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Contribution

Nelson-Oppen framework for theories in parametrically polymorphic
logics—a fresh foundation for design of SMT solvers

Highlights

Endowing SMT with a rich typed input language that can model
arbitrarily nested data structures

Completeness of a Nelson-Oppen-style combination method
proved for theories of all common datatypes

Troublesome stable infiniteness condition replaced by a natural
notion of type parametricity

Issue of handling finite-cardinality constraints exposed as
crucial for completeness
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SAT Modulo Theories (SMT)

There are decision procedures for (fragments of) logical theories of
common datatypes

Use them to decide validity/satisfiability of queries, quantifier-free
formulas, that involve symbols from several theories

f(x) = x ⇒ f(2x− f(x)) = x [TUF + TInt]

head(a) = f(x) + 1 . . . [TUF + TInt + TList]

The underlying logic is classical (unsorted or many-sorted)
first-order logic
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SMT Solvers over Multiple
Theories

G. Nelson, D. C. Oppen Simplification by cooperating decision
procedures, 1979

Input:

theories T1, . . . , Tn with disjoint signatures Σ1, . . . ,Σn

decision procedures Pi for the Ti-satisfiability of sets of
Σi-literals

Output:

a decision procedure for (T1 + · · ·+ Tn)-satisfiability of sets of
(Σ1 + · · ·+ Σn)-literals.
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SMT Solvers over Multiple
Theories

Input:

theories T1, . . . , Tn with disjoint signatures Σ1, . . . ,Σn

decision procedures Pi for the Ti-satisfiability of sets of
Σi-literals

Output:

a decision procedure for (T1 + · · ·+ Tn)-satisfiability of sets of
(Σ1 + · · ·+ Σn)-literals.

Main Idea:

1. Input S is purified into equisatisfiable S1, . . . Sn;

2. each Pi works on Si but propagates to the others any entailed
equalities between shared variables.
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Nelson-Oppen: Example

T1 = theory of lists T2 = linear arithmetic

Input set:

S =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

l1 6= l2,

head(l2) ≤ x,

l = tail(l2),

l1 = x :: l,

head(l) − head(tail l1) + x ≤ head(l2)

Purified sets:

S1 =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

l1 6= l2,

y1 = head(l2),

l = tail(l2),

l1 = x :: l,

y2 = head(l), y3 = head(tail l1)

S2 =

8

<

:

y1 ≤ x,

y2 − y3 + x ≤ y1
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Nelson-Oppen: Example

S1 S2

l1 6= l2 y1 ≤ x

y1 = head(l2) y2 − y3 + x ≤ y1
l = tail(l2)

l1 = x :: l

y2 = head(l)

y3 = head(tail l1)
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Nelson-Oppen: Example

S1 S2

l1 6= l2 y1 ≤ x

y1 = head(l2) y2 − y3 + x ≤ y1
l = tail(l2)

l1 = x :: l

y2 = head(l)

y3 = head(tail l1)

−→ y2 = y3
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Nelson-Oppen: Example

S1 S2

l1 6= l2 y1 ≤ x

y1 = head(l2) y2 − y3 + x ≤ y1
l = tail(l2)

l1 = x :: l

y2 = head(l)

y3 = head(tail l1)

−→ y2 = y3

x = y1 ←−
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Nelson-Oppen: Example

S1 S2

l1 6= l2 y1 ≤ x

y1 = head(l2) y2 − y3 + x ≤ y1
l = tail(l2)

l1 = x :: l

y2 = head(l)

y3 = head(tail l1)

−→ y2 = y3

x = y1 ←−

Unsatisfiable!
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Correctness of Nelson-Oppen

The combination procedure is sound for any T1, . . . , Tn:

if it returns “Unsatisfiable”, then its input S is unsatisfiable in
T1 + · · ·+ Tn
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Correctness of Nelson-Oppen

The combination procedure is sound for any T1, . . . , Tn:

if it returns “Unsatisfiable”, then its input S is unsatisfiable in
T1 + · · ·+ Tn

It is complete when

1. T1, . . . , Tn are pairwise signature-disjoint, and
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Correctness of Nelson-Oppen

The combination procedure is sound for any T1, . . . , Tn:

if it returns “Unsatisfiable”, then its input S is unsatisfiable in
T1 + · · ·+ Tn

It is complete when

1. T1, . . . , Tn are pairwise signature-disjoint, and

2. each Ti is stably-infinite
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The Notorious Stable
Infiniteness Restriction

A first-order theory T is stably infinite if every T -satisfiable ground
formula is satisfiable in an infinite model of T .
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The Notorious Stable
Infiniteness Restriction

A first-order theory T is stably infinite if every T -satisfiable ground
formula is satisfiable in an infinite model of T .

Helps guarantee that models of pure parts of a query ϕ can be
amalgamated into a model of ϕ
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The Notorious Stable
Infiniteness Restriction

A first-order theory T is stably infinite if every T -satisfiable ground
formula is satisfiable in an infinite model of T .

Helps guarantee that models of pure parts of a query ϕ can be
amalgamated into a model of ϕ

Yields completeness of N-O, but
it’s not immediate to prove
it’s not true in some important cases (e.g., bit vectors)
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A first-order theory T is stably infinite if every T -satisfiable ground
formula is satisfiable in an infinite model of T .

Helps guarantee that models of pure parts of a query ϕ can be
amalgamated into a model of ϕ

Yields completeness of N-O, but
it’s not immediate to prove
it’s not true in some important cases (e.g., bit vectors)

General understanding: the condition doesn’t matter much—if
you know what you are doing
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The Notorious Stable
Infiniteness Restriction

A first-order theory T is stably infinite if every T -satisfiable ground
formula is satisfiable in an infinite model of T .

Helps guarantee that models of pure parts of a query ϕ can be
amalgamated into a model of ϕ

Yields completeness of N-O, but
it’s not immediate to prove
it’s not true in some important cases (e.g., bit vectors)

General understanding: the condition doesn’t matter much—if
you know what you are doing

Lot of research shows completeness of N-O variants without it:
[Tinelli-Zarba’04], [Fontaine-Gribomont’04], [Zarba’04],
[Ghilardi et al.’07], [Ranise et al.’05]
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Why Stable Infiniteness is
Needed

T1 = theory of “uninterpreted functions”
T2 = theory of Boolean rings (not stably-infinite)

Purified Input:

S1 S2

f(x1) 6= x1 x1 = 0

f(x1) 6= x2 x2 = 1

There are no equations to propagate: the procedure returns
”satisfiable”

Is that correct?
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Our Main Points

In combining theories of different data types

1. a typed logic (with parametric types) is a more adequate
underlying logic than unsorted logic

2. parametricity is the key notion not stable infiniteness
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Parametricity, Not Stable
Infiniteness: Example

ΦList =



























tail l1 = tail l2

x1 = head l1

x2 = head l2

x = head(tail l1)

ΦInt =







x = x1 + z

x2 = x1 + z
∆ =







x = x2

x 6= x1
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Parametricity, Not Stable
Infiniteness: Example

ΦList =



























tail l1 = tail l2

x1 = head l1

x2 = head l2

x = head(tail l1)

ΦInt =







x = x1 + z

x2 = x1 + z
∆ =







x = x2

x 6= x1





x1 x2 x l1 l2

N • • [N, •] [•, •]



 |=TList
ΦList ∪∆





x1 x2 x z

1 2 2 1



 |=TInt
ΦInt ∪∆
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Parametricity, Not Stable
Infiniteness: Example

ΦList =



























tail l1 = tail l2

x1 = head l1

x2 = head l2

x = head(tail l1)

ΦInt =







x = x1 + z

x2 = x1 + z
∆ =







x = x2

x 6= x1





x1 x2 x l1 l2

N • • [N, •] [•, •]



 |=TList
ΦList ∪∆





x1 x2 x z

1 2 2 1



 |=TInt
ΦInt ∪∆

TList knows nothing about Z and cannot distinguish (N, •) from any pair
(m,n) of distinct integers:
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Parametricity, Not Stable
Infiniteness: Example

ΦList =



























tail l1 = tail l2

x1 = head l1

x2 = head l2

x = head(tail l1)

ΦInt =







x = x1 + z

x2 = x1 + z
∆ =







x = x2

x 6= x1





x1 x2 x l1 l2

N • • [N, •] [•, •]



 |=TList
ΦList ∪∆





x1 x2 x z

1 2 2 1



 |=TInt
ΦInt ∪∆

TList knows nothing about Z and cannot distinguish (N, •) from any pair
(m,n) of distinct integers:




x1 x2 x l1 l2

m n n [m,n] [n, n]



 |= ΦList ∪∆ as well
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Parametricity, Not Stable
Infiniteness: Example

ΦList =



























tail l1 = tail l2

x1 = head l1

x2 = head l2

x = head(tail l1)

ΦInt =







x = x1 + z

x2 = x1 + z
∆ =







x = x2

x 6= x1





x1 x2 x l1 l2

N • • [N, •] [•, •]



 |=TList
ΦList ∪∆





x1 x2 x z

1 2 2 1



 |=TInt
ΦInt ∪∆

TList knows nothing about Z and cannot distinguish (N, •) from any pair
(m,n) of distinct integers:

to construct a model for ΦList ∪ ΦInt ∪∆, we can use the blue
assignment to x1, x2, x
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Real Issue in NO Combination

Not so much getting stable-infiniteness right, but

getting underlying logic right
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Real Issue in NO Combination

Not so much getting stable-infiniteness right, but

getting underlying logic right

Our proposal

FOLP: A first order logic with parametrized type constructors and
type variables

Essentially, the applicative fragment of HOL
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FOLP Syntax

Types

V , an infinite set of type variables

Ex: α, β, α1, β1, . . .

O, a set of type operators, symbols with associated arity n ≥ 0

Ex: Bool/0, Int/0, List/1, Arr/2, ⇒/2, . . .

Types(O, V ), set of types, terms over O, V

Ex: Int, List(α), List(Int), Arr(Int, List(α)), List(α)⇒ Int, . . .
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FOLP Syntax

First-order Types: Types over O \ {⇒}, V

Constants: K, set of symbols each with an associated principal
type τ

Ex: ⊤Bool, ¬Bool⇒Bool, =α,α⇒Bool, +Int,Int⇒Int,
cons

α,List(α)⇒List(α), read
Arr(α,β),α⇒β, . . .

Term Variables: Xτ , for each τ ∈ Types(O, V ), an infinite set of
symbols annotated with τ

Ex: xα, yList(β), zα⇒α, xArr(Int,Bool), . . .
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FOLP Syntax

Signatures: pairs Σ = 〈O | K〉 with

O always containing⇒ and Bool

K always containing =α,α⇒Bool, ite
Bool,α,α⇒α, and

the usual logical constants ¬Bool⇒Bool, ∧Bool,Bool⇒Bool, . . .

Σ-Terms of First-order Type τ : Tτ (K,X), defined as usual

Ex: xInt⇒Bool yInt, (read aArr(Int,List(β)) iInt) = xList(β),

First-order (Quantifier-free) Formulas: Terms in TBool(K,X)
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FOLP Semantics

Structures of signature Σ = 〈O | K〉

Pair S of

1. an interpretation (_)S of type operators F as set operators

2. an interpretation (_)S of constants f as set-indexed families of
functions (with index determined by TypeVars(τ) where fτ )

s.t. Bool,⇒, and =, ite,∧, . . . are the interpreted in the usual way.
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FOLP Semantics

Structures of signature Σ = 〈O | K〉

Pair S of

1. an interpretation (_)S of type operators F as set operators

2. an interpretation (_)S of constants f as set-indexed families of
functions (with index determined by TypeVars(τ) where fτ )

s.t. Bool,⇒, and =, ite,∧, . . . are the interpreted in the usual way.

Ex 1:
Int

S equals the integers
List

S maps an input set A to the set of finite lists over A
Arr

S maps input sets I and A to the set of arrays with
index set I and element set A
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FOLP Semantics

Structures of signature Σ = 〈O | K〉

Pair S of

1. an interpretation (_)S of type operators F as set operators

2. an interpretation (_)S of constants f as set-indexed families of
functions (with index determined by TypeVars(τ) where fτ )

s.t. Bool,⇒, and =, ite,∧, . . . are the interpreted in the usual way.

Ex 2:
head

S family {head [A1] | A1 is a set} (since head
List(α)⇒α)

read
S family {read [A1, A2] | A1, A2 are sets}

(since read
Arr(α1,α2),α1⇒α2)

+S singleton family (since +Int,Int⇒Int)
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FOLP Semantics

For every signature Σ = 〈O | K〉, Σ-structure S, type environment ι,
term environment ρ, and Σ-formula ϕ,

we can define [_]Sι,ρ (as expected) to map Σ-formulas to {true, false}
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For every signature Σ = 〈O | K〉, Σ-structure S, type environment ι,
term environment ρ, and Σ-formula ϕ,

we can define [_]Sι,ρ (as expected) to map Σ-formulas to {true, false}

Satisfiability

ϕ is satisfied in S by ι and ρ, written ι, ρ |=S ϕ, if [ϕ]Sι,ρ = true

ϕ is satisfiable in S if ι, ρ |=S ϕ for some ι and ρ
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FOLP Semantics

For every signature Σ = 〈O | K〉, Σ-structure S, type environment ι,
term environment ρ, and Σ-formula ϕ,

we can define [_]Sι,ρ (as expected) to map Σ-formulas to {true, false}

Satisfiability

ϕ is satisfied in S by ι and ρ, written ι, ρ |=S ϕ, if [ϕ]Sι,ρ = true

ϕ is satisfiable in S if ι, ρ |=S ϕ for some ι and ρ

Cardinality Constraints

(Meta)Expressions of the form α
.
= n with n > 0

α
.
= n is satisfied in S by ι, ρ, written ι, ρ |=S α

.
= n, if |ι(α)| = n
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The Equality Structure

Let

KEq = =α,α⇒Bool,⊤Bool,¬Bool⇒Bool, iteBool,α,α⇒α, . . .

ΣEq = 〈Bool,⇒ | KEq〉

SEq = the unique ΣEq-structure
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SEq = the unique ΣEq-structure

Note: SEq models

the logical constants of FOL= and

the “uninterpreted functions” data type, by means of
higher-order term variables (xα1,...,αn⇒α)
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The Equality Structure

Let

KEq = =α,α⇒Bool,⊤Bool,¬Bool⇒Bool, iteBool,α,α⇒α, . . .

ΣEq = 〈Bool,⇒ | KEq〉

SEq = the unique ΣEq-structure

Note: SEq models

the logical constants of FOL= and

the “uninterpreted functions” data type, by means of
higher-order term variables (xα1,...,αn⇒α)

Fact: The satisfiability in SEq of first-order ΣEq-formulas is decidable
(with the usual congruence closure algorithms)
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Parametricity [TACAS’07]

A structure is parametric if it interprets
all its type operators, except⇒, as parametric set operators and
all its constants as parametric function families
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all its constants as parametric function families
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comparable) to Reynold’s parametricity
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Parametricity [TACAS’07]

A structure is parametric if it interprets
all its type operators, except⇒, as parametric set operators and
all its constants as parametric function families

Parametricity of type operators and constants similar (but not
comparable) to Reynold’s parametricity

Natural property of data types

States precisely the informal notion that

certain type operators and function symbols have a
uniform interpretation over the possible values of the
type variables
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Parametricity [TACAS’07]

A structure is parametric if it interprets
all its type operators, except⇒, as parametric set operators and
all its constants as parametric function families

Parametricity of type operators and constants similar (but not
comparable) to Reynold’s parametricity

Natural property of data types

States precisely the informal notion that

certain type operators and function symbols have a
uniform interpretation over the possible values of the
type variables

Plays the role of stable-infiniteness in Nelson-Oppen
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Parametric Structures

Fact: All structures of practical interest are parametric in our sense

ΣInt = 〈Int | 0Int, 1Int,+Int2→Int,−Int2→Int,×Int2→Int,≤Int2→Bool, . . .〉

ΣArr = 〈Arr | mk_arr
β→Arr(α,β), read[Arr(α,β),α]→β,write

[Arr(α,β),α,β]→Arr(α,β)〉

ΣList = 〈List | cons
[α,List(α)]→List(α), nil

List(α), head
List(α)→α, tailList(α)→List(α)〉

Σ× = 〈× | 〈_,_〉[α,β]→α×β
, fstα×β→α, snd

α×β→β〉

ΣBitVec32 = . . .

ΣSets = . . .

ΣMultisets = . . .

(All the above signatures implicitly include the signature ΣEq)
Intel’07 – p.22/39



Combining Signatures and
Structures

Disjoint Signatures

Signatures that share exactly the symbols of ΣEq
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Combining Signatures and
Structures

Disjoint Signatures

Signatures that share exactly the symbols of ΣEq

Combination of Disjoint Signatures Σ1,Σ2

Σ1 + Σ2 = 〈O1 ∪O2 | K1 ∪K2〉 where Σi = 〈Oi | Ki〉
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Combination of Disjoint Signatures Σ1,Σ2

Σ1 + Σ2 = 〈O1 ∪O2 | K1 ∪K2〉 where Σi = 〈Oi | Ki〉

Combination of Signature-Disjoint Structures S1,S2

(Σ1 + Σ2)-structure S1 + S2 that interprets Σi-symbols exactly like Si
for i = 1, 2.

Intel’07 – p.23/39



Combining Signatures and
Structures

Disjoint Signatures

Signatures that share exactly the symbols of ΣEq

Combination of Disjoint Signatures Σ1,Σ2

Σ1 + Σ2 = 〈O1 ∪O2 | K1 ∪K2〉 where Σi = 〈Oi | Ki〉

Combination of Signature-Disjoint Structures S1,S2

(Σ1 + Σ2)-structure S1 + S2 that interprets Σi-symbols exactly like Si
for i = 1, 2.

Note: Modulo isomorphism, + is an ACU operator with unit SEq
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Pure and Semipure Terms

Let S1, . . . ,Sn be structures with disjoint signatures Σi = 〈Oi | Ki〉

We call a (Σ1 + · · ·+ Σn)-term

i-semipure if it has signature 〈O1 ∪ · · · ∪On | Ki〉

i-pure if it has signature 〈Oi | Ki〉

Ex
Σ1 = 〈Int | 0Int, 1Int,+Int,Int⇒Int,−Int⇒Int,≤Int,Int⇒Bool, . . .〉

Σ2 = 〈Arr | readArr(α,β),α⇒β,write
Arr(α,β),α,β⇒Arr(α,β)〉

1-semipure: read(aArr(Int,Int), iInt), aArr(Int,β), aArr(Int,Arr(Int,Int))

1-pure: read(aArr(α,α), iα), aArr(α,β), aArr(α,Arr(β1,β2))
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Pure and Semipure Terms

Let S1, . . . ,Sn be structures with disjoint signatures Σi = 〈Oi | Ki〉

We call a (Σ1 + · · ·+ Σn)-term

i-semipure if it has signature 〈O1 ∪ · · · ∪On | Ki〉

i-pure if it has signature 〈Oi | Ki〉

Fact For each i-semipure term t we can compute a most specific
pure generalization tpure of t

Ex
ϕ : read(aArr(Int,Pair(Arr(Bool,Bool))), iInt) = xPair(Arr(Bool,Bool))

ϕpure : read(aArr(α,β), iα) = xβ
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Pure and Semipure Terms

Let S1, . . . ,Sn be parametric structures with disjoint signatures
Σi = 〈Oi | Ki〉

Proposition A set Φi of i-semipure formulas is
(S1 + · · ·+ Sn)-satisfiable

iff
Φpure
i ∪ Φcard

i is Si-satisfiable

for some suitable set Φcard
i of cardinality constraints computable

from Φi

Ex
Φi : { read(aArr(Int,Pair(Arr(Bool,Bool))), iInt) = xPair(Arr(Bool,Bool)) }

Φpure
i : { read(aArr(α,β), iα) = xβ }

Φcard
i : { β

.
= 16 }
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Why Cardinality Constraints
are Needed

Φ : {x
List(α)
i 6= x

List(α)
j }0≤i<j≤5 ∪ {tail(tail x

List(α)
i ) = nil}1≤i≤5

Φ1 : {x
List(Int)
i 6= x

List(Int)
j }0≤i<j≤5 ∪ {tail(tail x

List(Int)
i ) = nil}1≤i≤5

Φ2 : {x
List(Bool)
i 6= x

List(Bool)
j }0≤i<j≤5 ∪ {tail(tail x

List(Bool)
i ) = nil}1≤i≤5

Φ and Φ1 are (SInt + SList)-satisfiable, Φ2 is not
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Why Cardinality Constraints
are Needed

Φ : {x
List(α)
i 6= x

List(α)
j }0≤i<j≤5 ∪ {tail(tail x

List(α)
i ) = nil}1≤i≤5

Φ1 : {x
List(Int)
i 6= x

List(Int)
j }0≤i<j≤5 ∪ {tail(tail x

List(Int)
i ) = nil}1≤i≤5

Φ2 : {x
List(Bool)
i 6= x

List(Bool)
j }0≤i<j≤5 ∪ {tail(tail x

List(Bool)
i ) = nil}1≤i≤5

Φ and Φ1 are (SInt + SList)-satisfiable, Φ2 is not

SList-solver can’t take Φ1 or Φ2 as input: they are not ΣList-pure
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Why Cardinality Constraints
are Needed

Φ : {x
List(α)
i 6= x

List(α)
j }0≤i<j≤5 ∪ {tail(tail x

List(α)
i ) = nil}1≤i≤5

Φ1 : {x
List(Int)
i 6= x

List(Int)
j }0≤i<j≤5 ∪ {tail(tail x

List(Int)
i ) = nil}1≤i≤5

Φ2 : {x
List(Bool)
i 6= x

List(Bool)
j }0≤i<j≤5 ∪ {tail(tail x

List(Bool)
i ) = nil}1≤i≤5

Φ and Φ1 are (SInt + SList)-satisfiable, Φ2 is not

SList-solver can’t take Φ1 or Φ2 as input: they are not ΣList-pure

Instead of Φ1, it gets Φ = Φpure
1 with cardinality constraint ∅
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Why Cardinality Constraints
are Needed

Φ : {x
List(α)
i 6= x

List(α)
j }0≤i<j≤5 ∪ {tail(tail x

List(α)
i ) = nil}1≤i≤5

Φ1 : {x
List(Int)
i 6= x

List(Int)
j }0≤i<j≤5 ∪ {tail(tail x

List(Int)
i ) = nil}1≤i≤5

Φ2 : {x
List(Bool)
i 6= x

List(Bool)
j }0≤i<j≤5 ∪ {tail(tail x

List(Bool)
i ) = nil}1≤i≤5

Φ and Φ1 are (SInt + SList)-satisfiable, Φ2 is not

SList-solver can’t take Φ1 or Φ2 as input: they are not ΣList-pure

Instead of Φ1, it gets Φ = Φpure
1 with cardinality constraint ∅

Instead of Φ2, it gets Φ = Φpure
2 with the cardinality constraint

{α
.
= 2}
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Towards Nelson-Oppen
Combination: Purification

We turn each query Φ into the purified form

ΦB ∪ ΦE ∪ Φ1 ∪ · · · ∪ Φn

where

ΦB is a set of propositional formulas

ΦE = {pBool ≡ xτ = yτ}pBool,xτ ,yτ with τ 6= Bool

Φi = {pBool ≡ ψ}pBool,ψ ∪ {x
τ = t}xτ ,t with ψ, t non-variables,

i-semipure, and not containing logical constants

Ex: f(x) = x ∨ f(2 ∗ x− f(x)) > x becomes

ΦB = {p ∨ q} ΦE = {p ≡ y = x},

ΦEq = {y = f(x), u = f(z)} ΦInt = {q ≡ u > x z = 2 ∗ x− y, }
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Towards a Combination
Theorem

Let

A be a set of propositional atoms (i.e., Bool-variables)

X a set of of variables

An assignment M of A is a consistent set of literals with atoms in A

An arrangement ∆ of X is a set of equational literals corresponding
to a well-typed partition of X

Ex

Partition: {{xτ1 , yτ1 , zτ1}, {uτ2 , vτ2}, {wτ3}}
∆ : {xτ1 = yτ1 , xτ1 = zτ1 , uτ2 = vτ2 , xτ1 6= uτ2 , xτ1 6= wτ3}
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Main Result: A Combination
Theorem for FOLP

Let S1, . . . ,Sn be signature-disjoint, flexible structures

Intel’07 – p.29/39



Main Result: A Combination
Theorem for FOLP

Let S1, . . . ,Sn be signature-disjoint, flexible structures

A query
Φ = ΦB ∪ ΦE ∪ Φ1 ∪ · · · ∪ Φn

is (S1 + · · ·+ Sn)-satisfiable iff
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Main Result: A Combination
Theorem for FOLP

Let S1, . . . ,Sn be signature-disjoint, flexible structures

A query
Φ = ΦB ∪ ΦE ∪ Φ1 ∪ · · · ∪ Φn

is (S1 + · · ·+ Sn)-satisfiable iff
there is

an assignment M of the atoms in ΦB and

an arrangement ∆ of the non-Bool variables in Φ

s.t.

1. M |= ΦB

2. M,∆ |= ΦE

3. (Φi ∪M ∪∆)
pure ∪ Φi

card is Si-satisfiable for all i = 1, . . . , n
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Main Theoretical Requirement:
Flexible Structures

A structure S is flexible if for

every query Φ,

every injective 〈ι, ρ〉 such that 〈ι, ρ〉 |=S Φ,

every α ∈ V ,

every κ > |ι(α)|

there exist injective 〈ιup(κ), ρup(κ)〉 and 〈ιdown, ρdown〉 satisfying Φ s.t.

ιup(κ)(β) = ι(β) = ιdown(β) for every β 6= α, and

1. ιup(κ)(α) has cardinality κ [up-flexibility]

2. ιdown(α) is countable [down-flexibility]
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Main Theoretical Requirement:
Flexible Structures

A structure S is flexible if for

every query Φ,

every injective 〈ι, ρ〉 such that 〈ι, ρ〉 |=S Φ,

every α ∈ V ,

every κ > |ι(α)|

there exist injective 〈ιup(κ), ρup(κ)〉 and 〈ιdown, ρdown〉 satisfying Φ s.t.

ιup(κ)(β) = ι(β) = ιdown(β) for every β 6= α, and

1. ιup(κ)(α) has cardinality κ [up-flexibility]

2. ιdown(α) is countable [down-flexibility]

Lemma Every parametric structure is flexible
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Main Computational
Requirement: Strong Solvers

We call a solver for S-satisfiability strong if it can process queries
with cardinality constraints.

Typical S-solvers are not strong

however, they can be effectively converted into strong solvers
by preprocessing each query

currently this can be done, specifically for a number of
structures, as in [Ranise et al., FroCoS’05]

we are working on a (possibly less efficient but) generic
preprocessing mechanism
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Closest Related Work [Ranise
et al., FroCoS’05]

Setting (2-theory case):

Many-sorted logic (with sorts being 0-ary type operators)

Signatures share at most a set of sorts

One theory is polite over shared sorts, other theory is arbitrary

Main Result:

Theory solvers are combined, soundly and completely, with a
Nelson-Oppen style method that also guesses equalities over some
additional terms computed from the input query.
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Comparisons with [Ranise et
al., FroCoS’05]

That work vs. This work

Theory combinations via signature push-outs
Theory combinations via type parameter instantiation

Politeness assumption on theories
Flexibility assumption on structures

Politeness proven per theory
Parametricity as general sufficient condition for flexibility

Idea of parametricity is implicit in politeness
Parametricity notion fully fleshed out

Model finiteness issues addressed directly by combination
method
Model finiteness issues encapsulated into strong solvers

Intel’07 – p.33/39



Some Future Work

Method(s) for turning solvers into strong solvers

Implementation (CVC3, DPT)

Extension to non-disjoint combination
(possibly built on combination framework of [Ghilardi et al.,
2007])
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Thank you
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Parametricity
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Parametric Type Operators

Fix a signature Σ = 〈O | K〉 and a Σ-structure S

An n-ary operator F ∈ O is parametric in S if there exists a related
n-ary operation F ♯ on binary relations
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Parametric Type Operators

Fix a signature Σ = 〈O | K〉 and a Σ-structure S

An n-ary operator F ∈ O is parametric in S if there exists a related
n-ary operation F ♯ on binary relations

that

1. preserves partial bijections

2. preserves identity relations

3. distributes over relational composition
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Parametric Type Operators

Fix a signature Σ = 〈O | K〉 and a Σ-structure S

An n-ary operator F ∈ O is parametric in S if there exists a related
n-ary operation F ♯ on binary relations

such that

for all partial bijections R1 : A1 ↔ B1, . . . , Rn : An ↔ Bn,
S1 : C1 ↔ A1, . . . , Sn : Cn ↔ An,

1. F ♯(R1, . . . , Rn) is a partial bijection in
FS(A1, . . . , An)↔ FS(B1, . . . , Bn)

2. F ♯(R1, . . . , Rn) ◦ F
♯(S1, . . . , Sn) = F ♯(R1 ◦ S1, . . . , Rn ◦ Sn)

3. F ♯(idA1
, . . . , idA1

) = idF (A1,...,An)
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Parametric Type Operators:
Example

Assume List ∈ O and List
S is the list operator

Define List
♯ so that for all R : A↔ B

List
♯(R) : List

S(A)↔ List
S(B)

(lA, lB) ∈ List
♯(R) iff lA = [a1, . . . , an], lB = [b1, . . . , bn] and

(ai, bi) ∈ R for all i.
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Parametric Type Operators:
Example

Assume List ∈ O and List
S is the list operator

Define List
♯ so that for all R : A↔ B

List
♯(R) : List

S(A)↔ List
S(B)

(lA, lB) ∈ List
♯(R) iff lA = [a1, . . . , an], lB = [b1, . . . , bn] and

(ai, bi) ∈ R for all i.

Then List is parametric in S:

for all composable partial bjections R and S and sets C

1. List
♯(R) is a partial bijection

2. List
♯(R) ◦ List

♯(S) = List
♯(R ◦ S)

3. List
♯(idC) = idListS(C)
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Parametric Structures

Fix a signature Σ = 〈O | K〉 and a Σ-structure S

We can define a natural notion of parametricity for function symbols
as well (see [Krstic et al., TACAS’07])

The structure S is parametric if every F ∈ O \ {⇒} and every f ∈ K
are parametric
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