
SMT-based Model Checking

Cesare Tinelli

The University of Iowa.

Formal Techniques Summer School

Atherton, CA, May 2011 – p.1/44

Modeling Computational Systems

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L) where

• S is a set of states

• I ⊆ S is a set of initial states

• T ⊆ S × S is a (right-total) transition relation

• L : S → 2Pr is a labeling function where Pr is a set of
base predicates in some logic

Typically, the base predicates denote variable-value pairs x = v

Atherton, CA, May 2011 – p.2/44

Model Checking

Software or hardware systems can be often represented as a
state transition system, or model, M = (S, I, T ,L)

M is a model both in

1. an engineering sense: a mock-up of the real system

and

2. a mathematical logic sense: a Kripke structure in some
modal logic

Atherton, CA, May 2011 – p.3/44

Model Checking

Software or hardware systems can be often represented as a
state transition system, or model, M = (S, I, T ,L)

M is a model both in

1. an engineering sense: we can analyze and check M
instead of the real system

and

2. a mathematical logic sense: we can make the analysis
formal and rely on (semi)automated tools

Atherton, CA, May 2011 – p.3/44

Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Atherton, CA, May 2011 – p.4/44

Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

Atherton, CA, May 2011 – p.4/44

Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

We will focus on checking safety in this talk

Atherton, CA, May 2011 – p.4/44

Talk Roadmap

• Checking safety properties

• Logic-based model checking

• Satisfiability Modulo Theories
• theories
• solvers

• SMT-based model checking
• main approaches
• k-Induction

• basic method
• enhancements

Atherton, CA, May 2011 – p.5/44

Safety Properties

Let M = (S, I, T ,L) be a transition system

The set R of reachable states (of M) is the smallest subset of
S satisfying the following constraints

1. I ⊆ R (initial states are reachable)

2. R ⊲⊳ T ⊆ R (T -successors of reachable states are reachable)

M is safe wrt a state property P ⊆ S iff P ∩R = ∅

A state property P is invariant (for M) iff R ⊆ P

Note: M is safe wrt P iff P = S \ P is invariant

Atherton, CA, May 2011 – p.6/44

Example: Resettable Counter

Vars
input bool r
int c, n

Initialization
c := 1
n := 3

Transitions
n’:= n
c’ := if (r’ or c = n)

then 1
else c + 1

S := Z× Z

I := {(1, 3)}

T := {((1, 3), (1, 3)), ((1, 3), (2, 3)), . . .}

R := {(1, 3), (2, 3), (3, 3)}

P := {(5, 3)} (safety)

Atherton, CA, May 2011 – p.7/44

Checking Safety

In principle, to check that M is safe wrt P it suffices to

1. compute R and

2. check that P ∩R = ∅

This can be done explicitly only if S is finite, and relatively
small (< 10M states)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods, or

• logic-based methods

Atherton, CA, May 2011 – p.8/44

Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

Atherton, CA, May 2011 – p.9/44

Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

(ϕ |=L ψ iff every L-model of ϕ is a model of ψ)

Examples of L:

• Propositional logic

• Quantified Boolean Formulas

• Bernay-Schönfinkel logic

• Quantifier-free real (or linear integer) arithmetic with
arrays and uninterpreted functions

• . . .

Atherton, CA, May 2011 – p.9/44

Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

Given a set X of variables and a set V of values in L,

• states σ ∈ S are identified with their label L(s) and
represented as n-tuples in V n

• I is encoded by a formula I[x] with free variables x s.t.
σ ∈ I iff |=L I[σ]

• T is encoded by a formula T [x,x′] s.t.
|=L T [σ, σ′] for all (σ, σ′) ∈ T .

• State properties are encoded by formulas P [x]

Notation: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), then

φ[σ] := φ[v1/x1, . . . , vn/xn]
Atherton, CA, May 2011 – p.9/44

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] s.t. |=L R[σ] iff σ ∈ R

Atherton, CA, May 2011 – p.10/44

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] s.t. |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Atherton, CA, May 2011 – p.10/44

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] s.t. |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L

Atherton, CA, May 2011 – p.10/44

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] s.t. |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L

Logic-based model checking is about approximating R as
efficiently as possible and as precisely as needed

Atherton, CA, May 2011 – p.10/44

Main Logic-based Approaches

• Bounded model checking [CBRZ01, AMP06, BHvMW09]

• Interpolation-based model checking [McM03, McM05]

• Model checking without unrolling [BM07, Bra10]

• Temporal induction [SSS00, dMRS03, HT08]

• Backward reachability [ACJT96, GR10]

• . . .

Past accomplishments: mostly based on propositional logic,
with SAT solvers as reasoning engines

Next frontier: based on SMT logics, with SMT solvers as
reasoning engines [Seb07, BSST09]

Atherton, CA, May 2011 – p.11/44

Model Checking Modulo Theories

We invariably reason about transition systems in the context of
some theory of their data types

Examples

• Pipelined microprocessors: theory of equality, atoms like
f(g(a, b), c) = g(c, a)

• Timed automata: theory of integers/reals, atoms like
x− y < 2

• General software: combination of theories, atoms like
a[2 ∗ j + 1] + x ≥ car(l)− f(x)

Such reasoning can be reduced to checking the satisfiability of
certain formulas in (or modulo) the theory.

Atherton, CA, May 2011 – p.12/44

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable

Atherton, CA, May 2011 – p.13/44

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

Atherton, CA, May 2011 – p.13/44

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

• Equality with“Uninterpreted Function Symbols”

• Linear Arithmetic (Real and Integer)

• Arrays (i.e., updatable maps)

• Finite sets and multisets

• Inductive data types (enumerations, lists, trees, . . .)

• . . .
Atherton, CA, May 2011 – p.13/44

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

Thanks to advances in SAT and in decision procedures, this can
be done very efficiently in practice by current SMT solvers

Atherton, CA, May 2011 – p.13/44

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Atherton, CA, May 2011 – p.14/44

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .

Atherton, CA, May 2011 – p.14/44

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

• satisfying assignments

• unsatisfiable cores

• explanations

• interpolants

• proof objects

Atherton, CA, May 2011 – p.14/44

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Atherton, CA, May 2011 – p.14/44

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Increasingly conform to a standard I/O language: the SMT-LIB
format

Atherton, CA, May 2011 – p.14/44

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Increasingly conform to a standard I/O language: the SMT-LIB
format

Are now incorporated into a variety of FM tools

Atherton, CA, May 2011 – p.14/44

Model Checking: SMT or SAT?

SMT encodings in model checking provide several advantages
over SAT encodings

• Boolean formulas −→ (unquantified) first-order formulas

• more powerful language

• satisfiability still efficiently decidabile

• more natural and compact encodings

• greater scalability

• similar high level of automation

• work indifferently for finite and infinite state systems

Atherton, CA, May 2011 – p.15/44

Model Checking: SMT or SAT?

SMT encodings in model checking provide several advantages
over SAT encodings

• Boolean formulas −→ (unquantified) first-order formulas

• more powerful language

• satisfiability still efficiently decidabile

• more natural and compact encodings

• greater scalability

• similar high level of automation

• work indifferently for finite and infinite state systems

SMT-based model checking techniques blur the line between
traditional model checking and deductive verification

Atherton, CA, May 2011 – p.15/44

Talk Roadmap

√
Checking safety properties

√
Logic-based model checking

√
Satisfiability Modulo Theories
√

theories
√

solvers

• SMT-based model checking
• main approaches
• k-Induction

• basic method
• enhancements

Atherton, CA, May 2011 – p.16/44

SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Interpolation-based model checking

• Backward reachability

• Temporal induction (aka k-induction)

Atherton, CA, May 2011 – p.17/44

SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Interpolation-based model checking

• Backward reachability

• Temporal induction (aka k-induction)

I will focus on temporal induction

Atherton, CA, May 2011 – p.18/44

SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Interpolation-based model checking

• Backward reachability

• Temporal induction (aka k-induction)

I will focus on temporal induction

Reasons:

• it does not need advanced SMT features (such as
interpolation, quantifier elimination), and . . .

Atherton, CA, May 2011 – p.18/44

SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Interpolation-based model checking

• Backward reachability

• Temporal induction (aka k-induction)

I will focus on temporal induction

Reasons:

• it does not need advanced SMT features (such as
interpolation, quantifier elimination), and . . .

• I have more experience with it
..
⌣

Atherton, CA, May 2011 – p.18/44

Technical Preliminaries

Let’s fix

• L, a logic whose quantifier-free (QF) fragment is decided
by an SMT solver

(e.g., linear arithmetic and EUF)

• S = (I[x], T [x,x′]), a QF encoding of a transition system
in L

• P [x], a QF state property to be proven invariant for S

Atherton, CA, May 2011 – p.19/44

Example: Parametric Resettable Counter

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

The transition relation contains

infinitely many instances of the

schema above, one for each n0 > 0

Atherton, CA, May 2011 – p.20/44

Example: Parametric Resettable Counter

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

x := (c, n, r, n0)

I [x] := (c = 1) ∧ (n = n0)

T [x,x′] := (n′ = n)

∧ (r′ ∨ (c = n) → (c′ = 1))

∧ (¬r′ ∧ (c 6= n) → (c′ = c+ 1))

P [x] := c < n+ 1

Atherton, CA, May 2011 – p.20/44

Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

Atherton, CA, May 2011 – p.21/44

Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

An SMT solver can check both entailments above
(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

Atherton, CA, May 2011 – p.21/44

Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

Problem: Not all invariants are inductive

Example: In the parametric resettable counter, P = c ≤ n+ 1

is invariant but (2) above is falsifiable, e.g., by

(c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)

Atherton, CA, May 2011 – p.21/44

Induction: Sound but Imprecise

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

Cases:

base case ind. step P invariant

holds holds yes

fails * no

holds fails ?

In last case, P [σ] ∧ T [σ, σ′] ∧ ¬P [σ′] is sat for some σ, σ′

Then, σ could be

• reachable in k > 0 steps (making P non-invariant) or

• unreachable
Atherton, CA, May 2011 – p.22/44

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

Atherton, CA, May 2011 – p.23/44

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : Find a property Q s.t. Q[x] |=L P [x], and
prove Q inductive

Atherton, CA, May 2011 – p.23/44

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : Find a property Q s.t. Q[x] |=L P [x], and
prove Q inductive

Difficult to automate

Atherton, CA, May 2011 – p.23/44

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : Find a property Q s.t. Q[x] |=L P [x], and
prove Q inductive

Difficult to automate

• Strengthen T : Find another invariant Q[x] and do
induction with Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Atherton, CA, May 2011 – p.23/44

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : Find a property Q s.t. Q[x] |=L P [x], and
prove Q inductive

Difficult to automate

• Strengthen T : Find another invariant Q[x] and do
induction with Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

Atherton, CA, May 2011 – p.23/44

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : Find a property Q s.t. Q[x] |=L P [x], and
prove Q inductive

Difficult to automate

• Strengthen T : Find another invariant Q[x] and do
induction with Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

• Consider longer T -paths: k-induction

Atherton, CA, May 2011 – p.23/44

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : Find a property Q s.t. Q[x] |=L P [x], and
prove Q inductive

Difficult to automate

• Strengthen T : Find another invariant Q[x] and do
induction with Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

• Consider longer T -paths: k-induction

Easy to automate (but fairly weak in its basic form)

Atherton, CA, May 2011 – p.23/44

Basic k-Induction (Naive Algorithm)

Notation: Ii := I [x(i)], P i := P [x(i)], T i := T [x(i−1),x(i)]

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T i |=L P i) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P i ∧ T 1 ∧ · · · ∧ T i+1 |=L P i+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Example: In the parametric resettable counter,

P := c ≤ n+ 1

is 1-inductive, but not 0-inductive
Atherton, CA, May 2011 – p.24/44

Basic k-Induction (Naive Algorithm)

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T i |=L P i) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P i ∧ T 1 ∧ · · · ∧ T i+1 |=L P i+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Note:

• inductive = 0-inductive

• k-inductive ⇒ (k + 1)-inductive ⇒ invariant

• some properties are invariant but not k-inductive for any k

Atherton, CA, May 2011 – p.25/44

Basic k-Induction with SMT Solvers

Solver maintains current set of asserted formulas

Two solver instances: b, i

(0) assertb(I0)

(0) k := 0

(0) loop

(0) assertb(Tk) // T0 = true by convention

(0) if not entailedb(Pk) then return cexb()

(0) asserti(Pk)

(0) asserti(Tk+1)

(0) if entailedi(Pk+1) then return success

(0) k := k + 1

asserts(ϕ): add formula ϕ to asserted formulas

entaileds(ϕ): check if ϕ is entailed by asserted formulas

cexs(): return counterexample after failed entailment

Atherton, CA, May 2011 – p.26/44

Enhancements to k-Induction

• Path compression

• Termination checks

• Property strengthening

• Invariant generation

• Multiple property checking

Atherton, CA, May 2011 – p.27/44

Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Atherton, CA, May 2011 – p.28/44

Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck |=L P k+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

Atherton, CA, May 2011 – p.28/44

Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck |=L P k+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

Rationale: Let π := σ0, . . . , σi, σi+1, . . . , σj , σj+1, . . . , σk+1 be

a path that breaks (2), with E[σi, σj] and i < j

If π is part of an actual execution of S, so is the shorter path
σ0, . . . , σi, σj+1, . . . , σk+1

Atherton, CA, May 2011 – p.28/44

Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck ∧Nk |=L P k+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Atherton, CA, May 2011 – p.29/44

Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck ∧Nk |=L P k+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Rationale: if
σ0, . . . , σi, . . . , σk+1 breaks (2) and I[σi], then

σi, . . . , σk+1 breaks the base case in the first place

Atherton, CA, May 2011 – p.29/44

Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck ∧Nk |=L P k+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Better E’s than x = y can be generated by an analysis of S

More sophisticated notions of compressions have been
proposed [dMRS03]

Atherton, CA, May 2011 – p.29/44

Termination check

Recall Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T k |=L P k) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1) then
(0) return success
(0) if (I0 ∧ T 1 ∧ · · · ∧ T k+1 |=L ¬Ck+1) then
(0) return success

Atherton, CA, May 2011 – p.30/44

Termination check

Recall Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T k |=L P k) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1) then
(0) return success
(0) if (I0 ∧ T 1 ∧ · · · ∧ T k+1 |=L ¬Ck+1) then
(0) return success

Rationale: If the last test succeeds, every execution of length
k + 1 is compressible to a shorter one.

Hence, the whole reachable state space has been covered
without finding counterexamples for P

Atherton, CA, May 2011 – p.31/44

Termination check

Recall Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T k |=L P k) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1) then
(0) return success
(0) if (I0 ∧ T 1 ∧ · · · ∧ T k+1 |=L ¬Ck+1) then
(0) return success

Note: The termination check may slow down the process but
increases precision in some cases

It makes k-induction complete for finite states systems, and
some classes of infinite state ones (e.g., timed automata)

Atherton, CA, May 2011 – p.32/44

Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1

Atherton, CA, May 2011 – p.33/44

Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1

Then this property is satisfied by σ0:

F [x0] := ∃x1, . . . , xk+1(P
0∧ · · ·∧P k ∧T 1∧ · · ·∧T k+1∧¬P k+1)

Atherton, CA, May 2011 – p.33/44

Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1

Then this property is satisfied by σ0:

F [x0] := ∃x1, . . . , xk+1(P
0∧ · · ·∧P k ∧T 1∧ · · ·∧T k+1∧¬P k+1)

(Naive) Algorithm:

1. find a QFF B[x] satisfied by σ0 s.t. B[x] |=L F [x],

2. restart the process with P [x] ∧ ¬B[x] in place of P [x]

Atherton, CA, May 2011 – p.33/44

Correctness of Property Strengthening

F [x0] := ∃x1, . . . , xk+1 (P
0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ ¬P k+1)

When F is satisfied by some σ0, we

1. find a QFF B[x] satisfied by σ0 s.t. B[x] |=L F [x],

2. replace P [x] with Q[x] := P [x] ∧ ¬B[x],

3. restart the process

• If all states satisfying B are unreachable, we can remove
them from consideration in the inductive step

• Otherwise, P is not invariant and the base case is
guaranteed to fail with Q

Atherton, CA, May 2011 – p.34/44

Viability of Property Strengthening

F [x0] := ∃x1, . . . , xk+1 (P
0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ ¬P k+1)

When F is satisfied by some σ0, we

1. find a QFF B[x] satisfied by σ0 s.t. B[x] |=L F [x],

2. replace P [x] with Q[x] := P [x] ∧ ¬B[x],

3. restart the process

• Computing a B equivalent to F requires QE, which may
be impossible or very expensive

• Under-approximating F might be cheaper but less effective
in pruning unreachable states.

Atherton, CA, May 2011 – p.35/44

(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Atherton, CA, May 2011 – p.36/44

(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

Atherton, CA, May 2011 – p.36/44

(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

Viability: can use any non-property-driven method for invariant
generation (abstract interpr., template-based, . . .)

Atherton, CA, May 2011 – p.36/44

(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

Viability: can use any non-property-driven method for invariant
generation (abstract interpr., template-based, . . .)

Effectiveness: when P is invariant, can substantially improve

• speed, by making P k-inductive for a smaller k, and

• precision, by turning P from k-inductive for no k to
k-inductive for some k

Atherton, CA, May 2011 – p.36/44

(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Shortcomings: Invariants are computed independently from P

and so may not prune the right unreachable states

Atherton, CA, May 2011 – p.37/44

(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Shortcomings: Invariants are computed independently from P

and so may not prune the right unreachable states

Adding too many invariants may swamp the SMT solver

Atherton, CA, May 2011 – p.37/44

Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Atherton, CA, May 2011 – p.38/44

Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Atherton, CA, May 2011 – p.38/44

Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Proving them together as P := P 1 ∧ · · · ∧ Pn is inadequate if

Atherton, CA, May 2011 – p.38/44

Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Proving them together as P := P 1 ∧ · · · ∧ Pn is inadequate if

• some are invariants and some are not:
then the whole P is not invariant

Atherton, CA, May 2011 – p.38/44

Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Proving them together as P := P 1 ∧ · · · ∧ Pn is inadequate if

• some are invariants and some are not:
then the whole P is not invariant

• they are k-inductive for different k’s:
then P is k-inductive only for the largest k

Atherton, CA, May 2011 – p.38/44

Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Proving them together as P := P 1 ∧ · · · ∧ Pn is inadequate if

• some are invariants and some are not:
then the whole P is not invariant

• they are k-inductive for different k’s:
then P is k-inductive only for the largest k

Solution: Incremental multi-property k-induction

Atherton, CA, May 2011 – p.38/44

Incremental Multi-Property k-Induction

Main idea:

Atherton, CA, May 2011 – p.39/44

Incremental Multi-Property k-Induction

Main idea:

• Use P 1 ∧ · · · ∧ Pn but be aware of its components

• When basic case fails,

1. identify falsified properties

2. remove them from the problem

3. repeat the step

Atherton, CA, May 2011 – p.39/44

Incremental Multi-Property k-Induction

Main idea:

• Use P 1 ∧ · · · ∧ Pn but be aware of its components

• When basic case fails,

1. identify falsified properties

2. remove them from the problem

3. repeat the step

• When inductive step fails,

1. set falsified properties aside for next iteration (with
increased k)

2. repeat step and (1) until success or no more properties

3. add proven properties as invariants for next iteration

Atherton, CA, May 2011 – p.39/44

Incremental Multi-Property k-Induction

Pros:

• Much better from an HCI point of view

• Proving multiple invariants in conjunction is easier than
proving them separately

• adding proven properties as invariants often obviates the
need for external invariants

Atherton, CA, May 2011 – p.40/44

Incremental Multi-Property k-Induction

Pros:

• Much better from an HCI point of view

• Proving multiple invariants in conjunction is easier than
proving them separately

• adding proven properties as invariants often obviates the
need for external invariants

Cons:

• More complex implementation

• Having several unrelated properties can diminish the
effectiveness of simplifications based on the cone of
influence.

Atherton, CA, May 2011 – p.40/44

Next Directions for SMT-based MC

• Quantifiers are often needed to encode
• parametrized model checking problems

(coming, e.g., from multi-process systems)

• problems with arrays

• New SMT techniques are needed to generate/work with
transition relations, interpolants, invariants, etc., with
quantifiers

• We are starting to see some promising work in this
direction, but much is left to do

Atherton, CA, May 2011 – p.41/44

References

[AMP06] A. Armando, J. Mantovani, and L. Platania. Bounded model checking of

software using SMT solvers instead of SAT solvers. In Proceedings of the 13th

International SPIN Workshop on Model Checking of Software (SPIN’06), volume

3925 of LNCS, pages 146–162. Springer, 2006

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. General

decidability theorems for infinite-state systems. In Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science, LICS ’96, pages 313–321. IEEE

Computer Society, 1996

[Bie09] A. Biere. Bounded model checking. In Armin Biere, Marijn J. H. Heule, Hans

van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185,

chapter 14, pages 455–481. IOS Press, February 2009

[BM07] A. Bradley and Z. Manna. Checking safety by inductive generalization of

counterexamples to induction. In Proceedings of the 7th International Conference

on Formal Methods in Computer-Aided Design, pages 173–180, 2007

[Bra10] A. Bradley. Sat-based model checking without unrolling. In In Proc. Verification,

Model-Checking, and Abstract-Interpretation (VMCAI), volume 6538 of Lecture

Notes in Computer Science, pages 70–87. Springer-Verlag, 2010

Atherton, CA, May 2011 – p.42/44

References

[BSST09] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo

theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors, Handbook of Satisfiability, volume 185, chapter 26, pages 825–885. IOS

Press, February 2009

[CBRZ01] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001

[GR10] S. Ghilardi and S. Ranise. Backward reachability of array-based systems by smt

solving: Termination and invariant synthesis. Logical Methods in Computer Science,

6(4), 2010

[HT08] G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs

with SMT-based techniques. In Proceedings of the 8th International Conference on

Formal Methods in Computer-Aided Design (FMCAV’08), Portland, Oregon, pages

109–117. IEEE, 2008

[McM05] K. McMillan. Applications of Craig interpolants in model checking. In

Proceedings of the 11th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (Edinburgh, UK), volume 3440 of Lecture

Notes in Computer Science, pages 1–12. Springer, 2005

Atherton, CA, May 2011 – p.43/44

References

[McM03] K. McMillan. Interpolation and SAT-based model checking. In Proceedings of

the 15th International Conference on Computer Aided Verification, (Boston,

Massachusetts), volume 2725 of Lecture Notes in Computer Science, pages 1–13.

Springer, 2003

[dMRS03] L. de Moura, H. Rueß, and M. Sorea. Bounded model checking and

induction: From refutation to verification. In Proceedings of the 15th International

Conference on Computer-Aided Verification (CAV 2003), volume 2725 of Lecture

Notes in Computer Science. Springer, 2003

[Seb07] R. Sebastiani. Lazy satisability modulo theories. Journal on Satisfiability,

Boolean Modeling and Computation, 3(3-4):141–224, 2007

[SSS00] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using

induction and a SAT-solver. In Proceedings of the Third International Conference

on Formal Methods in Computer-Aided Design, pages 108–125, London, UK, 2000.

Springer-Verlag

Atherton, CA, May 2011 – p.44/44

	Modeling Computational Systems
	Model Checking
	Model Checking
	Talk Roadmap
	Safety Properties
	Example: Resettable Counter
	Checking Safety
	Logic-based Symbolic Model Checking
	Strongest Inductive Invariant
	Main Logic-based Approaches
	Model Checking Modulo Theories
	Satisfiability Modulo Theories
	SMT Solvers
	Model Checking: SMT or SAT?
	Talk Roadmap
	SMT-based Model Checking
	SMT-based Model Checking
	Technical Preliminaries
	Example: Parametric Resettable Counter
	Inductive Reasoning
	Induction: Sound but Imprecise
	Improving Induction's Precision
	Basic k-Induction (Naive Algorithm)
	Basic k-Induction (Naive Algorithm)
	Basic k-Induction with SMT Solvers
	Enhancements to k-Induction
	Path compression (simplified)
	Path compression (simplified)
	Termination check
	Termination check
	Termination check
	Property Strengthening
	Correctness of Property Strengthening
	Viability of Property Strengthening
	(Undirected)
Invariant Generation
	(Undirected)
Invariant Generation
	Multiple Property Checking
	Incremental Multi-Property k-Induction
	Incremental Multi-Property k-Induction
	Next Directions for SMT-based MC
	References
	References
	References

