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The Role of Logic in Computer Science

Mathematical logic is central to Computer Science

It provides formal foundations for

Programming languages

Relational databases

Computational complexity

Hardware design and validation

Formal methods in software engineering

Artificial Intelligence

. . .
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Craig’s Interpolation Theorem in CS

has had a strong and lasting impact in several CS areas,
both at the theoretical and the practical level

has been generalized to many other logics used in CS
(sorted, equational, modal, intuitionistic, . . . )

together with compactness, is considered a crucial
property of any new logic for CS

comes up in any formal method based on modular
decomposition of complex systems
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Craig’s Interpolation

Some applications:

Hardware/software specification (Diaconescu et al.,’93,
Rosu & Goguen, 2000, Bicarregui et al., 2000)
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The Essence of Craig’s Interpolation for CS

Craig’s Interpolation: If ϕ1 and ϕ2 are inconsistent, there is
a ϕ in their shared language such that

ϕ1 |= ψ and ψ ∧ ϕ2 is inconsistent.
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The Essence of Craig’s Interpolation for CS

Craig’s Interpolation: If ϕ1 and ϕ2 are inconsistent, there is
a ϕ in their shared language such that

ϕ1 |= ψ and ψ ∧ ϕ2 is inconsistent.

Intuitively,

ψ is an abstraction of ϕ1 from the viewpoint of ϕ2;

ψ summarizes and translates in the shared language

why ϕ1 is inconsistent with ϕ2.
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Part I: Craig Interpolation for Prover Combinations
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Satisfiability Modulo Theories

In some areas of Computer Science, one is interested in
the satisfiability in a particular theory of certain classes of
formulas.

Berkeley, May 2007 – p.8/28



Satisfiability Modulo Theories

In some areas of Computer Science, one is interested in
the satisfiability in a particular theory of certain classes of
formulas.

Microprocessors design: theory of equality, atoms like
f(g(a, b), c) = g(c, a).

Berkeley, May 2007 – p.8/28



Satisfiability Modulo Theories

In some areas of Computer Science, one is interested in
the satisfiability in a particular theory of certain classes of
formulas.

Microprocessors design: theory of equality, atoms like
f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x− y < 2.

Berkeley, May 2007 – p.8/28



Satisfiability Modulo Theories

In some areas of Computer Science, one is interested in
the satisfiability in a particular theory of certain classes of
formulas.

Microprocessors design: theory of equality, atoms like
f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x− y < 2.

Software verification/model checking: combination of
theories, atoms like 5 + first((x+ 2) :: l) = a[j] + 1.

Berkeley, May 2007 – p.8/28



Satisfiability Modulo Theories

In some areas of Computer Science, one is interested in
the satisfiability in a particular theory of certain classes of
formulas.

Microprocessors design: theory of equality, atoms like
f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x− y < 2.

Software verification/model checking: combination of
theories, atoms like 5 + first((x+ 2) :: l) = a[j] + 1.

We refer to this general problem as Satisfiability Modulo
Theories, or SMT.

Berkeley, May 2007 – p.8/28



Satisfiability Modulo Theories

In some areas of Computer Science, one is interested in
the satisfiability in a particular theory of certain classes of
formulas.

Microprocessors design: theory of equality, atoms like
f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x− y < 2.

Software verification/model checking: combination of
theories, atoms like 5 + first((x+ 2) :: l) = a[j] + 1.

We refer to this general problem as Satisfiability Modulo
Theories, or SMT.

Berkeley, May 2007 – p.8/28



Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ and LΣ a class of
Σ-formulas.

Berkeley, May 2007 – p.9/28



Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ and LΣ a class of
Σ-formulas.

The T -satisfiability problem for LΣ consists in deciding for any
formula ϕ[x] ∈ LΣ whether T ∪ {∃x. ϕ} is satisfiable.

Berkeley, May 2007 – p.9/28



Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ and LΣ a class of
Σ-formulas.

The T -satisfiability problem for LΣ consists in deciding for any
formula ϕ[x] ∈ LΣ whether T ∪ {∃x. ϕ} is satisfiable.

Some relevant theories in SMT

Equality with “Uninterpreted Function Symbols”

Linear Arithmetic (Real and Integer)

Arrays (i.e., updatable maps)

Bit vectors

Finite trees
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Solving Combined SMT Problems

For many theories T and some formula classes L there exist
(efficient) decision procedures for the T -satisfiability problem
for LΣ.
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Solving Combined SMT Problems

For many theories T and some formula classes L there exist
(efficient) decision procedures for the T -satisfiability problem
for LΣ.

Problem: In practice, we often need to deal with mixed
formulas in LΣ1∪···∪Σn modulo a combined theory T1 ∪ · · · ∪Tn.

In that case, it helps if we can

combine modularly decision procedures for the
individual T1, . . . , Tn into a decision procedure for
T1 ∪ · · · ∪ Tn.
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The General Combined Satisfiability Problem

For i = 1, 2,

let Ti a first-order theory of signature Σi and

let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.
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For i = 1, 2,

let Ti a first-order theory of signature Σi and

let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2 , i.e., such that

the (T1 ∪ T2)-satisfiability of a formula ϕ ∈ LΣ1∪Σ2

is effectively reducible to
the (T1 ∪ T2)-satisfiability of formulas of the form ϕ1 ∧ ϕ2

with ϕi ∈ LΣi for i = 1, 2.
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The General Combined Satisfiability Problem

For i = 1, 2,

let Ti a first-order theory of signature Σi and

let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2

Observation: For purifiable languages, (T1 ∪ T2)-satisfiability
is at heart an interpolation problem.
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi[xi] a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

Berkeley, May 2007 – p.12/28



Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi[xi] a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

T1, ϕ1, T2, ϕ2 |= ⊥

Berkeley, May 2007 – p.12/28



Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi[xi] a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

T1, ϕ1, T2, ϕ2 |= ⊥

iff, by an application of Craig’s interpolation theorem,

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

Berkeley, May 2007 – p.12/28



Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi[xi] a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

T1, ϕ1, T2, ϕ2 |= ⊥

iff, by an application of Craig’s interpolation theorem,

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

The problem then is “just” computing the interpolant ϕ.
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi[xi] a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

T1, ϕ1, T2, ϕ2 |= ⊥

iff, by an application of Craig’s interpolation theorem,

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

All existing combination methods are in essence ways to
compute ϕ, possibly incrementally, in finite time, without

building a direct proof that T1, ϕ1, T2, ϕ2 |= ⊥
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi[xi] a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

T1, ϕ1, T2, ϕ2 |= ⊥

iff, by an application of Craig’s interpolation theorem,

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

Historical note: The original correctness proof of the
foremost combination method for SMT (Nelson & Oppen,
1979) relies directly on Craig’s interpolation theorem.
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An Effectively Purifiable Language

The class of quantifier-free formulas is effectively purifiable for
any Σ1 and Σ2
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An Effectively Purifiable Language

The class of quantifier-free formulas is effectively purifiable for
any Σ1 and Σ2 :

Given a quantifier-free (Σ1 ∪ Σ2)-formula ϕ

we can compute Σ1-qffs ϕ1
1 . . . ϕ

n
1 and Σ2-qffs ϕ1

2 . . . ϕ
n
2 s.t.

for every (Σ1 ∪ Σ2)-structure A,

ϕ is satisfiable in A iff ϕj
1 ∧ ϕ

j
2 is satisfiable in A for some j.
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a very large number of theories of interest in CS.
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An Effectively Purifiable Language

The class of quantifier-free formulas is effectively purifiable for
any Σ1 and Σ2 .

Moreover, the T -satisfiability problem for qffs is decidable for
a very large number of theories of interest in CS.

Let’s focus then on quantifier-free formulas.

For simplicity, but wlog, let’s consider only combined
satisfiability problems of the form

Γ1 ∪ Γ2

where each Γi is a finite set of Σi-literals
(i.e., atomic formulas and negated atomic formulas)
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Let ψ1, . . . , ψn be (Σ1 ∩ Σ2)-formulas over x = x1 ∩ x2.

ψ1, . . . , ψn is an interpolation chain if for each k = 1, . . . ,m
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The Combined Satisfiability Problem for QFFs

For i = 1, 2, let Ti-be a Σi-theory and Γi[xi] a set of Σi-literals.

Let ψ1, . . . , ψn be (Σ1 ∩ Σ2)-formulas over x = x1 ∩ x2.

ψ1, . . . , ψn is an interpolation chain if for each k = 1, . . . ,m
there is an i ∈ {1, 2} s.t.

Ti,Γi, ψ1, . . . , ψk−1 |= ψk

Under the right conditions:

1. Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable iff there is an
interpolation chain ψ1, . . . , ψm with ψn = ⊥, and

2. each ψi is a disjunction of atoms and is computable using
one of the decision procedures for T1 and T2.
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The Combined Satisfiability Problem for QFFs

Sufficient conditions on T1 and T2 (Ghilardi, 2005)

Where Σ0 = Σ1 ∩ Σ2, there is a universal Σ0-theory T0 that is:
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(a) is enclosed in Ti
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∗
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The Combined Satisfiability Problem for QFFs

Sufficient conditions on T1 and T2 (Ghilardi, 2005)

Where Σ0 = Σ1 ∩ Σ2, there is a universal Σ0-theory T0 that is:

1. Ti-compatible for i = 1, 2:

(a) is enclosed in Ti

(b) admits a model completion T ∗
0

(c) every model of Ti embeds into a model of Ti ∪ T
∗
0

2. effectively locally finite:
For any x we can compute a set {t1, . . . tn} of Σ0-terms
over x s.t. every Σ0-term t[x] is T0-equivalent to some ti

Nelson-Oppen Method: Σ0 = ∅ and each Ti is stably infinite.
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Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .
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T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:

Theories of an infinite structure.

Complete theories with an infinite model.

Convex theories with no trivial models.
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Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:

Theories of an infinite structure.

Complete theories with an infinite model.

Convex theories with no trivial models.

But others are not:

Theories of a finite structure.

Theories with models of bounded cardinality.

Some equational/Horn theories.
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Beyond Stable Infiniteness

Recent extensions of the Nelson-Oppen method partially
lift the stable infiniteness requirement
(Tinelli & Zarba, 2004; Ranise et al., 2005)
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Beyond Stable Infiniteness

Recent extensions of the Nelson-Oppen method partially
lift the stable infiniteness requirement
(Tinelli & Zarba, 2004; Ranise et al., 2005)

The trick is to require the decision procedures to also
exchange finite-cardinality constraints.

These extensions are still instances of Craig interpolation.

However, they now consider interpolation chains that also
include quantified formulas like

∀x, y, z. x = y ∨ x = z
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The Combined Satisfiability Problem for QFFs

SMT provers based on some variant of the Nelson-Oppen
method are widely used in academia and industry.
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The Combined Satisfiability Problem for QFFs

SMT provers based on some variant of the Nelson-Oppen
method are widely used in academia and industry.

The generalized results by Ghilardi have several
additional applications.

For instance, they can be used in the combination of
modals logics.
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Part II: Craig Interpolation in Model Checking
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Modeling Computer Systems

Software or hardware systems can be often modeled as state
transition systems M = (S, I,R, L) where

S is a set of states

I ⊆ S is a set of initial states

R ⊆ S × S is a total transition relation

L : S → 2At is a labelling function into sets of atomic
formulas in some base logic
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Modeling Computer Systems

Software or hardware systems can be often modeled as state
transition systems M = (S, I,R, L) where

S is a set of states

I ⊆ S is a set of initial states

R ⊆ S × S is a total transition relation

L : S → 2At is a labelling function into sets of atomic
formulas in some base logic

Note: M is a Kripke model (in the sense modal logic).
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Model Checking

Software or hardware systems can be often modeled as state
transition systems, or model, M = (S, I,R, L)
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Model Checking

Software or hardware systems can be often modeled as state
transition systems, or model, M = (S, I,R, L)

Most system correctness properties can be expressed as a
safety property for a suitable model M:

M is safe wrt a property ψ if no state R-reachable
from an initial state satisfies ψ.
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Model Checking

Software or hardware systems can be often modeled as state
transition systems, or model, M = (S, I,R, L)

Most system correctness properties can be expressed as a
safety property for a suitable model M:

M is safe wrt a property ψ if no state R-reachable
from an initial state satisfies ψ.

Model checking is one of the most successful areas of formal
verification.

Model checking technologies are now routinely used in
industry.
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Symbolic Model Checking

A model M = (S, I, R, L:S → 2At) can be expressed
symbolically by fixing a set X of variables and a first-order
Σ-structure A with universe A.
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Symbolic Model Checking

A model M = (S, I, R, L:S → 2At) can be expressed
symbolically by fixing a set X of variables and a first-order
Σ-structure A with universe A.

Then:

Every state σ ∈ S is a mapping in [X → A]

At is a set of atomic Σ-formulas over X

I is characterized by a qff ϕI [x] s.t. σ ∈ I iff A |= ϕI [σ]

R is characterized by a qff ϕR[x,x′] such that
(σ, σ′) ∈ R iff A |= ϕR[σ, σ′]

Notation: if x = x1, . . . , xn then ψ[σ] = ψ[σ(x1), . . . , σ(xn)]
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Some Terminology

A state σ is reachable (in k steps) iff there is a sequence
of states σ0, . . . , σk = σ such that

A |= ϕI [σ0] ∧ ϕR[σ0, σ1] ∧ · · · ∧ ϕR[σk−1, σk]

A formula ψ[x] is reachable (in k steps) from a formula
ϕ[x] iff there is a sequence of states σ0, . . . , σk = σ s.t.

A |= ϕ[σ0] ∧ ϕR[σ0, σ1] ∧ · · · ∧ ϕR[σk−1, σk] ∧ ψ[σk]
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Some Terminology

A state σ is reachable (in k steps) iff there is a sequence
of states σ0, . . . , σk = σ such that

A |= ϕI [σ0] ∧ ϕR[σ0, σ1] ∧ · · · ∧ ϕR[σk−1, σk]

A formula ψ[x] is reachable (in k steps) from a formula
ϕ[x] iff there is a sequence of states σ0, . . . , σk = σ s.t.

A |= ϕ[σ0] ∧ ϕR[σ0, σ1] ∧ · · · ∧ ϕR[σk−1, σk] ∧ ψ[σk]

Observation: M is safe wrt ψ iff ψ is not reachable from ϕI iff

ϕI [x0] ∧ ϕR[x0,x1] ∧ · · · ∧ ϕR[xk−1,xk] ∧ ψ[xk]

is unsatisfiable in A for all k ≥ 0.
Berkeley, May 2007 – p.23/28



Strongest Inductive Invariant

For a large class of systems M, we can compute from ϕI

and ϕR the strongest inductive invariant ϕIR for M:
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Strongest Inductive Invariant
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and ϕR the strongest inductive invariant ϕIR for M:
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Then, to check that M is safe wrt to a property ψ it
suffices to check that ϕIR[x] ∧ ψ[x] is unsatisfiable in A.
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This can be completely automated if the satisfiability in A
of qffs is decidable.
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and ϕR the strongest inductive invariant ϕIR for M:

for all σ ∈ S, A |= ϕIR[σ] exactly when σ is reachable.

Then, to check that M is safe wrt to a property ψ it
suffices to check that ϕIR[x] ∧ ψ[x] is unsatisfiable in A.

This can be completely automated if the satisfiability in A
of qffs is decidable.

Problem: Computing ϕIR can be very expensive.
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Strongest Inductive Invariant

For a large class of systems M, we can compute from ϕI

and ϕR the strongest inductive invariant ϕIR for M:

for all σ ∈ S, A |= ϕIR[σ] exactly when σ is reachable.

Then, to check that M is safe wrt to a property ψ it
suffices to check that ϕIR[x] ∧ ψ[x] is unsatisfiable in A.

This can be completely automated if the satisfiability in A
of qffs is decidable.

Problem: Computing ϕIR can be very expensive.

Good news: Craig interpolation can be used to reduce
this cost.
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Computing Strongest Inductive Invariants

When ϕIR is computable it is because it is the least fix point of
an image operator Img : QFF → QFF where

Img(ϕ[x]) is the strongest (wrt |=A, entailment in A) qff
ϕp[x] such that

ϕ[x] ∧ ϕR[x,x′] |=A ϕp[x
′]

ϕIR =
∧

i≥0
ϕi with ϕ0 = ϕI and ϕi+1 = ϕi ∨ Img(ϕi)
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ϕIR =
∧

i≥0
ϕi with ϕ0 = ϕI and ϕi+1 = ϕi ∨ Img(ϕi)

Computing Img , and so ϕIR, is expensive because it involves
quantifier elimination.
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Computing Strongest Inductive Invariants

When ϕIR is computable it is because it is the least fix point of
an image operator Img : QFF → QFF where

Img(ϕ[x]) is the strongest (wrt |=A, entailment in A) qff
ϕp[x] such that

ϕ[x] ∧ ϕR[x,x′] |=A ϕp[x
′]

ϕIR =
∧

i≥0
ϕi with ϕ0 = ϕI and ϕi+1 = ϕi ∨ Img(ϕi)

Computing Img , and so ϕIR, is expensive because it involves
quantifier elimination.

However, Img might be much stronger than needed for
proving that a property ψ is unreachable.
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Computing Strongest Inductive Invariants

When ϕIR is computable it is because it is the least fix point of
an image operator Img : QFF → QFF where

Img(ϕ[x]) is the strongest (wrt |=A, entailment in A) qff
ϕp[x] such that

ϕ[x] ∧ ϕR[x,x′] |=A ϕp[x
′]

ϕIR =
∧

i≥0
ϕi with ϕ0 = ϕI and ϕi+1 = ϕi ∨ Img(ϕi)

Computing Img , and so ϕIR, is expensive because it involves
quantifier elimination.

Idea (McMillan, 2003):

use interpolation to compute for each i ≥ 0
an adequate over-approximation ϕ̂i of ϕi wrt ψ
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How to compute ϕ̂IR for ψ incrementally

Let k > 0, ϕ̂0 = ϕI [x]

Base Case) Let:

Γ1 = ϕ̂0[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])
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How to compute ϕ̂IR for ψ incrementally

Let k > 0, ϕ̂0 = ϕI [x]

Base Case) Let:

Γ1 = ϕ̂0[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])

If Γ1 ∧ Γ2 is satisfiable in A, we are done:

ψ is reachable from ϕI in 1 to k steps.
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Let k > 0, ϕ̂0 = ϕI [x]

Base Case) Let:

Γ1 = ϕ̂0[x0] ∧ ϕR[x0,x1]
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If Γ1 ∧ Γ2 is unsatisfiable in A,
compute an interpolant Γ[x1] (wrt to |=A).
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How to compute ϕ̂IR for ψ incrementally

Let k > 0, ϕ̂0 = ϕI [x]

Base Case) Let:

Γ1 = ϕ̂0[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])

If Γ1 ∧ Γ2 is unsatisfiable in A,
compute an interpolant Γ[x1] (wrt to |=A).

Γ[x] is an adequate over-approximation of Img(ϕ0):
Γ1 |=A Γ[x1] =⇒ every state reachable from ϕI is in Γ

Γ ∧ Γ2 |=A ⊥ =⇒ no state in Γ leads to ψ within k steps
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How to compute ϕ̂IR for ψ incrementally

Let k > 0, ϕ̂0 = ϕI [x]

Base Case) Let:

Γ1 = ϕ̂0[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])

If Γ1 ∧ Γ2 is unsatisfiable in A,
compute an interpolant Γ[x1] (wrt to |=A).

Γ[x] is an adequate over-approximation of Img(ϕ0):
Γ1 |=A Γ[x1] =⇒ every state reachable from ϕI is in Γ

Γ ∧ Γ2 |=A ⊥ =⇒ no state in Γ leads to ψ within k steps

Set ϕ̂1 = ϕ̂0[x] ∨ Γ[x]
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How to compute ϕ̂IR for ψ incrementally

Assume we have computed ϕ̂i for i > 0.

Step case) Let

Γ1 = ϕ̂i[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])
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How to compute ϕ̂IR for ψ incrementally

Assume we have computed ϕ̂i for i > 0.

Step case) Let

Γ1 = ϕ̂i[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])

If Γ1 ∧ Γ2 is unsatisfiable in A, compute an interpolant Γ
as before

Let ϕ̂i+1 = ϕ̂i[x] ∨ Γ[x]
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How to compute ϕ̂IR for ψ incrementally

Assume we have computed ϕ̂i for i > 0.

Step case) Let

Γ1 = ϕ̂i[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])

If Γ1 ∧ Γ2 is satisfiable in A, ψ is reachable from ϕI in
i+ 1 to i+ k steps in the overapproximated closure of ϕR

So, the satisfying paths of states might not be paths in the
original system M.
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How to compute ϕ̂IR for ψ incrementally

Assume we have computed ϕ̂i for i > 0.

Step case) Let

Γ1 = ϕ̂i[x0] ∧ ϕR[x0,x1]

Γ2 = ϕR[x1,x2] ∧ · · · ∧ ϕR[xk−1,xk] ∧ (ψ[x1] ∨ · · · ∨ ψ[xk])

If Γ1 ∧ Γ2 is satisfiable in A, ψ is reachable from ϕI in
i+ 1 to i+ k steps in the overapproximated closure of ϕR

So, the satisfying paths of states might not be paths in the
original system M.

Then, increase k by 1 and restart the whole process.
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Thank you
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