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Modeling Computational Systems

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L) where

• S is a set of states

• I ⊆ S is a set of initial states

• T ⊆ S × S is a (right-total) transition relation

• L : S → 2Pr is a labeling function where Pr is a set of
base predicates in some logic

Typically, the base predicates denote variable-value pairs x = v
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Model Checking

Software or hardware systems can be often represented as a
state transition system, or model, M = (S, I, T ,L)

M is a model both in

1. an engineering sense: a mock-up of the real system

and

2. a mathematical logic sense: a Kripke structure in some
modal logic
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Model Checking

Software or hardware systems can be often represented as a
state transition system, or model, M = (S, I, T ,L)

M is a model both in

1. an engineering sense: we can analyze and check M
instead of the real system

and

2. a mathematical logic sense: we can make the analysis
formal and rely on (semi)automated tools
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Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic
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Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens
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Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

We will focus on checking safety in this talk
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Talk Roadmap

• Checking safety properties

• Logic-based model checking

• Satisfiability Modulo Theories
• theories
• solvers

• SMT-based model checking
• main approaches
• k-Induction

• basic method
• enhancements
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Safety Properties

Let M = (S, I, T ,L) be a transition system

The set R of reachable states (of M) is the smallest subset of
S satisfying the following constraints

1. I ⊆ R (initial states are reachable)

2. R ⊲⊳ T ⊆ R (T -successors of reachable states are reachable)

M is safe wrt a state property P ⊆ S iff P ∩R = ∅

A state property P is invariant (for M) iff R ⊆ P

Note: M is safe wrt P iff P = S \ P is invariant
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Example: Resettable Counter

Vars
input bool r
int c, n

Initialization
c := 1
n := 3

Transitions
n’:= n
c’ := if (r’ or c = n)

then 1
else c + 1

S := Z× Z

I := {(1, 3)}

T := {((1, 3), (1, 3)), ((1, 3), (2, 3)), . . .}

R := {(1, 3), (2, 3), (3, 3)}

P := {(5, 3)} (safety)
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Checking Safety

In principle, to check that M is safe wrt P it suffices to

1. compute R and

2. check that P ∩R = ∅

This can be done explicitly only if S is finite, and relatively
small (< 10M states)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods, or

• logic-based methods
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Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L
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Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

(ϕ |=L ψ iff every L-model of ϕ is a model of ψ)

Examples of L:

• Propositional logic

• Quantified Boolean Formulas

• Bernay-Schönfinkel logic

• Quantifier-free real (or linear integer) arithmetic with
arrays and uninterpreted functions

• . . .
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Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

Given a set X of variables and a set V of values in L,

• states σ ∈ S are identified with their label L(s) and
represented as n-tuples in V n

• I is encoded by a formula I[x] with free variables x s.t.
σ ∈ I iff |=L I[σ]

• T is encoded by a formula T [x,x′] s.t.
|=L T [σ, σ′] for all (σ, σ′) ∈ T .

• State properties are encoded by formulas P [x]

Notation: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), then

φ[σ] := φ[v1/x1, . . . , vn/xn]
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Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] s.t. |=L R[σ] iff σ ∈ R
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Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] s.t. |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]
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Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L
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Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] s.t. |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L

Logic-based model checking is about approximating R as
efficiently as possible and as precisely as needed
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Main Logic-based Approaches

• Bounded model checking [CBRZ01, AMP06, BHvMW09]

• Interpolation-based model checking [McM03, McM05]

• Model checking without unrolling [BM07, Bra10]

• Temporal induction [SSS00, dMRS03, HT08]

• Backward reachability [ACJT96, GR10]

• . . .

Past accomplishments: mostly based on propositional logic,
with SAT solvers as reasoning engines

Next frontier: based on SMT logics, with SMT solvers as
reasoning engines [Seb07, BSST09]
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Model Checking Modulo Theories

We invariably reason about transition systems in the context of
some theory of their data types

Examples

• Pipelined microprocessors: theory of equality, atoms like
f(g(a, b), c) = g(c, a)

• Timed automata: theory of integers/reals, atoms like
x− y < 2

• General software: combination of theories, atoms like
a[2 ∗ j + 1] + x ≥ car(l)− f(x)

Such reasoning can be reduced to checking the satisfiability of
certain formulas in (or modulo) the theory.
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Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable
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Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking
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Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

• Equality with“Uninterpreted Function Symbols”

• Linear Arithmetic (Real and Integer)

• Arrays (i.e., updatable maps)

• Finite sets and multisets

• Inductive data types (enumerations, lists, trees, . . . )

• . . .
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Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class CΣ of Σ-formulas
consists in deciding for any formula ϕ[x] ∈ CΣ whether
T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

Thanks to advances in SAT and in decision procedures, this can
be done very efficiently in practice by current SMT solvers
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

• satisfying assignments

• unsatisfiable cores

• explanations

• interpolants

• proof objects
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them
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Are being extended to reason efficiently, if incompletely, with
quantified formulas as well
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format
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SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Increasingly conform to a standard I/O language: the SMT-LIB
format

Are now incorporated into a variety of FM tools
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Model Checking: SMT or SAT?

SMT encodings in model checking provide several advantages
over SAT encodings

• Boolean formulas −→ (unquantified) first-order formulas

• more powerful language

• satisfiability still efficiently decidabile

• more natural and compact encodings

• greater scalability

• similar high level of automation

• work indifferently for finite and infinite state systems
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Model Checking: SMT or SAT?

SMT encodings in model checking provide several advantages
over SAT encodings

• Boolean formulas −→ (unquantified) first-order formulas

• more powerful language

• satisfiability still efficiently decidabile

• more natural and compact encodings

• greater scalability

• similar high level of automation

• work indifferently for finite and infinite state systems

SMT-based model checking techniques blur the line between
traditional model checking and deductive verification
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Talk Roadmap

√
Checking safety properties

√
Logic-based model checking

√
Satisfiability Modulo Theories
√

theories
√

solvers

• SMT-based model checking
• main approaches
• k-Induction

• basic method
• enhancements
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SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Interpolation-based model checking

• Backward reachability

• Temporal induction (aka k-induction)
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SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Interpolation-based model checking

• Backward reachability

• Temporal induction (aka k-induction)

I will focus on temporal induction

Reasons:

• it does not need advanced SMT features (such as
interpolation, quantifier elimination), and . . .
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SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Interpolation-based model checking

• Backward reachability

• Temporal induction (aka k-induction)

I will focus on temporal induction

Reasons:

• it does not need advanced SMT features (such as
interpolation, quantifier elimination), and . . .

• I have more experience with it
..
⌣
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Technical Preliminaries

Let’s fix

• L, a logic whose quantifier-free (QF) fragment is decided
by an SMT solver

(e.g., linear arithmetic and EUF)

• S = (I[x], T [x,x′]), a QF encoding of a transition system
in L

• P [x], a QF state property to be proven invariant for S
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Example: Parametric Resettable Counter

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

The transition relation contains

infinitely many instances of the

schema above, one for each n0 > 0
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Example: Parametric Resettable Counter

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

x := (c, n, r, n0)

I [x] := (c = 1) ∧ (n = n0)

T [x,x′] := (n′ = n)

∧ (r′ ∨ (c = n) → (c′ = 1))

∧ (¬r′ ∧ (c 6= n) → (c′ = c+ 1))

P [x] := c < n+ 1
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Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)
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Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

An SMT solver can check both entailments above
(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)
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Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

Problem: Not all invariants are inductive

Example: In the parametric resettable counter, P = c ≤ n+ 1

is invariant but (2) above is falsifiable, e.g., by

(c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)
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Induction: Sound but Imprecise

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

Cases:

base case ind. step P invariant

holds holds yes

fails * no

holds fails ?

In last case, P [σ] ∧ T [σ, σ′] ∧ ¬P [σ′] is sat for some σ, σ′

Then, σ could be

• reachable in k > 0 steps (making P non-invariant) or

• unreachable
Atherton, CA, May 2011 – p.22/44



Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:
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Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : Find a property Q s.t. Q[x] |=L P [x], and
prove Q inductive

Difficult to automate

• Strengthen T : Find another invariant Q[x] and do
induction with Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

• Consider longer T -paths: k-induction

Easy to automate (but fairly weak in its basic form)
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Basic k-Induction (Naive Algorithm)

Notation: Ii := I [x(i)], P i := P [x(i)], T i := T [x(i−1),x(i)]

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T i |=L P i) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P i ∧ T 1 ∧ · · · ∧ T i+1 |=L P i+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Example: In the parametric resettable counter,

P := c ≤ n+ 1

is 1-inductive, but not 0-inductive
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Basic k-Induction (Naive Algorithm)

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T i |=L P i) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P i ∧ T 1 ∧ · · · ∧ T i+1 |=L P i+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Note:

• inductive = 0-inductive

• k-inductive ⇒ (k + 1)-inductive ⇒ invariant

• some properties are invariant but not k-inductive for any k
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Basic k-Induction with SMT Solvers

Solver maintains current set of asserted formulas

Two solver instances: b, i

(0) assertb(I0)

(0) k := 0

(0) loop

(0) assertb(Tk) // T0 = true by convention

(0) if not entailedb(Pk) then return cexb()

(0) asserti(Pk)

(0) asserti(Tk+1)

(0) if entailedi(Pk+1) then return success

(0) k := k + 1

asserts(ϕ): add formula ϕ to asserted formulas

entaileds(ϕ): check if ϕ is entailed by asserted formulas

cexs(): return counterexample after failed entailment
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Enhancements to k-Induction

• Path compression

• Termination checks

• Property strengthening

• Invariant generation

• Multiple property checking
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Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)
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Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck |=L P k+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]
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Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck |=L P k+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

Rationale: Let π := σ0, . . . , σi, σi+1, . . . , σj , σj+1, . . . , σk+1 be

a path that breaks (2), with E[σi, σj ] and i < j

If π is part of an actual execution of S, so is the shorter path
σ0, . . . , σi, σj+1, . . . , σk+1
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Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck ∧Nk |=L P k+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]
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Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck ∧Nk |=L P k+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Rationale: if
σ0, . . . , σi, . . . , σk+1 breaks (2) and I[σi], then

σi, . . . , σk+1 breaks the base case in the first place
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Path compression (simplified)

Let E[x,y] be a qff s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ Ck ∧Nk |=L P k+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Better E’s than x = y can be generated by an analysis of S

More sophisticated notions of compressions have been
proposed [dMRS03]
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Termination check

Recall Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T k |=L P k) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1) then
(0) return success
(0) if (I0 ∧ T 1 ∧ · · · ∧ T k+1 |=L ¬Ck+1) then
(0) return success
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Termination check

Recall Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T k |=L P k) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1) then
(0) return success
(0) if (I0 ∧ T 1 ∧ · · · ∧ T k+1 |=L ¬Ck+1) then
(0) return success

Rationale: If the last test succeeds, every execution of length
k + 1 is compressible to a shorter one.

Hence, the whole reachable state space has been covered
without finding counterexamples for P
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Termination check

Recall Ck :=
∧

0≤i<j≤k ¬E[xi,xj ]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T 1 ∧ · · · ∧ T k |=L P k) then
(0) return fail
(0) if (P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1) then
(0) return success
(0) if (I0 ∧ T 1 ∧ · · · ∧ T k+1 |=L ¬Ck+1) then
(0) return success

Note: The termination check may slow down the process but
increases precision in some cases

It makes k-induction complete for finite states systems, and
some classes of infinite state ones (e.g., timed automata)
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Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1
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Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P 0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 |=L P k+1

Then this property is satisfied by σ0:

F [x0] := ∃x1, . . . , xk+1(P
0∧ · · ·∧P k ∧T 1∧ · · ·∧T k+1∧¬P k+1)

(Naive) Algorithm:

1. find a QFF B[x] satisfied by σ0 s.t. B[x] |=L F [x],

2. restart the process with P [x] ∧ ¬B[x] in place of P [x]
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Correctness of Property Strengthening

F [x0] := ∃x1, . . . , xk+1 (P
0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ ¬P k+1)

When F is satisfied by some σ0, we

1. find a QFF B[x] satisfied by σ0 s.t. B[x] |=L F [x],

2. replace P [x] with Q[x] := P [x] ∧ ¬B[x],

3. restart the process

• If all states satisfying B are unreachable, we can remove
them from consideration in the inductive step

• Otherwise, P is not invariant and the base case is
guaranteed to fail with Q
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Viability of Property Strengthening

F [x0] := ∃x1, . . . , xk+1 (P
0 ∧ · · · ∧ P k ∧ T 1 ∧ · · · ∧ T k+1 ∧ ¬P k+1)

When F is satisfied by some σ0, we

1. find a QFF B[x] satisfied by σ0 s.t. B[x] |=L F [x],

2. replace P [x] with Q[x] := P [x] ∧ ¬B[x],

3. restart the process

• Computing a B equivalent to F requires QE, which may
be impossible or very expensive

• Under-approximating F might be cheaper but less effective
in pruning unreachable states.

Atherton, CA, May 2011 – p.35/44



(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step
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2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

Viability: can use any non-property-driven method for invariant
generation (abstract interpr., template-based, . . . )
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(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

Viability: can use any non-property-driven method for invariant
generation (abstract interpr., template-based, . . . )

Effectiveness: when P is invariant, can substantially improve

• speed, by making P k-inductive for a smaller k, and

• precision, by turning P from k-inductive for no k to
k-inductive for some k
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(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Shortcomings: Invariants are computed independently from P

and so may not prune the right unreachable states
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(Undirected) Invariant Generation

1. Generate QF invariants for S independently from P , either
before or in parallel with k-induction

2. For each (proven) invariant J [x], add J0 ∧ · · · ∧ Jk+1 to
the induction step

Shortcomings: Invariants are computed independently from P

and so may not prune the right unreachable states

Adding too many invariants may swamp the SMT solver

Atherton, CA, May 2011 – p.37/44



Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn
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Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Proving them together as P := P 1 ∧ · · · ∧ Pn is inadequate if

• some are invariants and some are not:
then the whole P is not invariant
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Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Proving them together as P := P 1 ∧ · · · ∧ Pn is inadequate if

• some are invariants and some are not:
then the whole P is not invariant

• they are k-inductive for different k’s:
then P is k-inductive only for the largest k
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Multiple Property Checking

Often one wants to prove several properties P 1, . . . , Pn

Proving them separately is time consuming and ineffective

Proving them together as P := P 1 ∧ · · · ∧ Pn is inadequate if

• some are invariants and some are not:
then the whole P is not invariant

• they are k-inductive for different k’s:
then P is k-inductive only for the largest k

Solution: Incremental multi-property k-induction
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Incremental Multi-Property k-Induction

Main idea:

Atherton, CA, May 2011 – p.39/44



Incremental Multi-Property k-Induction

Main idea:

• Use P 1 ∧ · · · ∧ Pn but be aware of its components

• When basic case fails,

1. identify falsified properties

2. remove them from the problem

3. repeat the step
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Incremental Multi-Property k-Induction

Main idea:

• Use P 1 ∧ · · · ∧ Pn but be aware of its components

• When basic case fails,

1. identify falsified properties

2. remove them from the problem

3. repeat the step

• When inductive step fails,

1. set falsified properties aside for next iteration (with
increased k)

2. repeat step and (1) until success or no more properties

3. add proven properties as invariants for next iteration

Atherton, CA, May 2011 – p.39/44



Incremental Multi-Property k-Induction

Pros:

• Much better from an HCI point of view

• Proving multiple invariants in conjunction is easier than
proving them separately

• adding proven properties as invariants often obviates the
need for external invariants
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Incremental Multi-Property k-Induction

Pros:

• Much better from an HCI point of view

• Proving multiple invariants in conjunction is easier than
proving them separately

• adding proven properties as invariants often obviates the
need for external invariants

Cons:

• More complex implementation

• Having several unrelated properties can diminish the
effectiveness of simplifications based on the cone of
influence.
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Next Directions for SMT-based MC

• Quantifiers are often needed to encode
• parametrized model checking problems

(coming, e.g., from multi-process systems)

• problems with arrays

• New SMT techniques are needed to generate/work with
transition relations, interpolants, invariants, etc., with
quantifiers

• We are starting to see some promising work in this
direction, but much is left to do
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