Combined Satisfiability Modulo Parametric Theories

Sava Krstić*, Amit Goel*, Jim Grundy*, and Cesare Tinelli**
*Strategic CAD Labs, Intel
**The University of lowa

This Talk

Based on work in

■ S. Krstić, A. Goel, J. Grundy, and C. Tinelli. Combined Satisfiability Modulo Parametric Theories. TACAS'07, 2007.
\square S. Krstić and A. Goel.
Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL.
FroCoS, 2007.

Contribution

Nelson-Oppen framework for theories in parametrically polymorphic logics-a fresh foundation for design of SMT solvers

Highlights

$■$ Endowing SMT with a rich typed input language that can model arbitrarily nested data structures

- Completeness of a Nelson-Oppen-style combination method proved for theories of all common datatypes
■ Troublesome stable infiniteness condition replaced by a natural notion of type parametricity
■ Issue of handling finite-cardinality constraints exposed as crucial for completeness

SAT Modulo Theories (SMT)

There are decision procedures for (fragments of) logical theories of common datatypes

Use them to decide validity/satisfiability of queries, quantifier-free formulas, that involve symbols from several theories

$$
\begin{array}{lc}
\square f(x)=x \Rightarrow f(2 x-f(x))=x & {\left[\mathcal{T}_{\mathrm{UF}}+\mathcal{T}_{\text {Int }}\right]} \\
\square \text { head }(a)=f(x)+1 \ldots & {\left[\mathcal{T}_{\mathrm{UF}}+\mathcal{T}_{\text {Int }}+\mathcal{T}_{\text {List }}\right]}
\end{array}
$$

The underlying logic is classical (unsorted or many-sorted) first-order logic

SMT Solvers over Multiple Theories

G. Nelson, D. C. Oppen Simplification by cooperating decision procedures, 1979

Input:

\square theories $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ with disjoint signatures $\Sigma_{1}, \ldots, \Sigma_{n}$
\square decision procedures P_{i} for the \mathcal{T}_{i}-satisfiability of sets of Σ_{i}-literals

Output:

\square a decision procedure for $\left(\mathcal{T}_{1}+\cdots+\mathcal{T}_{n}\right)$-satisfiability of sets of $\left(\Sigma_{1}+\cdots+\Sigma_{n}\right)$-literals.

SMT Solvers over Multiple Theories

Input:

\square theories $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ with disjoint signatures $\Sigma_{1}, \ldots, \Sigma_{n}$
\square decision procedures P_{i} for the \mathcal{T}_{i}-satisfiability of sets of Σ_{i}-literals

Output:

\square a decision procedure for $\left(\mathcal{T}_{1}+\cdots+\mathcal{T}_{n}\right)$-satisfiability of sets of $\left(\Sigma_{1}+\cdots+\Sigma_{n}\right)$-literals.

Main Idea:

1. Input S is purified into equisatisfiable $S_{1}, \ldots S_{n}$;
2. each P_{i} works on S_{i} but propagates to the others any entailed equalities between shared variables.

Nelson-Oppen: Example

$$
\mathcal{T}_{1}=\text { theory of lists } \quad \mathcal{T}_{2}=\text { linear arithmetic }
$$

Input set:

$$
S=\left\{\begin{array}{l}
l_{1} \neq l_{2}, \\
\text { head }\left(l_{2}\right) \leq x, \\
l=\operatorname{tail}\left(l_{2}\right), \\
l_{1}=x:: l, \\
\text { head }(l)-\text { head }\left(\operatorname{tail} l_{1}\right)+x \leq \operatorname{head}\left(l_{2}\right)
\end{array}\right.
$$

Purified sets:

$$
S_{1}=\left\{\begin{array}{l}
l_{1} \neq l_{2}, \\
y_{1}=\operatorname{head}\left(l_{2}\right), \\
l=\operatorname{tail}\left(l_{2}\right), \\
l_{1}=x:: l, \\
y_{2}=\operatorname{head}(l), y_{3}=\operatorname{head}\left(\operatorname{tail} l_{1}\right)
\end{array} \quad S_{2}=\left\{\begin{array}{l}
y_{1} \leq x, \\
y_{2}-y_{3}+x \leq y_{1}
\end{array}\right.\right.
$$

Nelson-Oppen: Example

S_{1}	S_{2}
$l_{1} \neq l_{2}$	$y_{1} \leq x$
$y_{1}=\operatorname{head}\left(l_{2}\right)$	$y_{2}-y_{3}+x \leq y_{1}$
$l=\operatorname{tail}\left(l_{2}\right)$	
$l_{1}=x:: l$	
$y_{2}=\operatorname{head}(l)$	
$y_{3}=$ head $\left(\operatorname{tail} l_{1}\right)$	

Nelson-Oppen: Example

S_{1}	S_{2}
$l_{1} \neq l_{2}$	$y_{1} \leq x$
$y_{1}=\operatorname{head}\left(l_{2}\right)$	$y_{2}-y_{3}+x \leq y_{1}$
$l=\operatorname{tail}\left(l_{2}\right)$	
$l_{1}=x:: l$	
$y_{2}=\operatorname{head}(l)$	
$y_{3}=$ head $\left(\operatorname{tail} l_{1}\right)$	
\longrightarrow	$y_{2}=y_{3}$

Nelson-Oppen: Example

S_{1}	S_{2}
$l_{1} \neq l_{2}$	$y_{1} \leq x$
$y_{1}=\operatorname{head}\left(l_{2}\right)$	$y_{2}-y_{3}+x \leq y_{1}$
$l=\operatorname{tail}\left(l_{2}\right)$	
$l_{1}=x:: l$	
$y_{2}=$ head (l)	
$y_{3}=$ head $\left(\operatorname{tail} l_{1}\right)$	
\longrightarrow	$y_{2}=y_{3}$
$x=y_{1}$	\longleftarrow

Nelson-Oppen: Example

S_{1}	S_{2}
$l_{1} \neq l_{2}$	$y_{1} \leq x$
$y_{1}=$ head $\left(l_{2}\right)$	$y_{2}-y_{3}+x \leq y_{1}$
$l=\operatorname{tail}\left(l_{2}\right)$	
$l_{1}=x:: l$	
$y_{2}=\operatorname{head}(l)$	
$y_{3}=$ head $\left(\operatorname{tail} l_{1}\right)$	
\longrightarrow	$y_{2}=y_{3}$
$x=y_{1}$	\longleftarrow
Unsatisfiable!	

Correctness of Nelson-Oppen

■ The combination procedure is sound for any $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$: if it returns "Unsatisfiable", then its input S is unsatisfiable in $\mathcal{T}_{1}+\cdots+\mathcal{T}_{n}$

Correctness of Nelson-Oppen

\square The combination procedure is sound for any $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$: if it returns "Unsatisfiable", then its input S is unsatisfiable in $\mathcal{T}_{1}+\cdots+\mathcal{T}_{n}$

■ It is complete when

Correctness of Nelson-Oppen

\square The combination procedure is sound for any $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$: if it returns "Unsatisfiable", then its input S is unsatisfiable in $\mathcal{T}_{1}+\cdots+\mathcal{T}_{n}$

■ It is complete when

1. $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ are pairwise signature-disjoint, and

Correctness of Nelson-Oppen

\square The combination procedure is sound for any $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$: if it returns "Unsatisfiable", then its input S is unsatisfiable in $\mathcal{T}_{1}+\cdots+\mathcal{T}_{n}$

■ It is complete when

1. $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ are pairwise signature-disjoint, and
2. each \mathcal{T}_{i} is stably-infinite

The Notorious Stable Infiniteness Restriction

A first-order theory \mathcal{T} is stably infinite if every \mathcal{T}-satisfiable ground formula is satisfiable in an infinite model of \mathcal{T}.

The Notorious Stable Infiniteness Restriction

A first-order theory \mathcal{T} is stably infinite if every \mathcal{T}-satisfiable ground formula is satisfiable in an infinite model of \mathcal{T}.

- Helps guarantee that models of pure parts of a query φ can be amalgamated into a model of φ

The Notorious Stable Infiniteness Restriction

A first-order theory \mathcal{T} is stably infinite if every \mathcal{T}-satisfiable ground formula is satisfiable in an infinite model of \mathcal{T}.

■ Helps guarantee that models of pure parts of a query φ can be amalgamated into a model of φ
$■$ Yields completeness of N-O, but
\square it's not immediate to prove
■ it's not true in some important cases (e.g., bit vectors)

The Notorious Stable Infiniteness Restriction

A first-order theory \mathcal{T} is stably infinite if every \mathcal{T}-satisfiable ground formula is satisfiable in an infinite model of \mathcal{T}.

■ Helps guarantee that models of pure parts of a query φ can be amalgamated into a model of φ
$■$ Yields completeness of N-O, but
\square it's not immediate to prove
■ it's not true in some important cases (e.g., bit vectors)
$■$ General understanding: the condition doesn't matter much-if you know what you are doing

The Notorious Stable Infiniteness Restriction

A first-order theory \mathcal{T} is stably infinite if every \mathcal{T}-satisfiable ground formula is satisfiable in an infinite model of \mathcal{T}.

■ Helps guarantee that models of pure parts of a query φ can be amalgamated into a model of φ
■ Yields completeness of $\mathrm{N}-\mathrm{O}$, but
\square it's not immediate to prove
■ it's not true in some important cases (e.g., bit vectors)
■ General understanding: the condition doesn't matter much-if you know what you are doing

- Lot of research shows completeness of N-O variants without it: [Tinelli-Zarba'04], [Fontaine-Gribomont'04], [Zarba'04], [Ghilardi et al.'07], [Ranise et al.'05]

Why Stable Infiniteness is Needed

$$
\begin{aligned}
& \mathcal{T}_{1}=\text { theory of "uninterpreted functions" } \\
& \mathcal{T}_{2}=\text { theory of Boolean rings (not stably-infinite) }
\end{aligned}
$$

Purified Input:

S_{1}	S_{2}
$f\left(x_{1}\right) \neq x_{1}$	$x_{1}=0$
$f\left(x_{1}\right) \neq x_{2}$	$x_{2}=1$

There are no equations to propagate: the procedure returns "satisfiable"

Is that correct?

Our Main Points

In combining theories of different data types

1. a typed logic (with parametric types) is a more adequate underlying logic than unsorted logic
2. parametricity is the key notion not stable infiniteness

Parametricity, Not Stable Infiniteness: Example

$$
\Phi_{\text {List }}=\left\{\begin{array}{l}
\text { tail } l_{1}=\text { tail } l_{2} \\
x_{1}=\text { head } l_{1} \\
x_{2}=\text { head } l_{2} \\
x=\text { head }\left(\text { tail } l_{1}\right)
\end{array}\right.
$$

$$
\Phi_{\mathrm{lnt}}=\left\{\begin{array}{l}
x=x_{1}+z \\
x_{2}=x_{1}+z
\end{array} \quad \Delta=\left\{\begin{array}{l}
x=x_{2} \\
x \neq x_{1}
\end{array}\right.\right.
$$

Parametricity, Not Stable Infiniteness: Example

$$
\begin{gathered}
\Phi_{\text {List }}=\left\{\begin{array}{l}
\text { tail } l_{1}=\text { tail } l_{2} \\
x_{1}=\text { head } l_{1} \\
x_{2}=\text { head } l_{2} \\
x=\text { head }\left(\text { tail } l_{1}\right)
\end{array} \quad \Phi_{\mathrm{lnt}}=\left\{\begin{array}{l}
x=x_{1}+z \\
x_{2}=x_{1}+z
\end{array} \quad \Delta=\left\{\begin{array}{l}
x=x_{2} \\
x \neq x_{1}
\end{array}\right.\right.\right. \\
\left(\begin{array}{llll}
x_{1} & x_{2} & x & l_{1} \\
\mathbf{\Delta} & l_{2} \\
\bullet & \bullet[\mathbf{\Delta}, \bullet][\bullet, \bullet]
\end{array}\right) \models \mathcal{T}_{\text {List }} \Phi_{\text {List }} \cup \Delta
\end{gathered}
$$

Parametricity, Not Stable Infiniteness: Example

$\mathcal{T}_{\text {List }}$ knows nothing about \mathbb{Z} and cannot distinguish $(\mathbf{\Delta}, \bullet)$ from any pair (m, n) of distinct integers:

Parametricity, Not Stable Infiniteness: Example

$$
\begin{aligned}
& \Phi_{\text {List }}=\left\{\begin{array}{l}
\text { tail } l_{1}=\text { tail } l_{2} \\
x_{1}=\text { head } l_{1} \\
x_{2}=\text { head } l_{2}
\end{array} \quad \Phi_{\mathrm{lnt}}=\left\{\begin{array}{l}
x=x_{1}+z \\
x_{2}=x_{1}+z
\end{array} \quad \Delta=\left\{\begin{array}{l}
x=x_{2} \\
x \neq x_{1}
\end{array}\right.\right.\right.
\end{aligned}
$$

$\mathcal{T}_{\text {List }}$ knows nothing about \mathbb{Z} and cannot distinguish $(\mathbf{\Delta}, \bullet)$ from any pair (m, n) of distinct integers:
$\left(\begin{array}{ccccc}x_{1} & x_{2} & x & l_{1} & l_{2} \\ m & n & n & {[m, n]} & {[n, n]}\end{array}\right) \models \Phi_{\text {List }} \cup \Delta$ as well

Parametricity, Not Stable Infiniteness: Example

$$
\begin{aligned}
& \Phi_{\text {List }}=\left\{\begin{array}{l}
\text { tail } l_{1}=\text { tail } l_{2} \\
x_{1}=\text { head } l_{1} \\
x_{2}=\text { head } l_{2}
\end{array} \quad \Phi_{\mathrm{lnt}}=\left\{\begin{array}{l}
x=x_{1}+z \\
x_{2}=x_{1}+z
\end{array} \quad \Delta=\left\{\begin{array}{l}
x=x_{2} \\
x \neq x_{1}
\end{array}\right.\right.\right. \\
& \left(\begin{array}{cccc}
x_{1} & x_{2} & x & l_{1} \\
\mathbf{\Delta} & \bullet & l_{2} \\
\bullet & {[\mathbf{\Delta}, \bullet]} & \bullet \bullet, \bullet]
\end{array}\right) \models \mathcal{T}_{\text {List }} \Phi_{\text {List }} \cup \Delta \quad\left(\begin{array}{cccc}
x_{1} & x_{2} & x & z \\
1 & 2 & 2 & 1
\end{array}\right) \models_{\mathcal{T}_{\text {lint }}} \Phi_{\mathrm{lnt}} \cup \Delta
\end{aligned}
$$

$\mathcal{T}_{\text {List }}$ knows nothing about \mathbb{Z} and cannot distinguish $(\boldsymbol{\Delta}, \bullet)$ from any pair (m, n) of distinct integers:
to construct a model for $\Phi_{\text {List }} \cup \Phi_{\text {Int }} \cup \Delta$, we can use the blue assignment to x_{1}, x_{2}, x

Real Issue in NO Combination

Not so much getting stable-infiniteness right, but getting underlying logic right

Real Issue in NO Combination

Not so much getting stable-infiniteness right, but getting underlying logic right

Our proposal

FOLP: A first order logic with parametrized type constructors and type variables

Essentially, the applicative fragment of HOL

FOLP Syntax

Types

V, an infinite set of type variables
Ex: $\alpha, \beta, \alpha_{1}, \beta_{1}, \ldots$
O, a set of type operators, symbols with associated arity $n \geq 0$
Ex: Bool/0, Int/0, List/1, Arr/2, $\Rightarrow / 2, \ldots$
Types (O, V), set of types, terms over O, V
Ex: $\operatorname{Int}, \operatorname{List}(\alpha), \operatorname{List}(\operatorname{Int}), \operatorname{Arr}(\operatorname{Int}, \operatorname{List}(\alpha)), \operatorname{List}(\alpha) \Rightarrow \operatorname{Int}, \ldots$

FOLP Syntax

First-order Types: Types over $O \backslash\{\Rightarrow\}, V$

Constants: K, set of symbols each with an associated principal type τ

Ex: $\top^{\text {Bool }}, \neg^{\text {Bool } \Rightarrow \mathrm{Bool}},={ }^{\alpha, \alpha \Rightarrow \mathrm{Bool}},+^{\mathrm{Int}, \mathrm{Int} \Rightarrow \operatorname{lnt}}$, $\operatorname{cons}^{\alpha, \operatorname{List}}(\alpha) \Rightarrow \operatorname{List}(\alpha)$, read $^{\operatorname{Arr}(\alpha, \beta), \alpha \Rightarrow \beta}, \ldots$

Term Variables: X_{τ}, for each $\tau \in \operatorname{Types}(O, V)$, an infinite set of symbols annotated with τ

Ex: $x^{\alpha}, y^{\text {List }(\beta)}, z^{\alpha \Rightarrow \alpha}, x^{\text {Arr(Int,Bool) }}, \ldots$

FOLP Syntax

Signatures: pairs $\Sigma=\langle O \mid K\rangle$ with
$\square O$ always containing \Rightarrow and Bool

- K always containing $={ }^{\alpha, \alpha \Rightarrow \text { Bool }, \text { ite }{ }^{\text {Bool }, \alpha, \alpha \Rightarrow \alpha} \text {, and }}$ the usual logical constants $\neg^{\text {Bool } \Rightarrow \text { Bool }}, \wedge^{\text {Bool,Bool } \Rightarrow \text { Bool }}, \ldots$
Σ-Terms of First-order Type τ : $\mathrm{T}_{\tau}(K, X)$, defined as usual
$\mathbf{E x}: x^{\operatorname{lnt} \Rightarrow \operatorname{Bool}} y^{\operatorname{lnt}},\left(\right.$ read $\left.a^{\operatorname{Arr}(\operatorname{lnt}, L \operatorname{List}(\beta))} i^{\operatorname{lnt}}\right)=x^{\mathrm{List}(\beta)}$,
First-order (Quantifier-free) Formulas: Terms in $\mathrm{T}_{\text {Bool }}(K, X)$

FOLP Semantics

Structures of signature $\Sigma=\langle O \mid K\rangle$
Pair \mathcal{S} of

1. an interpretation ()$^{\mathcal{S}}$ of type operators F as set operators
2. an interpretation (_) $)^{\mathcal{S}}$ of constants f as set-indexed families of functions (with index determined by $\operatorname{TypeVars}(\tau)$ where f^{τ})
s.t. Bool, \Rightarrow, and $=$, ite, \wedge, \ldots are the interpreted in the usual way.

FOLP Semantics

Structures of signature $\Sigma=\langle O \mid K\rangle$
Pair \mathcal{S} of

1. an interpretation ()$^{\mathcal{S}}$ of type operators F as set operators
2. an interpretation (_) $)^{\mathcal{S}}$ of constants f as set-indexed families of functions (with index determined by $\operatorname{TypeVars}(\tau)$ where f^{τ})
s.t. Bool, \Rightarrow, and $=$, ite, \wedge, \ldots are the interpreted in the usual way.

Ex 1:

$\mathrm{Int}^{\mathcal{S}} \quad$ equals the integers
List $^{\mathcal{S}} \quad$ maps an input set A to the set of finite lists over A
Arr ${ }^{\mathcal{S}} \quad$ maps input sets I and A to the set of arrays with index set I and element set A

FOLP Semantics

Structures of signature $\Sigma=\langle O \mid K\rangle$
Pair \mathcal{S} of

1. an interpretation ()$^{\mathcal{S}}$ of type operators F as set operators
2. an interpretation (_) $)^{\mathcal{S}}$ of constants f as set-indexed families of functions (with index determined by $\operatorname{TypeVars}(\tau)$ where f^{τ})
s.t. Bool, \Rightarrow, and $=$, ite, \wedge, \ldots are the interpreted in the usual way.

Ex 2:

head $^{\mathcal{S}} \quad$ family $\left\{\right.$ head $\left[A_{1}\right] \mid A_{1}$ is a set $\}$ (since head ${ }^{\text {List }(\alpha) \Rightarrow \alpha}$)
read $^{\mathcal{S}} \quad$ family $\left\{\operatorname{read}\left[A_{1}, A_{2}\right] \mid A_{1}, A_{2}\right.$ are sets $\}$ (since read ${ }^{\operatorname{Arr}\left(\alpha_{1}, \alpha_{2}\right), \alpha_{1} \Rightarrow \alpha_{2}}$)
$+^{\mathcal{S}} \quad$ singleton family $\left(\right.$ since $\left.+{ }^{\operatorname{lnt}, \operatorname{lnt} \Rightarrow \operatorname{lnt}}\right)$

FOLP Semantics

For every signature $\Sigma=\langle O \mid K\rangle, \Sigma$-structure \mathcal{S}, type environment ι, term environment ρ, and Σ-formula φ,
we can define []$_{\iota, \rho}^{\mathcal{S}}$ (as expected) to map Σ-formulas to \{true, false\}

FOLP Semantics

For every signature $\Sigma=\langle O \mid K\rangle, \Sigma$-structure \mathcal{S}, type environment ι, term environment ρ, and Σ-formula φ,
we can define $\left[__{\iota, \rho}^{\mathcal{S}}\right.$ (as expected) to map Σ-formulas to $\{$ true, false $\}$

Satisfiability

φ is satisfied in \mathcal{S} by ι and ρ, written $\iota, \rho \models_{\mathcal{S}} \varphi$, if $[\varphi]_{\iota, \rho}^{\mathcal{S}}=$ true
φ is satisfiable in \mathcal{S} if $\iota, \rho \models_{\mathcal{S}} \varphi$ for some ι and ρ

FOLP Semantics

For every signature $\Sigma=\langle O \mid K\rangle, \Sigma$-structure \mathcal{S}, type environment ι, term environment ρ, and Σ-formula φ,
we can define $\left[__{\iota, \rho}^{\mathcal{S}}\right.$ (as expected) to map Σ-formulas to $\{$ true, false\}

Satisfiability

φ is satisfied in \mathcal{S} by ι and ρ, written $\iota, \rho \models_{\mathcal{S}} \varphi$, if $[\varphi]_{\iota, \rho}^{\mathcal{S}}=$ true
φ is satisfiable in \mathcal{S} if $\iota, \rho \models_{\mathcal{S}} \varphi$ for some ι and ρ
Cardinality Constraints
(Meta)Expressions of the form $\alpha \doteq n$ with $n>0$ $\alpha \doteq n$ is satisfied in \mathcal{S} by ι, ρ, written $\iota, \rho \models_{\mathcal{S}} \alpha \doteq n$, if $|\iota(\alpha)|=n$

The Equality Structure

Let

$$
\begin{aligned}
& K_{\mathrm{Eq}}==^{\alpha, \alpha \Rightarrow \mathrm{Bool}}, \top^{\mathrm{Bool}}, \neg^{\mathrm{Bool} \Rightarrow \mathrm{Bool}}, \text { ite } \\
& \Sigma_{\mathrm{Eq}}=\langle\text { Bool }, \alpha, \alpha \Rightarrow \alpha \\
& \mathcal{B o o l}, \Rightarrow\left|K_{\mathrm{Eq}}\right\rangle \\
& \mathcal{S}_{\mathrm{Eq}}=\text { the unique } \Sigma_{\mathrm{Eq}} \text {-structure }
\end{aligned}
$$

The Equality Structure

Let

$$
\begin{aligned}
& K_{\mathrm{Eq}}==^{\alpha, \alpha \Rightarrow \mathrm{Bool}}, \top^{\mathrm{Bool}}, \neg^{\mathrm{Bool} \Rightarrow \mathrm{Bool}}, \text { ite } \\
& \Sigma_{\mathrm{Eq}}=\langle\text { Bool }, \alpha, \alpha \Rightarrow \alpha \\
& \mathcal{B o o l}, \Rightarrow\left|K_{\mathrm{Eq}}\right\rangle \\
& \mathcal{S}_{\mathrm{Eq}}=\text { the unique } \Sigma_{\mathrm{Eq}} \text {-structure }
\end{aligned}
$$

Note: $\mathcal{S}_{\text {Eq }}$ models

- the logical constants of FOL= and
- the "uninterpreted functions" data type, by means of higher-order term variables ($x^{\alpha_{1}, \ldots, \alpha_{n} \Rightarrow \alpha}$)

The Equality Structure

Let

$$
\begin{aligned}
& K_{\mathrm{Eq}}==^{\alpha, \alpha \Rightarrow \mathrm{Bool}}, \top^{\mathrm{Bool}}, \neg^{\mathrm{Bool} \Rightarrow \mathrm{Bool}}, \text { ite } \\
& \Sigma_{\mathrm{Eq}}=\langle\text { Bool }, \alpha, \alpha \Rightarrow \alpha \\
& \mathrm{Bool}, \Rightarrow\left|K_{\mathrm{Eq}}\right\rangle \\
& \mathcal{S}_{\mathrm{Eq}}=\text { the unique } \Sigma_{\mathrm{Eq}}-\text { structure }
\end{aligned}
$$

Note: $\mathcal{S}_{\text {Eq }}$ models
\square the logical constants of $\mathrm{FOL}=$ and
■ the "uninterpreted functions" data type, by means of higher-order term variables ($x^{\alpha_{1}, \ldots, \alpha_{n} \rightarrow \alpha}$)

Fact: The satisfiability in $\mathcal{S}_{\mathrm{Eq}}$ of first-order Σ_{Eq}-formulas is decidable (with the usual congruence closure algorithms)

Parametricity [TACAS'07]

A structure is parametric if it interprets all its type operators, except \Rightarrow, as parametric set operators and all its constants as parametric function families

Parametricity [TACAS'07]

A structure is parametric if it interprets all its type operators, except \Rightarrow, as parametric set operators and all its constants as parametric function families
\square Parametricity of type operators and constants similar (but not comparable) to Reynold's parametricity

Parametricity [TACAS'07]

A structure is parametric if it interprets all its type operators, except \Rightarrow, as parametric set operators and all its constants as parametric function families
\square Parametricity of type operators and constants similar (but not comparable) to Reynold's parametricity

■ Natural property of data types

Parametricity [TACAS'07]

A structure is parametric if it interprets all its type operators, except \Rightarrow, as parametric set operators and all its constants as parametric function families

■ Parametricity of type operators and constants similar (but not comparable) to Reynold's parametricity

■ Natural property of data types
\square States precisely the informal notion that
certain type operators and function symbols have a uniform interpretation over the possible values of the type variables

Parametricity [TACAS'07]

A structure is parametric if it interprets all its type operators, except \Rightarrow, as parametric set operators and all its constants as parametric function families

■ Parametricity of type operators and constants similar (but not comparable) to Reynold's parametricity

■ Natural property of data types
\square States precisely the informal notion that
certain type operators and function symbols have a uniform interpretation over the possible values of the type variables

■ Plays the role of stable-infiniteness in Nelson-Oppen

Parametric Structures

Fact: All structures of practical interest are parametric in our sense

$$
\begin{aligned}
& \Sigma_{\mathrm{Int}}=\left\langle\operatorname{lnt} \mid 0^{\operatorname{lnt}}, 1^{\operatorname{lnt}},+^{\operatorname{lnt}^{2} \rightarrow \operatorname{lnt}},-^{\operatorname{lnt} t^{2} \rightarrow \operatorname{Int}}, \times^{\mathrm{Int}^{2} \rightarrow \operatorname{Int}}, \leq_{\operatorname{lnt}^{2} \rightarrow \mathrm{Bool}}, \ldots\right\rangle \\
& \left.\Sigma_{\text {Arr }}=\langle\operatorname{Arr}| \mathrm{mk}_{\text {_arr }}{ }^{\beta \rightarrow \operatorname{Arr}(\alpha, \beta)}, \operatorname{read}^{[\operatorname{Arr}(\alpha, \beta), \alpha] \rightarrow \beta}, \text { write }^{[\operatorname{Arr}(\alpha, \beta), \alpha, \beta] \rightarrow \operatorname{Arr}(\alpha, \beta)}\right\rangle \\
& \Sigma_{\text {List }}=\left\langle\text { List } \mid \operatorname{cons}^{[\alpha, \operatorname{List}(\alpha)] \rightarrow \operatorname{List}(\alpha)}, \operatorname{nil}^{\operatorname{List}(\alpha)}, \operatorname{head}^{\operatorname{List}(\alpha) \rightarrow \alpha}, \operatorname{tail}^{\operatorname{List}(\alpha) \rightarrow \operatorname{List}(\alpha)}\right\rangle \\
& \left.\Sigma_{\times}=\langle\times|\left\langle _,\right\rangle^{[\alpha, \beta] \rightarrow \alpha \times \beta}, \mathrm{fst}^{\alpha \times \beta \rightarrow \alpha}, \text { snd }^{\alpha \times \beta \rightarrow \beta}\right\rangle \\
& \Sigma_{\text {BitVec32 }}=\ldots \\
& \Sigma_{\text {Sets }}=\ldots \\
& \Sigma_{\text {Multisets }}=\ldots
\end{aligned}
$$

(All the above signatures implicitly include the signature Σ_{Eq})

Combining Signatures and Structures

Disjoint Signatures

Signatures that share exactly the symbols of Σ_{Eq}

Combining Signatures and Structures

Disjoint Signatures

Signatures that share exactly the symbols of Σ_{Eq}

Combination of Disjoint Signatures Σ_{1}, Σ_{2}
$\Sigma_{1}+\Sigma_{2}=\left\langle O_{1} \cup O_{2} \mid K_{1} \cup K_{2}\right\rangle$ where $\Sigma_{i}=\left\langle O_{i} \mid K_{i}\right\rangle$

Combining Signatures and Structures

Disjoint Signatures

Signatures that share exactly the symbols of Σ_{Eq}

Combination of Disjoint Signatures Σ_{1}, Σ_{2}
$\Sigma_{1}+\Sigma_{2}=\left\langle O_{1} \cup O_{2} \mid K_{1} \cup K_{2}\right\rangle$ where $\Sigma_{i}=\left\langle O_{i} \mid K_{i}\right\rangle$
Combination of Signature-Disjoint Structures $\mathcal{S}_{1}, \mathcal{S}_{2}$
$\left(\Sigma_{1}+\Sigma_{2}\right)$-structure $\mathcal{S}_{1}+\mathcal{S}_{2}$ that interprets Σ_{i}-symbols exactly like \mathcal{S}_{i} for $i=1,2$.

Combining Signatures and Structures

Disjoint Signatures

Signatures that share exactly the symbols of Σ_{Eq}

Combination of Disjoint Signatures Σ_{1}, Σ_{2}
$\Sigma_{1}+\Sigma_{2}=\left\langle O_{1} \cup O_{2} \mid K_{1} \cup K_{2}\right\rangle$ where $\Sigma_{i}=\left\langle O_{i} \mid K_{i}\right\rangle$
Combination of Signature-Disjoint Structures $\mathcal{S}_{1}, \mathcal{S}_{2}$
$\left(\Sigma_{1}+\Sigma_{2}\right)$-structure $\mathcal{S}_{1}+\mathcal{S}_{2}$ that interprets Σ_{i}-symbols exactly like \mathcal{S}_{i} for $i=1,2$.

Note: Modulo isomorphism, + is an ACU operator with unit $\mathcal{S}_{\text {Eq }}$

Pure and Semipure Terms

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be structures with disjoint signatures $\Sigma_{i}=\left\langle O_{i} \mid K_{i}\right\rangle$
We call a $\left(\Sigma_{1}+\cdots+\Sigma_{n}\right)$-term
■ i-semipure if it has signature $\left\langle O_{1} \cup \cdots \cup O_{n} \mid K_{i}\right\rangle$
■ i-pure if it has signature $\left\langle O_{i} \mid K_{i}\right\rangle$

Ex

$\Sigma_{1}=\left\langle\operatorname{lnt} \mid 0^{\operatorname{lnt}}, 1^{\operatorname{lnt}},+^{\operatorname{lnt}, \operatorname{lnt} \Rightarrow \operatorname{lnt}},-^{\operatorname{lnt} \Rightarrow \operatorname{lnt}}, \leq^{\operatorname{lnt}, \operatorname{lnt} \Rightarrow \text { Bool }}, \ldots\right\rangle$
$\Sigma_{2}=\langle\operatorname{Arr}|$ read $^{\operatorname{Arr}(\alpha, \beta), \alpha \Rightarrow \beta}$, write $\left.^{\operatorname{Arr}(\alpha, \beta), \alpha, \beta \Rightarrow \operatorname{Arr}(\alpha, \beta)}\right\rangle$

1-semipure: $\quad \operatorname{read}\left(a^{\operatorname{Arr}(\operatorname{lnt}, \operatorname{lnt})}, i^{\operatorname{Int}}\right), \quad a^{\operatorname{Arr}(\operatorname{lnt}, \beta)}, \quad a^{\operatorname{Arr}(\operatorname{lnt}, \operatorname{Arr}(\mathrm{Int}, \mathrm{Int}))}$
1-pure: $\quad \operatorname{read}\left(a^{\operatorname{Arr}(\alpha, \alpha)}, i^{\alpha}\right), \quad a^{\operatorname{Arr}(\alpha, \beta)}, \quad a^{\operatorname{Arr}\left(\alpha, \operatorname{Arr}\left(\beta_{1}, \beta_{2}\right)\right)}$

Pure and Semipure Terms

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be structures with disjoint signatures $\Sigma_{i}=\left\langle O_{i} \mid K_{i}\right\rangle$
We call a $\left(\Sigma_{1}+\cdots+\Sigma_{n}\right)$-term
■ -semipure if it has signature $\left\langle O_{1} \cup \cdots \cup O_{n} \mid K_{i}\right\rangle$

- i-pure if it has signature $\left\langle O_{i} \mid K_{i}\right\rangle$

Fact For each i-semipure term t we can compute a most specific pure generalization $t^{\text {pure }}$ of t

Ex

$\varphi: \quad \operatorname{read}\left(a^{\text {Arr (Int,Pair(Arr(Bool,Bool)) })}, i^{\mathrm{Int}}\right)=x^{\text {Pair(Arr(Bool,Bool)) }}$
$\varphi^{\text {pure }}: ~ \operatorname{read}\left(a^{\operatorname{Arr}(\alpha, \beta)}, i^{\alpha}\right)$

$$
=x^{\beta}
$$

Pure and Semipure Terms

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be parametric structures with disjoint signatures $\Sigma_{i}=\left\langle O_{i} \mid K_{i}\right\rangle$

Proposition A set Φ_{i} of i-semipure formulas is $\left(\mathcal{S}_{1}+\cdots+\mathcal{S}_{n}\right)$-satisfiable

```
iff
```

$\Phi_{i}^{\text {pure }} \cup \Phi_{i}^{\text {card }}$ is \mathcal{S}_{i}-satisfiable
for some suitable set $\Phi_{i}^{\text {card }}$ of cardinality constraints computable from Φ_{i}

Ex

$$
\left.\begin{array}{ll}
\Phi_{i}: & \left\{\operatorname{read}\left(a^{\operatorname{Arr}(\operatorname{Int}, \operatorname{Pair}(\operatorname{Arr}(\text { Bool,Bool })))}, i^{\operatorname{Int}}\right)\right.
\end{array}=x^{\operatorname{Pair}(\operatorname{Arr}(\text { Bool,Bool }))}\right\}
$$

$$
\Phi_{i}^{\text {card }}: \quad\{\beta \doteq 16\}
$$

Why Cardinality Constraints are Needed

$$
\begin{array}{ll}
\Phi: & \left\{x_{i}^{\text {List }(\alpha)} \neq x_{j}^{\mathrm{List}(\alpha)}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail }\left(\text { tail } x_{i}^{\mathrm{List}(\alpha)}\right)=\text { nil }\right\}_{1 \leq i \leq 5} \\
\Phi_{1}: & \left.\left\{x_{i}^{\text {List(Int) }} \neq x_{j}^{\text {List(Int) }}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail(tail } x_{i}^{\text {List(Int) }}\right)=\text { nil }\right\}_{1 \leq i \leq 5} \\
\Phi_{2}: & \left\{x_{i}^{\text {List(Bool) }} \neq x_{j}^{\text {List(Bool) }}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail }\left(\text { tail } x_{i}^{\text {List(Bool) })}\right)=\text { nil }\right\}_{1 \leq i \leq 5}
\end{array}
$$

$\square \Phi$ and Φ_{1} are $\left(\mathcal{S}_{\text {Int }}+\mathcal{S}_{\text {List }}\right)$-satisfiable, Φ_{2} is not

Why Cardinality Constraints are Needed

$\Phi: \quad\left\{x_{i}^{\operatorname{List}(\alpha)} \neq x_{j}^{\operatorname{List}(\alpha)}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail }\left(\text { tail } x_{i}^{\operatorname{List}(\alpha)}\right)=\text { nil }\right\}_{1 \leq i \leq 5}$
$\Phi_{1}: \quad\left\{x_{i}^{\mathrm{List}(\operatorname{lnt})} \neq x_{j}^{\mathrm{List}(\mathrm{Int})}\right\}_{0 \leq i<j \leq 5} \cup\left\{\right.$ tail(tail $\left.\left.x_{i}^{\mathrm{List}(\operatorname{lnt})}\right)=\mathrm{nil}\right\}_{1 \leq i \leq 5}$
$\Phi_{2}: \quad\left\{x_{i}^{\text {List(Bool) }} \neq x_{j}^{\text {List(Bool) }}\right\}_{0 \leq i<j \leq 5} \cup\left\{\right.$ tail(tail $\left.x_{i}^{\text {List(Bool) })}\right)=$ nil $\}_{1 \leq i \leq 5}$

- Φ and Φ_{1} are $\left(\mathcal{S}_{\text {Int }}+\mathcal{S}_{\text {List }}\right)$-satisfiable, Φ_{2} is not
$\square \mathcal{S}_{\text {List }}$-solver can't take Φ_{1} or Φ_{2} as input: they are not $\Sigma_{\text {List }}$-pure

Why Cardinality Constraints are Needed

$\Phi: \quad\left\{x_{i}^{\operatorname{List}(\alpha)} \neq x_{j}^{\mathrm{List}(\alpha)}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail }\left(\text { tail } x_{i}^{\mathrm{List}(\alpha)}\right)=\operatorname{nil}\right\}_{1 \leq i \leq 5}$
$\Phi_{1}: \quad\left\{x_{i}^{\text {List(Int) }} \neq x_{j}^{\text {List(Int) })}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail(tail } x_{i}^{\text {List(Int) })}=\text { nil }\right\}_{1 \leq i \leq 5}$
$\Phi_{2}: \quad\left\{x_{i}^{\text {List(Bool) }} \neq x_{j}^{\text {List(Bool) }}\right\}_{0 \leq i<j \leq 5} \cup\left\{\right.$ tail(tail $\left.x_{i}^{\text {List(Bool) })}\right)=$ nil $\}_{1 \leq i \leq 5}$
$\square \Phi$ and Φ_{1} are $\left(\mathcal{S}_{\text {Int }}+\mathcal{S}_{\text {List }}\right)$-satisfiable, Φ_{2} is not

- $\mathcal{S}_{\text {List }}$-solver can't take Φ_{1} or Φ_{2} as input: they are not $\Sigma_{\text {List }}$-pure

■ Instead of Φ_{1}, it gets $\Phi=\Phi_{1}^{\text {pure }}$ with cardinality constraint \emptyset

Why Cardinality Constraints are Needed

$\Phi: \quad\left\{x_{i}^{\operatorname{List}(\alpha)} \neq x_{j}^{\mathrm{List}(\alpha)}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail }\left(\text { tail } x_{i}^{\mathrm{List}(\alpha)}\right)=\operatorname{nil}\right\}_{1 \leq i \leq 5}$
$\Phi_{1}: \quad\left\{x_{i}^{\text {List(Int) }} \neq x_{j}^{\text {List(Int) })}\right\}_{0 \leq i<j \leq 5} \cup\left\{\text { tail(tail } x_{i}^{\text {List(Int) })}=\text { nil }\right\}_{1 \leq i \leq 5}$
$\Phi_{2}: \quad\left\{x_{i}^{\text {List(Bool) }} \neq x_{j}^{\text {List(Bool) }}\right\}_{0 \leq i<j \leq 5} \cup\left\{\right.$ tail(tail $\left.x_{i}^{\text {List(Bool) })}\right)=$ nil $\}_{1 \leq i \leq 5}$
$\square \Phi$ and Φ_{1} are $\left(\mathcal{S}_{\text {Int }}+\mathcal{S}_{\text {List }}\right)$-satisfiable, Φ_{2} is not
$\square \mathcal{S}_{\text {List }}$-solver can't take Φ_{1} or Φ_{2} as input: they are not $\Sigma_{\text {List }}$-pure
■ Instead of Φ_{1}, it gets $\Phi=\Phi_{1}^{\text {pure }}$ with cardinality constraint \emptyset
\square Instead of Φ_{2}, it gets $\Phi=\Phi_{2}^{\text {pure }}$ with the cardinality constraint $\{\alpha \doteq 2\}$

Towards Nelson-Oppen Combination: Purification

We turn each query Φ into the purified form

$$
\Phi_{B} \cup \Phi_{E} \cup \Phi_{1} \cup \cdots \cup \Phi_{n}
$$

where

- Φ_{B} is a set of propositional formulas
$\square \Phi_{E}=\left\{p^{\mathrm{Bool}} \equiv x^{\tau}=y^{\tau}\right\}_{p^{\text {Bool }}, x^{\tau}, y^{\tau}}$ with $\tau \neq$ Bool
$\square \Phi_{i}=\left\{p^{\mathrm{Bool}} \equiv \psi\right\}_{p^{\mathrm{Bool}}, \psi} \cup\left\{x^{\tau}=t\right\}_{x^{\tau}, t}$ with ψ, t non-variables, i-semipure, and not containing logical constants

Ex: $f(x)=x \vee f(2 * x-f(x))>x$ becomes

$$
\begin{array}{ll}
\Phi_{B}=\{p \vee q\} & \Phi_{E}=\{p \equiv y=x\} \\
\Phi_{\mathrm{Eq}}=\{y=f(x), u=f(z)\} & \Phi_{\mathrm{lnt}}=\{q \equiv u>x z=2 * x-y,\}
\end{array}
$$

Towards a Combination Theorem

Let
■ A be a set of propositional atoms (i.e., Bool-variables)
■ X a set of of variables

An assignment M of A is a consistent set of literals with atoms in A
An arrangement Δ of X is a set of equational literals corresponding to a well-typed partition of X

Ex

Partition: $\left\{\left\{x^{\tau_{1}}, y^{\tau_{1}}, z^{\tau_{1}}\right\},\left\{u^{\tau_{2}}, v^{\tau_{2}}\right\},\left\{w^{\tau_{3}}\right\}\right\}$
Δ :

$$
\left\{x^{\tau_{1}}=y^{\tau_{1}}, x^{\tau_{1}}=z^{\tau_{1}}, u^{\tau_{2}}=v^{\tau_{2}}, x^{\tau_{1}} \neq u^{\tau_{2}}, x^{\tau_{1}} \neq w^{\tau_{3}}\right\}
$$

Main Result: A Combination Theorem for FOLP

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be signature-disjoint, flexible structures

Main Result: A Combination Theorem for FOLP

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be signature-disjoint, flexible structures
A query

$$
\Phi=\Phi_{B} \cup \Phi_{E} \cup \Phi_{1} \cup \cdots \cup \Phi_{n}
$$

is $\left(\mathcal{S}_{1}+\cdots+\mathcal{S}_{n}\right)$-satisfiable iff

Main Result: A Combination Theorem for FOLP

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be signature-disjoint, flexible structures
A query

$$
\Phi=\Phi_{B} \cup \Phi_{E} \cup \Phi_{1} \cup \cdots \cup \Phi_{n}
$$

is $\left(\mathcal{S}_{1}+\cdots+\mathcal{S}_{n}\right)$-satisfiable iff there is
\square an assignment M of the atoms in Φ_{B} and
\square an arrangement Δ of the non-Bool variables in Φ
s.t.

1. $M \models \Phi_{B}$
2. $M, \Delta \models \Phi_{E}$
3. $\left(\Phi_{i} \cup M \cup \Delta\right)^{\text {pure }} \cup \Phi_{i}{ }^{\text {card }}$ is \mathcal{S}_{i}-satisfiable for all $i=1, \ldots, n$

Main Theoretical Requirement: Flexible Structures

A structure \mathcal{S} is flexible if for

- every query Φ,

■ every injective $\langle\iota, \rho\rangle$ such that $\langle\iota, \rho\rangle \models \mathcal{S} \Phi$,

- every $\alpha \in V$,

■ every $\kappa>|\iota(\alpha)|$
there exist injective $\left\langle\iota^{\mathrm{up}(\kappa)}, \rho^{\mathrm{up}(\kappa)}\right\rangle$ and $\left\langle\iota^{\text {down }}, \rho^{\text {down }}\right\rangle$ satisfying Φ s.t.
$\iota^{\mathrm{up}(\kappa)}(\beta)=\iota(\beta)=\iota^{\text {down }}(\beta)$ for every $\beta \neq \alpha$, and

1. $\iota^{\operatorname{up}(\kappa)}(\alpha)$ has cardinality κ [up-flexibility]
2. $\iota^{\text {down }}(\alpha)$ is countable [down-flexibility]

Main Theoretical Requirement: Flexible Structures

A structure \mathcal{S} is flexible if for
■ every query Φ,
■ every injective $\langle\iota, \rho\rangle$ such that $\langle\iota, \rho\rangle \models \mathcal{S} \Phi$,
■ every $\alpha \in V$,
■ every $\kappa>|\iota(\alpha)|$
there exist injective $\left\langle\iota^{\operatorname{up}(\kappa)}, \rho^{\mathrm{up}(\kappa)}\right\rangle$ and $\left\langle\iota^{\text {down }}, \rho^{\text {down }}\right\rangle$ satisfying Φ s.t.
$\iota^{\operatorname{up}(\kappa)}(\beta)=\iota(\beta)=\iota^{\text {down }}(\beta)$ for every $\beta \neq \alpha$, and

1. $\iota^{\operatorname{up}(\kappa)}(\alpha)$ has cardinality κ [up-flexibility]
2. $\iota^{\text {down }}(\alpha)$ is countable [down-flexibility]

Lemma Every parametric structure is flexible

Main Computational Requirement: Strong Solvers

We call a solver for \mathcal{S}-satisfiability strong if it can process queries with cardinality constraints.
\square Typical \mathcal{S}-solvers are not strong
\square however, they can be effectively converted into strong solvers by preprocessing each query
\square currently this can be done, specifically for a number of structures, as in [Ranise et al., FroCoS'05]

■ we are working on a (possibly less efficient but) generic preprocessing mechanism

Closest Related Work [Ranise et al., FroCoS'05]

Setting (2-theory case):

■ Many-sorted logic (with sorts being 0-ary type operators)
■ Signatures share at most a set of sorts
■ One theory is polite over shared sorts, other theory is arbitrary

Main Result:

Theory solvers are combined, soundly and completely, with a Nelson-Oppen style method that also guesses equalities over some additional terms computed from the input query.

Comparisons with [Ranise et al., FroCoS'05]

That work vs. This work

■ Theory combinations via signature push-outs Theory combinations via type parameter instantiation
■ Politeness assumption on theories
Flexibility assumption on structures

- Politeness proven per theory

Parametricity as general sufficient condition for flexibility
■ Idea of parametricity is implicit in politeness Parametricity notion fully fleshed out
■ Model finiteness issues addressed directly by combination method
Model finiteness issues encapsulated into strong solvers

Some Future Work

■ Method(s) for turning solvers into strong solvers

■ Implementation (CVC3, DPT)

■ Extension to non-disjoint combination (possibly built on combination framework of [Ghilardi et al., 2007])

Thank you

Parametricity

Parametric Type Operators

Fix a signature $\Sigma=\langle O \mid K\rangle$ and a Σ-structure \mathcal{S}
An n-ary operator $F \in O$ is parametric in \mathcal{S} if there exists a related n-ary operation F^{\sharp} on binary relations

Parametric Type Operators

Fix a signature $\Sigma=\langle O \mid K\rangle$ and a Σ-structure \mathcal{S}
An n-ary operator $F \in O$ is parametric in \mathcal{S} if there exists a related n-ary operation F^{\sharp} on binary relations that

1. preserves partial bijections
2. preserves identity relations
3. distributes over relational composition

Parametric Type Operators

Fix a signature $\Sigma=\langle O \mid K\rangle$ and a Σ-structure \mathcal{S}
An n-ary operator $F \in O$ is parametric in \mathcal{S} if there exists a related n-ary operation F^{\sharp} on binary relations
such that
for all partial bijections $\quad R_{1}: A_{1} \leftrightarrow B_{1}, \ldots, R_{n}: A_{n} \leftrightarrow B_{n}$,

$$
S_{1}: C_{1} \leftrightarrow A_{1}, \ldots, S_{n}: C_{n} \leftrightarrow A_{n}
$$

1. $F^{\sharp}\left(R_{1}, \ldots, R_{n}\right)$ is a partial bijection in

$$
F^{\mathcal{S}}\left(A_{1}, \ldots, A_{n}\right) \leftrightarrow F^{\mathcal{S}}\left(B_{1}, \ldots, B_{n}\right)
$$

2. $F^{\sharp}\left(R_{1}, \ldots, R_{n}\right) \circ F^{\sharp}\left(S_{1}, \ldots, S_{n}\right)=F^{\sharp}\left(R_{1} \circ S_{1}, \ldots, R_{n} \circ S_{n}\right)$
3. $F^{\sharp}\left(i d_{A_{1}}, \ldots, i d_{A_{1}}\right)=i d_{F\left(A_{1}, \ldots, A_{n}\right)}$

Parametric Type Operators: Example

Assume List $\in O$ and List ${ }^{\mathcal{S}}$ is the list operator
Define List ${ }^{\sharp}$ so that for all $R: A \leftrightarrow B$
$\square \operatorname{List}^{\sharp}(R): \operatorname{List}^{\mathcal{S}}(A) \leftrightarrow \operatorname{List}^{\mathcal{S}}(B)$
■ $\left(l_{A}, l_{B}\right) \in \operatorname{List}^{\sharp}(R)$ iff $l_{A}=\left[a_{1}, \ldots, a_{n}\right], l_{B}=\left[b_{1}, \ldots, b_{n}\right]$ and $\left(a_{i}, b_{i}\right) \in R$ for all i.

Parametric Type Operators: Example

Assume List $\in O$ and List ${ }^{\mathcal{S}}$ is the list operator
Define List ${ }^{\sharp}$ so that for all $R: A \leftrightarrow B$
$■ \operatorname{List}^{\sharp}(R): \operatorname{List}^{\mathcal{S}}(A) \leftrightarrow \operatorname{List}^{\mathcal{S}}(B)$
■ $\left(l_{A}, l_{B}\right) \in \operatorname{List}^{\sharp}(R)$ iff $l_{A}=\left[a_{1}, \ldots, a_{n}\right], l_{B}=\left[b_{1}, \ldots, b_{n}\right]$ and $\left(a_{i}, b_{i}\right) \in R$ for all i.

Then List is parametric in \mathcal{S} :
for all composable partial bjections R and S and sets C

1. List ${ }^{\sharp}(R)$ is a partial bijection
2. $\operatorname{List}^{\sharp}(R) \circ \operatorname{List}^{\sharp}(S)=\operatorname{List}^{\sharp}(R \circ S)$
3. $\operatorname{List}^{\sharp}\left(i d_{C}\right)=i d_{\text {List }^{s}(C)}$

Parametric Structures

Fix a signature $\Sigma=\langle O \mid K\rangle$ and a Σ-structure \mathcal{S}
We can define a natural notion of parametricity for function symbols as well (see [Krstic et al., TACAS'07])

The structure \mathcal{S} is parametric if every $F \in O \backslash\{\Rightarrow\}$ and every $f \in K$ are parametric

