generates only finite derivations.

Sound: it generates a derivation ⊤ || F → · · · → fail only
if F is T -unsatisfiable.

Complete: it can generate a derivation
⊤ || F → · · · → fail if F is T -unsatisfiable.

Proof confluent: it can extend any derivation of ⊤ || F

with a T -unsatisfiable F to one ending in fail .

Model finding: it stops with state T || G only if a branch of
T is a T -consistent (propositional) model of F .
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Abstract DPLL Modulo Theories

Works with any DPLL engine and T -solver but is best with

1. an on-line DPLL engine and

2. an incremental T -solver
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Abstract DPLL Modulo Theories

Works with any DPLL engine and T -solver but is best with

1. an on-line DPLL engine and

2. an incremental T -solver

It consists of the following rules:

Propagate , Decide , Fail , Restart
(as in the propositional case) and

T -Backjump , T -Learn , T -Forget

(theory versions of Backjump , Learn , Forget , resp.)
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Theory Rules

T -Backjump

B1 l• B2 || F,C → B1 k || F,C if







1. B1 l• B2 |= ¬C,

2. for some clause D ∨ k

F,C |=T D ∨ k,

B1 |= ¬D,

k is undefined in M,

k or k occurs in
B1 l• B2 || F,C

Not.: F |=T G iff every model of T that satisfies F satisfies G
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Theory Rules

T -Backjump

B1 l• B2 || F,C → B1 k || F,C if







1. B1 l• B2 |= ¬C,

2. for some clause D ∨ k

F,C |=T D ∨ k,

B1 |= ¬D,

k is undefined in M,

k or k occurs in
B1 l• B2 || F,C

T -Learn

B || F → B || F, C if

{
all atoms of C occur in B || F,

F |=T C

T -Forget
B || F, C → B || F if F |=T C
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Correctness of Abstract DPLL Modulo Theories

Proposition For a rule application strategy to be fair it
suffices to

apply T -Learn /T -Forget only finitely many times,

apply Restart only with increased periodicity, and

stop with a state B || F only if B is T -consistent and

B |= F or

F is irreducible by Propagate , Decide and
T -Backjump
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From Complete to Incomplete Theory Solvers

Recall: On reaching a state B || G with B |= G, the T -solver
must determine whether B |=T ⊥
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From Complete to Incomplete Theory Solvers

Recall: On reaching a state B || G with B |= G, the T -solver
must determine whether B |=T ⊥

At the very least, the T -solver must be refutationally
sound:

never calling a T -satisfiable set B of literals
T -unsatisfiable,
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must determine whether B |=T ⊥

At the very least, the T -solver must be refutationally
sound:

never calling a T -satisfiable set B of literals
T -unsatisfiable,

Ideally, it should also be refutationally complete:
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From Complete to Incomplete Theory Solvers

Recall: On reaching a state B || G with B |= G, the T -solver
must determine whether B |=T ⊥

At the very least, the T -solver must be refutationally
sound:

never calling a T -satisfiable set B of literals
T -unsatisfiable,

Ideally, it should also be refutationally complete:

always able to recognize a T -unsatisfiable set B of
literals as such.
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From Complete to Incomplete Theory Solvers

Recall: On reaching a state B || G with B |= G, the T -solver
must determine whether B |=T ⊥

At the very least, the T -solver must be refutationally
sound:

never calling a T -satisfiable set B of literals
T -unsatisfiable,

Ideally, it should also be refutationally complete:

always able to recognize a T -unsatisfiable set B of
literals as such.

For certain theories, it is advantageous to relax the
refutational completeness requirement.
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Case Splitting

For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases.
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Case Splitting

For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

B = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}
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Case Splitting

For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

B = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.
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For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

B = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.
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Case Splitting

For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

B = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: B is T -unsatisfiable.
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Case Splitting

For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases
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Case Splitting

For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases

A complete T -solver does that with internal case splitting
and backtracking mechanisms
(essentially implementing a ground tableaux calculus with
theory specific expansion rules)

Tableaux 2007 – p.34/40



Case Splitting

For certain theories, determining that B is T -unsatisfiable
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and backtracking mechanisms
(essentially implementing a ground tableaux calculus with
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A more economical approach is to lift case splitting from
the T -solver to the DPLL engine
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Case Splitting

For certain theories, determining that B is T -unsatisfiable
requires reasoning by cases

A complete T -solver does that with internal case splitting
and backtracking mechanisms
(essentially implementing a ground tableaux calculus with
theory specific expansion rules)

A more economical approach is to lift case splitting from
the T -solver to the DPLL engine

Basic idea: Code each case split as a set of clauses and
send them as needed to the engine so it can split on them
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Splitting on Demand [ ? ]

Basic idea: Code each case split as a set of clauses and
send them as needed to the engine so it can split on them.

Possible benefits:

All case-splitting is coordinated by the DPLL engine

Only have to implement case-splitting infrastructure in
one place

DPLL heuristics are not sabotaged by internal theory
splitting
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Splitting on Demand [ ? ]

Basic idea: Code each case split as a set of clauses and
send them as needed to the engine so it can split on them.
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Splitting on Demand [ ? ]

Basic idea: Code each case split as a set of clauses and
send them as needed to the engine so it can split on them.

Basic Scenario:

B = {. . . , s = r(w(a, i, t), j)
︸ ︷︷ ︸

s′

, . . . , }
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︸ ︷︷ ︸

s′
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DPLL Engine: “Is B T -unsatisfiable?”
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Splitting on Demand [ ? ]

Basic idea: Code each case split as a set of clauses and
send them as needed to the engine so it can split on them.

Basic Scenario:

B = {. . . , s = r(w(a, i, t), j)
︸ ︷︷ ︸

s′

, . . . , }

DPLL Engine: “Is B T -unsatisfiable?”

T -solver: “I do not know yet, but it will help me if you split on
these theory lemmas:

s = s′ ∧ i = j → s = t, s = s′ ∧ i 6= j → s = r(a, j) ”
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Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?
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Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?

Recall the T -Learn rule:

B || F =⇒ B || F, C if

{
all atoms of C occur in B || F

F |=T C
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Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?

Recall the T -Learn rule:

B || F =⇒ B || F, C if

{
all atoms of C occur in B || F

F |=T C

This rule allows a theory solver to send clauses to the DPLL
engine as long as their atoms occur in B || F .

Tableaux 2007 – p.37/40



Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?

Recall the T -Learn rule:

B || F =⇒ B || F, C if

{
all atoms of C occur in B || F

F |=T C

This rule allows a theory solver to send clauses to the DPLL
engine as long as their atoms occur in B || F .

We wish to relax this requirement to allow additional atoms,
possibly even containing new terms.
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Splitting on Demand in Abstract DPLL

It is enough to replace T -Learn with

Extended T -Learn

B || F → B || F, C if







all atoms of C occur
in F or in L(B),

F |=T γF (C)
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Splitting on Demand in Abstract DPLL

It is enough to replace T -Learn with

Extended T -Learn

B || F → B || F, C if







all atoms of C occur
in F or in L(B),

F |=T γF (C)

where:

γF (C) existentially quantifies the free constants of C not
occurring in F .
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Splitting on Demand in Abstract DPLL

It is enough to replace T -Learn with

Extended T -Learn

B || F → B || F, C if







all atoms of C occur
in F or in L(B),

F |=T γF (C)

where:

L is a mapping from literal sets to literal sets such that

1. B ⊆ L(B).

2. If B ⊆ B′, then L(B) ⊆ L(B′).

3. L(L(B)) = L(B).
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Splitting on Demand in Abstract DPLL

It is enough to replace T -Learn with

Extended T -Learn

B || F → B || F, C if







all atoms of C occur
in F or in L(B),

F |=T γF (C)

Fact: For many theories with a theory solver, such an L
exists.

Note: The set L(B) never needs to be computed explicitly.
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Extending Abstract DPLL Modulo Theories

Now we can relax the requirement on the theory solver:

In the state B || G, if B |= G, the theory solver must
either

determine whether B |=T ⊥ or

generate a new clause by T -Learn containing at
least one literal of L(B) undefined in B.
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Extending Abstract DPLL Modulo Theories

Now we can relax the requirement on the theory solver:

In the state B || G, if B |= G, the theory solver must
either

determine whether B |=T ⊥ or

generate a new clause by T -Learn containing at
least one literal of L(B) undefined in B.

Note: the T -solver is required to determine B |=T ⊥ only if all
literals in L(B) are defined in B.

Tableaux 2007 – p.39/40



Extending Abstract DPLL Modulo Theories

Now we can relax the requirement on the theory solver:

In the state B || G, if B |= G, the theory solver must
either

determine whether B |=T ⊥ or

generate a new clause by T -Learn containing at
least one literal of L(B) undefined in B.

Note: the T -solver is required to determine B |=T ⊥ only if all
literals in L(B) are defined in B.

In practice, to determine if B |=T ⊥ the T -solver only needs a
small subset of L(B) to be defined in B.
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Correctness Results

Given the new rules, previous correctness results can be
easily extended.

Soundness: Holds because the new T -Learn rule is
T -satisfiability preserving (even if not T -equivalence
preserving)

Tableaux 2007 – p.40/40



Correctness Results

Given the new rules, previous correctness results can be
easily extended.

Soundness: Holds because the new T -Learn rule is
T -satisfiability preserving (even if not T -equivalence
preserving)

Completeness: Holds as long as the theory solver
decides B |=T ⊥ whenever all literals in L(F ) are defined
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Correctness Results

Given the new rules, previous correctness results can be
easily extended.

Soundness: Holds because the new T -Learn rule is
T -satisfiability preserving (even if not T -equivalence
preserving)

Completeness: Holds as long as the theory solver
decides B |=T ⊥ whenever all literals in L(F ) are defined

Termination: Holds under the same conditions as the
original system (because L(F ) is finite)
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Thank you
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