
Theory and Practice
of

Decision Procedures
for

Combinations of Theories

Part I: Theory
Clark Barrett* and Cesare Tinelli**

*New York University **The University of Iowa

CAV 2005 – p.1/100

Credits

• Slides inspired by previous presentations
by:
Silvio Ghilardi, Sava Krstic, Albert Oliveras, Harald
Ruess, Roberto Sebastiani, Natarajan Shankar, Ashish
Tiwari, Calogero Zarba, and others.

• Special thanks to:
Albert Oliveras (for contributing some of the material) and
the CAV PC (for the invitation).

CAV 2005 – p.2/100

Prologue: The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.

CAV 2005 – p.3/100

Prologue: The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.

Given ϕ in L, is it the case that

T |= ϕ ?

CAV 2005 – p.3/100

Prologue: The Combined Validity Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

CAV 2005 – p.4/100

Prologue: The Combined Validity Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

CAV 2005 – p.4/100

Prologue: The Combined Validity Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

Given any ϕ in L1 ⊕L2, is it the case that

T1 ⊕ T2 |= ϕ ?

CAV 2005 – p.4/100

Prologue: The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

such that the Ti-validity problem for Li is decidable.

CAV 2005 – p.5/100

Prologue: The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

such that the Ti-validity problem for Li is decidable.

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

CAV 2005 – p.5/100

Prologue: The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

such that the Ti-validity problem for Li is decidable.

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

Is the (T1 ⊕ T2)-validity problem for L1 ⊕ L2 decidable?

CAV 2005 – p.5/100

Prologue: The Combined Decidability Problem II

For i = 1, 2,
• let Pi be a decision procedure for the Ti-validity problem

for Li,

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

CAV 2005 – p.6/100

Prologue: The Combined Decidability Problem II

For i = 1, 2,
• let Pi be a decision procedure for the Ti-validity problem

for Li,

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

Can we combine P1 and P2 modularly into a decision

procedure for the (T1 ⊕ T2)-validity problem for L1 ⊕ L2?

CAV 2005 – p.6/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.7/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.8/100

FOL with Equality: Lexicon

• We will assume the following pairwise disjoint sets:

◦ a countably-infinite set X = {x, y, z, v, . . .} of variables
◦ a countably infinite set F = {c, d, f, g, . . .} of function

symbols, each with an associated arity n ≥ 0
◦ a countably infinite set P = {p, q, . . .} of predicate

symbols, each with an associated arity n ≥ 0

• A signature Σ is a subset of F ∪ P.

• If C is a set of constant (i.e. 0-arity) symbols from F ,
Σ(C) denotes the signature Σ ∪ C.

CAV 2005 – p.9/100

FOL with Equality: Language

Let Σ be a signature and Y ⊆ X a set of variable.

• Σ-terms (over Y) are defined as usual.

• Σ-formulas are defined as usual over ∧,∨,¬,∀,∃,≈.

• Free (occurrences of) variables in a formula are those not
bound by a quantifier.

• Literals are atomic formulas or their negation.

• Sentences are formulas with no free variables.

• Theories are sets of sentences.

CAV 2005 – p.10/100

FOL with Equality: Notation

Let Σ be a signature and Y ⊆ X a set of variable.

≈: the equality predicate symbol.

T(Σ, Y): the set of Σ-terms over Y .

ϕ(x): a formula whose free variables occur in the tuple x.

ϕ[t]: a formula with a subterm t.

CAV 2005 – p.11/100

FOL with Equality: Semantics

Let Σ be a signature.

A first-order Σ-structure A is defined as usual as consisting
of:

• a set A of elements, the domain,
• a mapping of each n-ary function symbol f ∈ Σ to a total

function fA : An → A,
• a mapping of each n-ary predicate symbol p ∈ Σ to a

relation pA ⊆ An.

Note: the equality symbol ≈ is always interpreted as the
identity relation.

CAV 2005 – p.12/100

FOL with Equality: Semantics

Let A denote a structure, ϕ a formula, and T a theory, all of
signature Σ.

The reduct AΩ of a A to Ω ⊆ Σ is an Ω-structure with same
domain and interpretation of Ω’s symbols as A.

(A, α) |= ϕ: ϕ is true in A under the variable assignment
α : X → A.

ϕ is satisfiable in (satisfied by) A: (A, α) |= ϕ for some α.

⊥: a formula satisfied by no structure.

ϕ is valid in A (A |= ϕ): (A, α) |= ϕ for every α.

Model of T : structure in which every sentence of T is valid.

CAV 2005 – p.13/100

FOL with Equality: Semantics

Let A denote structures,
α valuations of variables into A,
ϕ formulas,
Φ sets of formulas,
T theories (sets of closed formulas),

all of signature Σ.

Φ |= ϕ: For all (A, α) if (A, α) |= Φ then (A, α) |= ϕ

Φ1,Φ2, ϕ |= ψ: Φ1 ∪ Φ2 ∪ {ϕ} |= ψ.

ϕ is T -satisfiable: T, ϕ 6|= ⊥.

ϕ is T -valid: T |= ϕ.

CAV 2005 – p.14/100

FOL with Equality: Homomorphisms

Let A, B be Σ-structures.

A homomorphism of A into B is a function h : A→ B such
that

• for all a1, . . . , an ∈ A and n-ary f ∈ Σ,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

• for all a1, . . . , an ∈ A and n-ary p ∈ Σ,

(h(a1), . . . , h(an)) ∈ pB whenever (a1, . . . , an) ∈ pA.

CAV 2005 – p.15/100

FOL with Equality: Isomorphisms

Let A, B be Σ-structures with the same cardinality.

An isomorphism of A into B is an invertible function
h : A→ B s.t.

• h is a homomorphism of A into B,

• h−1 is a homomorphism of B into A.

A and B are isomorphic, written A ∼= B, if there is an
isomorphism of A into B.

Fact 1: ∼= is an equivalence relation over structures.

Fact 2: Isomorphic Σ-structures satisfy exactly the same
Σ-formulas.

CAV 2005 – p.16/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.17/100

The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.

Given ϕ in L, is it the case that

T |= ϕ ?

CAV 2005 – p.18/100

The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.

Given ϕ in L, is it the case that

T |= ϕ ?

This problem is decidable only for restricted L and T .

CAV 2005 – p.18/100

Common Restrictions on L

L =

• {∀xA(x) | A atomic},
the word problem.

CAV 2005 – p.19/100

Common Restrictions on L

L =

• {∀xA(x) | A atomic},
the word problem.

• {∀x(A1 ∧ · · · ∧ An → B)(x) | A1, . . . , An, B atomic},
the conditional (or uniform) word problem.

CAV 2005 – p.19/100

Common Restrictions on L

L =

• {∀xA(x) | A atomic},
the word problem.

• {∀x(A1 ∧ · · · ∧ An → B)(x) | A1, . . . , An, B atomic},
the conditional (or uniform) word problem.

• {∀xC(x) | C disjunction of literals},
the clausal validity problem.

CAV 2005 – p.19/100

Common Restrictions on L

L =

• {∀xA(x) | A atomic},
the word problem.

• {∀x(A1 ∧ · · · ∧ An → B)(x) | A1, . . . , An, B atomic},
the conditional (or uniform) word problem.

• {∀xC(x) | C disjunction of literals},
the clausal validity problem.

• {∀xϕ(x) | ϕ quantifier-free},
the universal validity problem.

CAV 2005 – p.19/100

Common Restrictions on L

L =

• {∃x∀y(A1 ∧ · · · ∧ An)(x,y) | A1, . . . , An atomic},
the unification problem (with constants).

CAV 2005 – p.20/100

Common Restrictions on L

L =

• {∃x∀y(A1 ∧ · · · ∧ An)(x,y) | A1, . . . , An atomic},
the unification problem (with constants).

• {∃x∀y(L1 ∧ · · · ∧ Ln)(x,y) | L1, . . . , Ln literals},
the disunification problem (with constants).

CAV 2005 – p.20/100

Common Restrictions on L

L =

• {∃x∀y(A1 ∧ · · · ∧ An)(x,y) | A1, . . . , An atomic},
the unification problem (with constants).

• {∃x∀y(L1 ∧ · · · ∧ Ln)(x,y) | L1, . . . , Ln literals},
the disunification problem (with constants).

• {Qϕ | Q ∈ {∃,∀}∗, ϕ ∈ ϕ quantifier-free and positive},
the positive validity problem.

CAV 2005 – p.20/100

The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

such that the Ti-validity problem for Li is decidable.

Is the (T1 ⊕ T2)-satisfiability for L1 ⊕ L2 decidable?

CAV 2005 – p.21/100

The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

such that the Ti-validity problem for Li is decidable.

Is the (T1 ⊕ T2)-satisfiability for L1 ⊕ L2 decidable?

In general: No.

Main issue: how T1 ⊕ T2 and L1 ⊕ L2 are defined.

CAV 2005 – p.21/100

The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

such that the Ti-validity problem for Li is decidable.

Is the (T1 ⊕ T2)-satisfiability for L1 ⊕ L2 decidable?

In general: No.

Main issue: how T1 ⊕ T2 and L1 ⊕ L2 are defined.

Restrictions on T1, T2, L1, L1, T1 ⊕ T2, and L1 ⊕ L2 are
needed to answer the questions affirmatively.

CAV 2005 – p.21/100

The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

Usually,

Σ1 ∩ Σ2 = ∅,

Li = LΣi = {ϕ ∈ L | ϕ has signature Σi} for some L.

CAV 2005 – p.22/100

The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

Usually,

Σ1 ∩ Σ2 = ∅,

Li = LΣi = {ϕ ∈ L | ϕ has signature Σi} for some L.

Then, one possibility is

L1 ⊕L2 = LΣ1∪Σ2

T1 ⊕ T2 = T1 ∪ T2

CAV 2005 – p.22/100

The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

Usually,

Σ1 ∩ Σ2 = ∅,

Li = LΣi = {ϕ ∈ L | ϕ has signature Σi} for some L.

Then, one possibility is

L1 ⊕L2 = LΣ1∪Σ2

T1 ⊕ T2 = T1 ∪ T2

We will focus on this case here.

CAV 2005 – p.22/100

The Combined Decidability Problem II

Assume
• P1, a procedure deciding the T1-validity problem for LΣ1,

• P2, a procedure deciding the T2-validity problem for LΣ2.

Can we compose P1 and P2 modularly into a procedure
that decides the (T1 ∪ T2)-validity problem for LΣ1∪Σ2?

CAV 2005 – p.23/100

The Combined Decidability Problem II

Assume
• P1, a procedure deciding the T1-validity problem for LΣ1,

• P2, a procedure deciding the T2-validity problem for LΣ2.

Can we compose P1 and P2 modularly into a procedure
that decides the (T1 ∪ T2)-validity problem for LΣ1∪Σ2?

Almost invariably, additional functionalities are required of P1

and P2 (more on this in Part II).

CAV 2005 – p.23/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.24/100

The T -Satisfiability Problem

Every T -validity problem has a dual T -satisfiability problem.

Note: T |= ϕ iff T,¬ϕ |= ⊥

CAV 2005 – p.25/100

The T -Satisfiability Problem

Every T -validity problem has a dual T -satisfiability problem.

Note: T |= ϕ iff T,¬ϕ |= ⊥

Hence the T -validity problem for L is reducible to the
T -satisfiability problem for LD = {¬ψ | ψ ∈ L} :

Given ψ ∈ LD, is ψ is T -satisfiable?

CAV 2005 – p.25/100

The T -Satisfiability Problem

Every T -validity problem has a dual T -satisfiability problem.

Note: T |= ϕ iff T,¬ϕ |= ⊥

Hence the T -validity problem for L is reducible to the
T -satisfiability problem for LD = {¬ψ | ψ ∈ L} :

Given ψ ∈ LD, is ψ is T -satisfiable?

For combination purposes, it is more convenient to work with
satisfiability problems.

CAV 2005 – p.25/100

T -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability
problems.

But be careful:
• In Constraint Solving one is interested in whether a

formula ψ ∈ L is satisfiable in a given, fixed model of a
theory T .

• In constrast, in T -satisfiability one is interested in whether
ψ is satisfiable in any model of T at all.

These are different problems!

CAV 2005 – p.26/100

T -satisfiability vs. Constraint Solving

Unfortunately, to confuse things, there are

(i) languages L, (ii) theories T and (iii) structures A

for which the two problems are equivalent:

for all ψ ∈ L, ψ is T -satisfiable iff ψ is satisfiable in A.

CAV 2005 – p.27/100

T -satisfiability vs. Constraint Solving

Unfortunately, to confuse things, there are

(i) languages L, (ii) theories T and (iii) structures A

for which the two problems are equivalent:

for all ψ ∈ L, ψ is T -satisfiable iff ψ is satisfiable in A.

Examples:
• (i) FOL formulas, (ii) the theory of real closed fields, (iii)

the structure of the real numbers.
• (i) unification problems, (ii) any equational theory E, (iii)

the initial model of E.

CAV 2005 – p.27/100

T -satisfiability vs. Constraint Solving

Unfortunately, to confuse things, there are

(i) languages L, (ii) theories T and (iii) structures A

for which the two problems are equivalent:

for all ψ ∈ L, ψ is T -satisfiable iff ψ is satisfiable in A.

Nevertheless, when theories are combined this equivalence
may be lost.

Be warned.

CAV 2005 – p.27/100

The Combined Satisfiability Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and

• let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

CAV 2005 – p.28/100

The Combined Satisfiability Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and

• let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2,

CAV 2005 – p.28/100

The Combined Satisfiability Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and

• let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2, i.e., such that

the (T1 ∪ T2)-satisfiability of a formula ϕ ∈ LΣ1∪Σ2

is effectively reducible to
the (T1 ∪ T2)-satisfiability of formulas of the form ϕ1 ∧ ϕ2

with ϕi ∈ LΣi for i = 1, 2.

CAV 2005 – p.28/100

An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

CAV 2005 – p.29/100

An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

Let ϕ be a conjunction of (Σ1 ∪ Σ2)-literals.

1. Apply to completion to ϕ (modulo AC of ∧) the following
term abstraction rule:

L[t] ∧ ψ

L[x] ∧ x ≈ t ∧ ψ
if

x is a fresh variable and

t is an alien subterm of L

2. Group the Σ1-literals in ϕ1 and the rest in ϕ2.

CAV 2005 – p.29/100

An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

Let ϕ be a conjunction of (Σ1 ∪ Σ2)-literals.

1. Apply to completion to ϕ (modulo AC of ∧) the following
term abstraction rule:

L[t] ∧ ψ

L[x] ∧ x ≈ t ∧ ψ
if

x is a fresh variable and

t is an alien subterm of L

2. Group the Σ1-literals in ϕ1 and the rest in ϕ2.

Proposition For every (Σ1 ∪ Σ2)-structure A, ϕ is satisfiable
in A iff ϕ1 ∧ ϕ2 is satisfiable in A.

CAV 2005 – p.29/100

Alien Subterms

Let Σ0 = Σ1 ∩ Σ2 and i ∈ {1, 2}.

A term t ∈ T(Σ1 ∪ Σ2, X) is an i-term
if t ∈ X or t = f(t1, . . . , tn) with f ∈ Σi.

Let t[s] ∈ T(Σ1 ∪ Σ2, X),

Case 1: the top symbol of t is in Σi \ Σ0

s is an alien subterm of t
if every superterm of s in t is an i-term, but s is not.

Case 2: the top symbol of t is in Σ0.
Consider it arbitrarily as a symbol of Σ1 or of Σ2 and
proceed as in Case 1. (See [BT02] for a better definition.)

CAV 2005 – p.30/100

Alien Subterms

Let Σ0 = Σ1 ∩ Σ2 and i ∈ {1, 2}.

Let L = (¬)A[s] be a (Σ1 ∪ Σ2)-literal.

The term s is an alien subterm of L
if it is an alien subterm of A[s]

when A’s top symbol is treated as a function symbol,
with ≈ treated as a symbol of Σ0.

CAV 2005 – p.31/100

A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.

CAV 2005 – p.32/100

A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.

Let ϕ ∈ QF(Σ1 ∪ Σ2, X).

1. Let ψ1 ∨ · · · ∨ ψn be ϕ’s disjunctive normal form.

2. Purify each disjunct ψj into ψj,1 ∧ ψj,2.

CAV 2005 – p.32/100

A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.

Let ϕ ∈ QF(Σ1 ∪ Σ2, X).

1. Let ψ1 ∨ · · · ∨ ψn be ϕ’s disjunctive normal form.

2. Purify each disjunct ψj into ψj,1 ∧ ψj,2.

For any (Σ1 ∪ Σ2)-structure A,
ϕ is satisfiable in A iff
ψj,1 ∧ ψj,2 is satisfiable in A for some j ∈ {1, . . . , n}.

CAV 2005 – p.32/100

A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.

Let ϕ ∈ QF(Σ1 ∪ Σ2, X).

1. Let ψ1 ∨ · · · ∨ ψn be ϕ’s disjunctive normal form.

2. Purify each disjunct ψj into ψj,1 ∧ ψj,2.

For any (Σ1 ∪ Σ2)-structure A,
ϕ is satisfiable in A iff
ψj,1 ∧ ψj,2 is satisfiable in A for some j ∈ {1, . . . , n}.

Exercise**. Purify ϕ by first turning it into conjunctive normal
form. Proof that satisfiability in any structure is preserved.
(Hint: every conjunct C[s] is equisatisfiable with x 6≈ s ∨ C[x] for a fresh x.)

CAV 2005 – p.32/100

More Effectively Purifiable Languages

A few more complex languages are effective purifiable, for
given theories T1 and T2, if one is allowed to introduce
additional (free/uninterpreted) symbols.

For instance, the full language of FOL≈ is effectively purifiable
for any T1 and T2. (How? Exercise***.)

CAV 2005 – p.33/100

Combined Satisfiability of Pure Literals

From now on, wlog we consider only

combined satisfiability problems of the form

ϕ1 ∧ ϕ2

where each ϕi is a Σi-formula.

CAV 2005 – p.34/100

Combined Satisfiability of Pure Literals

From now on, wlog we consider only

combined satisfiability problems of the form

ϕ1 ∧ ϕ2

where each ϕi is a Σi-formula.

Observation: Such problems are really just interpolation
problems.

CAV 2005 – p.34/100

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

CAV 2005 – p.35/100

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

CAV 2005 – p.35/100

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

CAV 2005 – p.35/100

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

The problem then is “just” computing the interpolant ϕ.

CAV 2005 – p.35/100

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

Unfortunately, Craig’s lemma provides no information on
• what ϕ looks like or
• how to compute ϕ without an explicit proof that
T1, T2, ϕ1, ϕ2 |= ⊥.

CAV 2005 – p.35/100

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

All existing combination methods are in essence ways to
compute ϕ, possibly incrementally, in finite time.

CAV 2005 – p.35/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.36/100

The Combination Problem for Universal Formulas

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Pi be a procedure that decides the Ti-validity problem

for universal Σi-formulas.

CAV 2005 – p.37/100

The Combination Problem for Universal Formulas

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Pi be a procedure that decides the Ti-validity problem

for universal Σi-formulas.

How to decide the (T1 ∪ T2)-validity problem for universal
(Σ1 ∪ Σ2)-formulas using P1 and P2 modularly?

CAV 2005 – p.37/100

The Combination Problem for Universal Formulas

• Problem most people mean when talking about
combining decision procedures.

• Problem with the largest impact and most practical uses
so far.

• Most common settings:
◦ T1 and T2 are signature-disjoint.
◦ presented as a satisfiability problem for qffs

(as T |= ∀xϕ(x) iff ¬ϕ(x) is T -unsatisfiable).

• Basic combination method for the problem due to Greg
Nelson and Derek Oppen [NO79].

CAV 2005 – p.38/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.39/100

The Nelson-Oppen Method

• For i = 1, 2, let Ti a first-order theory of signature Σi.
• Let T = T1 ∪ T2.
• Let C be a set of free constants (i.e., not in Σ1 ∪ Σ2).

CAV 2005 – p.40/100

The Nelson-Oppen Method

• For i = 1, 2, let Ti a first-order theory of signature Σi.
• Let T = T1 ∪ T2.
• Let C be a set of free constants (i.e., not in Σ1 ∪ Σ2).

We consider only input problems of the form

Γ1 ∪ Γ2

where each Γi is a finite set of ground Σi(C)-literals.

CAV 2005 – p.40/100

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

CAV 2005 – p.41/100

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

CAV 2005 – p.41/100

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

CAV 2005 – p.41/100

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

3. for each conjunction ψ of literals,
ψ is T -sat iff its separate form ψ1 ∧ ψ2 is T -sat

CAV 2005 – p.41/100

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

3. for each conjunction ψ of literals,
ψ is T -sat iff its separate form ψ1 ∧ ψ2 is T -sat

4. for each conjunction ψ1 ∧ ψ2 of literals,

ψ1 ∧ ψ2 is T -sat iff
Γ1 ∪ Γ2 is T -sat
where each Γi is the set of literals in ψi.

CAV 2005 – p.41/100

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

CAV 2005 – p.42/100

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

CAV 2005 – p.42/100

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:
• Choose any equivalence relation R on the constants

from C shared by Γ1 and Γ2.
• Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

CAV 2005 – p.42/100

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:
• Choose any equivalence relation R on the constants

from C shared by Γ1 and Γ2.
• Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

2. If Γi ∪ ∆ is Ti-unsatisfiable for i = 1 or i = 2, return unsat

CAV 2005 – p.42/100

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:
• Choose any equivalence relation R on the constants

from C shared by Γ1 and Γ2.
• Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

2. If Γi ∪ ∆ is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

CAV 2005 – p.42/100

Total Correctness of the NO Method

The method is always terminating because there is only a
finite number of arrangements to guess.

CAV 2005 – p.43/100

Total Correctness of the NO Method

The method is always terminating because there is only a
finite number of arrangements to guess.

When
• Σ1 ∩ Σ2 = ∅ and
• T1 and T2 are stably infinite,

the method is sound and complete.

Soundness:
If the answer is unsat for every arrangement,
then the input is (T1 ∪ T2)-unsatisfiable.

Completeness:
If the input is (T1 ∪ T2)-is unsatisfiable,
then the answer is unsat for every arrangement.

CAV 2005 – p.43/100

Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

CAV 2005 – p.44/100

Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:
• Theories of an infinite structure.
• Complete theories with an infinite model.
• Convex theories with no trivial models (see later).

CAV 2005 – p.44/100

Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:
• Theories of an infinite structure.
• Complete theories with an infinite model.
• Convex theories with no trivial models (see later).

But others are not stably infinite:
• Theories of a finite structure.
• Theories with models of bounded cardinality.
• Some equational/Horn theories.

CAV 2005 – p.44/100

The NO Method: Soundness Proof

Recall:

If the answer is unsat for every arrangement, then the input
Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable.

Equivalently (because of guaranteed termination):

If the input Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable, then the answer is
sat for some arrangement.

Proof Sketch: Let C0 be the free constants shared by Γ1 and
Γ2. Let A be a Σ1(C) ∪ Σ2(C)-model of T1 ∪ T2 ∪ Γ1 ∪ Γ2. Let
∆ = {c ≈ d | c, d ∈ C0, c

A = dA} ∪ {c 6≈ d | c, d ∈ C0, c
A 6= dA}.

The set ∆ is a possible arrangement of C0. Moreover,
AΣi(C) |= Ti ∪ Γi ∪ ∆ for i = 1, 2. So the procedure will return
sat for ∆’s choice.

CAV 2005 – p.45/100

The Combined Satisfiability Theorem

Theorem [TR03] For i = 1, 2, let Φi be a set of Ωi-sentences.
The following are equivalent:

1. Φ1 ∪ Φ2 is satisfiable.

2. There are an Ω1-structure A satisfying Φ1 and a
Ω2-structure B satisying Φ2 such that

AΩ1∩Ω2 ∼= BΩ1∩Ω2.

CAV 2005 – p.46/100

The Combined Satisfiability Theorem

Theorem [TR03] For i = 1, 2, let Φi be a set of Ωi-sentences.
The following are equivalent:

1. Φ1 ∪ Φ2 is satisfiable.

2. There are an Ω1-structure A satisfying Φ1 and a
Ω2-structure B satisying Φ2 such that

AΩ1∩Ω2 ∼= BΩ1∩Ω2.

Proof Sketch.

1 ⇒ 2. Assume some (Ω1 ∩ Ω2)-structure C satisfies Φ1 ∪ Φ2.
Then, A = CΩ1 and B = CΩ2 will do.

CAV 2005 – p.46/100

The Combined Satisfiability Theorem

Theorem [TR03] For i = 1, 2, let Φi be a set of Ωi-sentences.
The following are equivalent:

1. Φ1 ∪ Φ2 is satisfiable.

2. There are an Ω1-structure A satisfying Φ1 and a
Ω2-structure B satisying Φ2 such that

AΩ1∩Ω2 ∼= BΩ1∩Ω2.

Proof Sketch.

2 ⇒ 1. If AΣ1∩Σ2 ∼= BΣ1∩Σ2 , then A and B have the same
cardinality and agree on the shared symbols. Then, they can
be amalgamated into a (Ω1 ∩ Ω2)-structure C such that
A ∼= CΩ1 and B ∼= CΩ2. Clearly, C satisfies both Φ1 and Φ2.

CAV 2005 – p.46/100

The NO Method: Completeness Proof

Recall:

If the input Γ1 ∪ Γ2 is (T1 ∪ T2)-is unsatisfiable, then the
answer is unsat for every arrangement.

CAV 2005 – p.47/100

The NO Method: Completeness Proof

Equivalently:

If the answer is sat for some arrangement, then the input
Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable.

Proof Sketch: Let Ci collect the free constants in Γi for
i = 1, 2, and let C0 = C1 ∩ C2. Let ∆ be an arrangement of C0

and Ai a Σi(Ci)-model of Ti ∪ Γi ∪ ∆ for i = 1, 2.
By the stable infiniteness of each Ti, we can assume that Ai

is infinite. By the Löwenheim-Skolem theorems, we can
assume that A1 and A2 have the same cardinality. Since they
both satisfy ∆ and their signatures share only C0, one can
show that AC0

1
∼= AC0

2 . By the Combined Satisfiability
Theorem, T1 ∪ Γ1 ∪ T2 ∪ Γ2 is satisfiable.

CAV 2005 – p.47/100

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

CAV 2005 – p.48/100

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

CAV 2005 – p.48/100

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

Apply these rules exhaustively, starting with the triple
Γ0

1; ∅; Γ0
2:

CAV 2005 – p.48/100

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

Apply these rules exhaustively, starting with the triple
Γ0

1; ∅; Γ0
2:

Γ1; ∆; Γ2

⊥
if Γi,∆ |=Ti

⊥ for i = 1 or i = 2

Γ1; ∆; Γ2

Γ1; ∆, c ≈ d; Γ2 Γ1; ∆, c 6≈ d; Γ2
if







c, d ∈ C0,

c ≈ d /∈ ∆,

c 6≈ d /∈ ∆

CAV 2005 – p.48/100

Correctness of the NO Calculus

Some terminology:

• A derivation tree in the NO calculus is a tree such that
◦ every node is either a triple Γ; ∆; Γ or ⊥
◦ a node N is a child of a M only if it is a direct

consequence of M .
• A derivation tree for Γ1; ∆; Γ2 is a derivation tree with root

Γ1; ∆; Γ2.
• A refutation tree is a derivation tree all of whose leaves

are ⊥.

CAV 2005 – p.49/100

Correctness of the NO Calculus

The NO calculus is sound, complete and terminating
whenever T1 and T2 are stably infinite and signature-disjoint.

Termination:
Every derivation tree in NO is finite.

Soundness and Completeness:
Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable
iff
Γ1; ∅; Γ2 has a refutation tree in NO.

Proof: Exercise*

CAV 2005 – p.50/100

The d-NO Calculus

Declarative, (more) deterministic, incremental version of
the NO method (more faithful to the original [NO79])

CAV 2005 – p.51/100

The d-NO Calculus

Declarative, (more) deterministic, incremental version of
the NO method (more faithful to the original [NO79])

Apply these rules exhaustively, starting with Γ0
1; ∅; Γ0

2:

Γ1; ∆; Γ2

⊥
if Γi,∆ |=Ti

⊥ for i = 1 or i = 2

Γ1; ∆; Γ2

Γ1; ∆, c1 ≈ d1; Γ2 · · · Γ1; ∆, cn ≈ dn; Γ2
if (∗)

(∗) =







n ≥ 1, c1, . . . , cn, d1, . . . , dn ∈ C0,

i ∈ {1, 2}, J = {1, . . . , n},

Γi,∆ |=Ti

∨

j∈J cj ≈ dj

Γi,∆ 6|=Ti

∨

j∈J ′ cj ≈ dj for any J ′ (J

CAV 2005 – p.51/100

Correctness of the d-NO Calculus

The d-NO calculus is sound, complete and terminating
whenever T1 and T2 are stably infinite and signature-disjoint.

Termination:
Every derivation tree in d-NO is finite.

Soundness and Completeness:
Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable
iff
Γ1; ∅; Γ2 has a refutation tree in d-NO.

Proof: Exercise*

CAV 2005 – p.52/100

The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

CAV 2005 – p.53/100

The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

A Σ-theory T is convex iff
for all finite sets Γ of Σ-literals and
for all non-empty disjunctions

∨

i∈I xi ≈ yi of variables,

Γ |=T

∨

i∈I xi ≈ yi iff Γ |=T xi ≈ yi for some i ∈ I.

CAV 2005 – p.53/100

The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

A Σ-theory T is convex iff
for all finite sets Γ of Σ-literals and
for all non-empty disjunctions

∨

i∈I xi ≈ yi of variables,

Γ |=T

∨

i∈I xi ≈ yi iff Γ |=T xi ≈ yi for some i ∈ I.

Useful fact: Every convex theory T with no trivial models
(i.e., such that T |= ∃x, y.x 6≈ y) is stably infinite [BDS02b].

CAV 2005 – p.53/100

The d-NO Calculus and Convex Theories

Many interesting theories are convex (not immediate to
show):

• All Horn theories—this includes all (conditional)
equational theories.

• Some non-Horn theories, like linear rational arithmetic.

CAV 2005 – p.54/100

The d-NO Calculus and Convex Theories

Many interesting theories are convex (not immediate to
show):

• All Horn theories—this includes all (conditional)
equational theories.

• Some non-Horn theories, like linear rational arithmetic.

But many more are not convex:
• All theories of a finite structure. (Why?)
• Non-linear rational arithmetic. (Why?)
• Linear integer arithmetic. (Why?)
• The theory of arrays. (Why?)
• The theory of sets. (Why?)

CAV 2005 – p.54/100

Extending Nelson-Oppen

The main requirements of the method:

• The disjointness of Σ1 and Σ2 and
• the stable infiniteness of T1 and T2

are only sufficient conditions for its correctness.

Can they be relaxed?

CAV 2005 – p.55/100

Extending Nelson-Oppen

The main requirements of the method:

• The disjointness of Σ1 and Σ2 and
• the stable infiniteness of T1 and T2

are only sufficient conditions for its correctness.

Can they be relaxed?

Relaxing either of them turns out to be rather hard.

Only few results in this direction, all very recent, and perhaps
mainly of academic interest for now.

CAV 2005 – p.55/100

Extending NO: Non-Stably Infinite Theories

The only existing results (we are aware of) are about

• combining arbitrary theories with the theory of equality
(aka the empty theory, EUF, . . .) [Gan02],

• about combining arbitrary theories with shiny or polite
theories [TZ05, RRZ05]

• combining universal theories [Zar04].

The results in [TZ05, RRZ05] subsume those in [Gan02] but
are not comparable to those in [TZ05].

The results in [Zar04] also lift the disjointness restriction.

CAV 2005 – p.56/100

Extending Nelson-Oppen: Non-Disjoint Theories

Three main approaches, respectively described in: [TR03],
[Ghi04], and [Zar04].

All of them need to extend the constraint sharing mechanism
beyond (dis)equalities of shared constants.

None of them is more general than the others.

[TR03] and [Ghi04] are rather technical and beyond the scope
of this tutorial.

[Zar04] is very general but yields weaker results both in theory
(only semi-decidability) and in practice (too much to guess).

CAV 2005 – p.57/100

Extending Nelson-Oppen: Sorted Logics

Extending the method of many sorted logics (no subsorts) is
intuitively simple [TZ04]:.

• Use a notion of stable infiniteness wrt. a set of sorts.
• Require component theories to be stably infinite only

wrt. their shared sorts.
• Consider only well-sorted arrangements.

CAV 2005 – p.58/100

Extending Nelson-Oppen: Sorted Logics

Extending the method of many sorted logics (no subsorts) is
intuitively simple [TZ04]:.

• Use a notion of stable infiniteness wrt. a set of sorts.
• Require component theories to be stably infinite only

wrt. their shared sorts.
• Consider only well-sorted arrangements.

The advantages of sorts are:
• Combining sorted theories is more natural.
• It is easier for a sorted theory to be stably infinite wrt. just

a subset of its sorts.
• No need to propagate equalities between variables of

different sorts.

CAV 2005 – p.58/100

Extending Nelson-Oppen: Sorted Logics

Extending the method of many sorted logics (no subsorts) is
intuitively simple [TZ04]:.

• Use a notion of stable infiniteness wrt. a set of sorts.
• Require component theories to be stably infinite only

wrt. their shared sorts.
• Consider only well-sorted arrangements.

Extending the method of order-sorted logics (with subsorts) is
non-trivial.

Currently, relatively strong restrictions on the component
signatures are needed [TZ04].

CAV 2005 – p.58/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.59/100

Extending Nelson-Oppen: More than Literals

• The Nelson-Oppen method combines procedures for the
satisfiability of sets of ground literals.

• However, actual problems involve, more generally, ground
formulas.

• How to combine decision procedures for them?

• Before that, how to extend a decision procedure to
ground formulas?

CAV 2005 – p.60/100

Satisfiability Modulo a Theory T (SMT)

• Observation: T -satisfiability is decidable for ground
formulas whenever it is decidable for sets of literals.
(By converting the formula in DNF.)

• Problem: In practice, dealing with Boolean combinations
of literals is as hard as in the propositional case.

• Current solution: Exploit latest advances in propositional
satisfiability technology.
Specifically, use DPLL-based methods.

CAV 2005 – p.61/100

The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

CAV 2005 – p.62/100

The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by

CAV 2005 – p.62/100

The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or

CAV 2005 – p.62/100

The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or
◦ guessing a truth value.

CAV 2005 – p.62/100

The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or
◦ guessing a truth value.

• If a wrong guess leads to an inconsistency, the procedure
backtracks and tries the opposite one.

CAV 2005 – p.62/100

The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or
◦ guessing a truth value.

• If a wrong guess leads to an inconsistency, the procedure
backtracks and tries the opposite one.

• Modern implementations add several sophisticated
search techniques.
(Backjumping, learning, restarts, watched literals, etc.)

CAV 2005 – p.62/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

CAV 2005 – p.63/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

CAV 2005 – p.63/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

CAV 2005 – p.63/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

CAV 2005 – p.63/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

CAV 2005 – p.63/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Inconsistency!

CAV 2005 – p.63/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

CAV 2005 – p.64/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

CAV 2005 – p.64/100

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Model Found!

CAV 2005 – p.64/100

Lifting SAT to SMT

Eager approach [BLS02, SLB03, CKSY04, . . .]:
• translate into an equisatisfiable propositional formula,
• feed it to any SAT solver.

CAV 2005 – p.65/100

Lifting SAT to SMT

Eager approach [BLS02, SLB03, CKSY04, . . .]:
• translate into an equisatisfiable propositional formula,
• feed it to any SAT solver.

Lazy approach
[ACG00, ABC+02, BDS02a, dMR02, FJOS03, BCLZ04, . . .]:

• abstract the input formula into a propositional one,
• feed it to a DPLL-based SAT solver,
• use a theory decision procedure to refine the formula.

CAV 2005 – p.65/100

Lifting SAT to SMT

Eager approach [BLS02, SLB03, CKSY04, . . .]:
• translate into an equisatisfiable propositional formula,
• feed it to any SAT solver.

Lazy approach
[ACG00, ABC+02, BDS02a, dMR02, FJOS03, BCLZ04, . . .]:

• abstract the input formula into a propositional one,
• feed it to a DPLL-based SAT solver,
• use a theory decision procedure to refine the formula.

DPLL(T) [Tin02, GHN+04, NO05]:
• use the decision procedure to guide the search of a DPLL

solver.

CAV 2005 – p.65/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.66/100

An Abstract Framework for DPLL

• The DPLL procedure can be described declaratively by
simple sequent-style calculi [Tin02, BT03].

• Such calculi, however, cannot model meta-logical
features such as backtracking, learning and restarts.

• One can better model DPLL and its enhancements as
transition systems [NOT05].

• A transition system is a binary relation over states,
induced by a set of conditional transition rules.

CAV 2005 – p.67/100

An Abstract Framework for DPLL [NOT05]

States:

fail or M || F

where F is a CNF formula, a set of clauses, and
M is a sequence of annotated literals
denoting a partial truth assignment.

CAV 2005 – p.68/100

An Abstract Framework for DPLL [NOT05]

States:

fail or M || F

Initial state:
• ∅ || F , where F is to be checked for satisfiability.

Expected final states:
• fail , if F is unsatisfiable

•
M || G, where M is a model of G and

G is logically equivalent to F .

CAV 2005 – p.68/100

Transition Rules for Basic DPLL

Extending the assignment:

UnitProp

M || F, C ∨ l → M l || F, C ∨ l if

{
M |= ¬C,

l is undefined in M

CAV 2005 – p.69/100

Transition Rules for Basic DPLL

Extending the assignment:

UnitProp

M || F, C ∨ l → M l || F, C ∨ l if

{
M |= ¬C,

l is undefined in M

Decide

M || F → M ld || F if

{
l or l occurs in F,
l is undefined in M

Notation: ld annotates l as a decision literal.

CAV 2005 – p.69/100

Transition Rules for Basic DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{
M |= ¬C,

M contains no decision literals

CAV 2005 – p.70/100

Transition Rules for Basic DPLL

Repairing the assignment:

Backjump

M ldN || F,C → M k || F,C if







1. M ldN |= ¬C,

2. for some D ∨ k:
F,C |= D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ldN || F,C

CAV 2005 – p.70/100

Basic DPLL System

At the core, current DPLL-based SAT solvers are
implementations of the transition system:

Basic DPLL
• UnitProp

• Decide

• Fail

• Backjump

CAV 2005 – p.71/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

CAV 2005 – p.72/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

CAV 2005 – p.72/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

CAV 2005 – p.72/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

CAV 2005 – p.72/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

CAV 2005 – p.72/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

CAV 2005 – p.72/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

CAV 2005 – p.72/100

Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

Backjump with clause 1 ∨ 5

CAV 2005 – p.72/100

Basic DPLL System – Example

. . .

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2.

Backjump with clause 1 ∨ 5







M ldN |= ¬C,

for some clause D ∨ k:
F |= D ∨ k,

M |= ¬D,

k is undefined in M
k or k occurs in F







1 2 3 4 5 6 |= ¬(6 ∨ 5 ∨ 2),

for clause 1 ∨ 5:
F |= 1 ∨ 5,

1 2 |= 1,

5 is undefined in 1 2

5 occurs in F

CAV 2005 – p.73/100

Basic DPLL System – Example

. . .

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2.

Indeed, F |= 1 ∨ 5. For instance, by resolution,

1 ∨ 2 6 ∨ 5 ∨ 2

1 ∨ 6 ∨ 5 5 ∨ 6

1 ∨ 5

Therefore, instead deciding 3, we could have deduced 5.

CAV 2005 – p.73/100

Basic DPLL System – Example

. . .

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2.

Indeed, F |= 1 ∨ 5. For instance, by resolution,

1 ∨ 2 6 ∨ 5 ∨ 2

1 ∨ 6 ∨ 5 5 ∨ 6

1 ∨ 5

Therefore, instead deciding 3, we could have deduced 5.

Clauses like 1 ∨ 5 are computed by navigating conflict graphs.

CAV 2005 – p.73/100

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules
and starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible
state.

CAV 2005 – p.74/100

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules
and starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible
state.

Proposition (Strong Termination) Every execution in Basic
DPLL is finite.

Note: This is not so immediate, because of Backjump.

CAV 2005 – p.74/100

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules
and starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible
state.

Proposition (Soundness) For every exhausted execution
starting with ∅ || F and ending in M || F , M |= F .

Proposition (Completeness) If F is unsatisfiable, every
exhausted execution starting with ∅ || F ends with fail .

CAV 2005 – p.74/100

The Basic DPLL System – Correctness Proofs

The termination argument is based on the fact that each rule
produces a smaller (i.e. more determined) state.

CAV 2005 – p.75/100

The Basic DPLL System – Correctness Proofs

The termination argument is based on the fact that each rule
produces a smaller (i.e. more determined) state.

The soundness and completeness arguments are based on
the following invariants.

Proposition If M || G is reachable from ∅ || F then

1. All atoms in M and all atoms in G are in F .

2. M is a (partial) truth assignment.

3. G is logically equivalent to F

4. If M = M0 l
d

1 M1 · · · ldn Mn, then F ∪ {l1, . . . , li} |= Mi for
i = 0, . . . , n.

CAV 2005 – p.75/100

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |= C

Forget

M || F, C → M || F if F |= C

Restart
M || F → ∅ || F if . . . you want to

CAV 2005 – p.76/100

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |= C

Forget

M || F, C → M || F if F |= C

Restart
M || F → ∅ || F if . . . you want to

We will ignore these enhancements here for simplicity.

CAV 2005 – p.76/100

Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories

CAV 2005 – p.77/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory: Equality

CAV 2005 – p.78/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

CAV 2005 – p.78/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

CAV 2005 – p.79/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

CAV 2005 – p.79/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

CAV 2005 – p.79/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

• SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

CAV 2005 – p.79/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

• SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

CAV 2005 – p.79/100

From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

• SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2∨ 3, 4, 1∨ 2, 1∨ 3∨ 4} unsatisfiable.

CAV 2005 – p.79/100

Modeling the Lazy Approach

Let T be the background theory.

The previous process can be modeled in Abstract DPLL using
the following rules:

• UnitProp, Decide, Fail, Restart

(as in the propositional case) and

• T -Backjump, Very Lazy Theory Learning

Note: The first component of a state M || F is still a truth
assignment, but now for ground, first-order literals.

CAV 2005 – p.80/100

Modeling the Lazy Approach

T -Backjump

M ldN || F,C → M k || F,C if







1. M ldN |= ¬C,

2. for some D ∨ k:
F,C |=T D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ldN || F,C

Only change: |=T instead of |=

Notation: F |=T G iff T, F |= G

CAV 2005 – p.81/100

Modeling the Lazy Approach

The interaction between theory solver and SAT solver in the
previous example can be modeled with the rule

Very Lazy Theory Learning

M || F → ∅ || F, l1 ∨ . . . ∨ ln if







M |= F

{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥

CAV 2005 – p.82/100

Modeling the Lazy Approach

The interaction between theory solver and SAT solver in the
previous example can be modeled with the rule

Very Lazy Theory Learning

M || F → ∅ || F, l1 ∨ . . . ∨ ln if







M |= F

{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥

A better approach is to detect partial assignments that are
already T -unsatisfiable.

CAV 2005 – p.82/100

Modeling the Lazy Approach

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥

l1 ∨ · · · ∨ ln /∈ F

CAV 2005 – p.83/100

Modeling the Lazy Approach

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥

l1 ∨ · · · ∨ ln /∈ F

• The learned clause is false in M , hence either Backjump or
Fail applies.

• If this is always done, the third condition of the rule is
unnecessary

• In some solvers, the rule is applied as soon as possible,
i.e., with M = N ln.

CAV 2005 – p.83/100

Lazy Approach – Strategies

A common strategy is to apply the rules using the following
priorities:

1. If a current clause is falsified by the current assignment,
apply Fail/Backjump.

2. If the assignment is T -unsatisfiable,
apply Lazy Theory Learning + Fail/Backjump.

3. Apply UnitProp.

4. Apply Decide.

CAV 2005 – p.84/100

DPLL(T) – Eager Theory Propagation

Use the theory information as soon as possible by eagerly
applying

Theory Propagate

M || F → M l || F if







M |=T l

l or l occurs in F
l is undefined in M

Note: Test M |=T l provided by decision procedure
(as M |=T l iff M l |=T ⊥).

CAV 2005 – p.85/100

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4

CAV 2005 – p.86/100

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4

CAV 2005 – p.86/100

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4

CAV 2005 – p.86/100

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4

CAV 2005 – p.86/100

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4

CAV 2005 – p.86/100

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 =⇒ (Fail)

fail

CAV 2005 – p.86/100

Eager Theory Propagation

• By eagerly applying Theory Propagate every assignment is
T -satisfiable, since M l is T -unsatisfiable iff M |=T l.

• As a consequence, Lazy Theory Learning never applies.

• For some logics, e.g., difference logic, his approach is
extremely effective.

• For some others, e.g., the theory of equality, it is too
expensive to detect all T -consequences.

• If Theory Propagate is not applied eagerly, Lazy Theory Learning
is needed to repair T -unsatisfiable assignments.

CAV 2005 – p.87/100

Lazy Theory Propagation

• Assume a decision procedure P for the T -satisfiability of
sets of ground literals.

• The 4 rules of the DPLL system + Lazy Theory Learning +
Theory Propagate + P provide a decision procedure for the
T -satisfiability of sets of ground clauses.

• Termination can be guaranteed by applying Fail/Backjump
immediately after Lazy Theory Learning.

• Soundness and completeness are proved similarly to the
propositional case.

• Arbitrary ground formulas can be dealt as usual by a
preliminary CNF translation.

CAV 2005 – p.88/100

Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective decision
procedures P1, . . . , Pn.

How can we reason over all of them with Abstract DPLL?

CAV 2005 – p.89/100

Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective decision
procedures P1, . . . , Pn.

How can we reason over all of them with Abstract DPLL?

Quick Solution:

1. Combine P1, . . . , Pn with Nelson-Oppen into a decision
procedure for T1 ∪ · · · ∪ Tn.

2. Use Abstract DPLL with T = T1 ∪ · · · ∪ Tn.

CAV 2005 – p.89/100

Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective decision
procedures P1, . . . , Pn.

How can we reason over all of them with Abstract DPLL?

Better Solution [Bar02, Tin04, BBC+05]:

1. Lift Nelson-Oppen to the DPLL level.

2. Use Abstract DPLL with multiple theories.

CAV 2005 – p.89/100

Abstract DPLL Modulo Multiple Theories

Preliminaries

• Let n = 2, for simplicity.

• Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅.

• Let C be a set of free constants.

• Assume wlog that each input literal has signature Σ1(C)
or Σ2(C) (no mixed literals).

• Let M i = {Σi(C)-literals of M}.

• Let se(M) = {c ≈ d | c, d occur in C, M 1 and M 2}
(shared equalities).

CAV 2005 – p.90/100

Abstract DPLL – Rules for Multiple Theories

UnitProp (unchanged)

Fail (unchanged)

T -Backjump (unchanged, with T = T1 ∪ T2)

Decide

M || F → M ld || F if

{
l or l occurs in F or in se(M),

l is undefined in M

Only change: decide on (undefined) shared equalities as well.

CAV 2005 – p.91/100

Abstract DPLL – Rules for Multiple Theories

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







i ∈ {1, 2}

{l1, . . . , ln} ⊆M i

l1 ∧ · · · ∧ ln |=Ti
⊥

l1 ∨ · · · ∨ ln /∈ F

Theory Propagate

M || F → M l || F if







i ∈ {1, 2}

M i |=Ti
l

l or l occurs in F ∪ se(M)

l is undefined in M

Changes: (i) reason locally in Ti, (ii) theory propagate shared
equalities as well.

CAV 2005 – p.92/100

References

[ABC+02] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and
Roberto Sebastiani. A SAT-based approach for solving formulas over boolean and
linear mathematical propositions. In Andrei Voronkov, editor, Proceedings of the 18th
International Conference on Automated Deduction, volume 2392 of Lecture Notes in
Artificial Intelligence, pages 195–210. Springer, 2002

[ACG00] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based
procedures for temporal reasoning. In S. Biundo and M. Fox, editors, Proceedings of
the 5th European Conference on Planning (Durham, UK), volume 1809 of Lecture
Notes in Computer Science, pages 97–108. Springer, 2000

[Bar02] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of
First-Order Theories. PhD dissertation, Department of Computer Science, Stanford
University, Stanford, CA, Sep 2002

[BBC+05] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio
Ranise, Roberto Sebastiani, and Peter van Rossu. Efficient satisfiability modulo
theories via delayed theory combination. In K.Etessami and S. Rajamani, editors,
Proceedings of the 17th International Conference on Computer Aided Verification,
Lecture Notes in Computer Science. Springer, 2005. (To appear)

CAV 2005 – p.93/100

References

[BCLZ04] Thomas Ball, Byron Cook, Shuvendu K. Lahiri, and Lintao Zhang. Zapato:
Automatic theorem proving for predicate abstraction refinement. In R. Alur and
D. Peled, editors, Proceedings of the 16th International Conference on Computer
Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages
457–461. Springer, 2004

[BDS02a] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In J. C. Godskesen, editor,
Proceedings of the International Conference on Computer-Aided Verification, Lecture
Notes in Computer Science, 2002

[BDS02b] Clark W. Barrett, David L. Dill, and Aaron Stump. A generalization of Shostak’s
method for combining decision procedures. In A. Armando, editor, Proceedings of the
4th International Workshop on Frontiers of Combining Systems, FroCoS’2002 (Santa
Margherita Ligure, Italy), volume 2309 of Lecture Notes in Computer Science, pages
132–147, apr 2002

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding CLU logic
formulas via boolean and pseudo-boolean encodings. In Proc. Intl. Workshop on
Constraints in Formal Verification, 2002

CAV 2005 – p.94/100

References

[BT02] Franz Baader and Cesare Tinelli. Deciding the word problem in the union of
equational theories. Information and Computation, 178(2):346–390, December 2002

[BT03] Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In F. Baader,
editor, Proceedings of the 19th International Conference on Automated Deduction,
CADE-19 (Miami, Florida, USA), number 2741 in Lecture Notes in Artificial
Intelligence, pages 350–364. Springer, 2003

[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate
abstraction of ANSI–C programs using SAT. Formal Methods in System Design
(FMSD), 25:105–127, September–November 2004

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962

[dMR02] Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers.
In Proc. of the Fifth International Symposium on the Theory and Applications of
Satisfiability Testing (SAT’02), May 2002

CAV 2005 – p.95/100

References

[FJOS03] Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theorem
proving using lazy proof explication. In Warren A. Hunt Jr. and Fabio Somenzi, editors,
Proceedings of the 15th International Conference on Computer Aided Verification,
volume 2725 of Lecture Notes in Computer Science, pages 355–367. Springer, 2003

[Gan02] Harald Ganzinger. Shostak light. In A. Voronkov, editor, Proceedings of the 18th
International Conference on Automated Deduction, volume 2392 of Lecture Notes in
Computer Science, pages 332–346. Springer-Verlag, jul 2002

[Ghi04] Silvio Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 3(3–4):221–249, 2004

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors,
Proceedings of the 16th International Conference on Computer Aided Verification,
CAV’04 (Boston, Massachusetts), volume 3114 of Lecture Notes in Computer Science,
pages 175–188. Springer, 2004

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. on Programming Languages and Systems, 1(2):245–257,
October 1979

CAV 2005 – p.96/100

References

[NO05] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with exhaustive theory
propagation and its application to difference logic. In K. Etessami and S. Rajamani,
editors, Proceedings of 17th International Conference on Computer Aided Verification,
Lecture Notes in Computer Science. Springer, 2005. (To appear)

[NOT05] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and
abstract DPLL modulo theories. In F. Baader and A. Voronkov, editors, Proceedings of
the 11th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452 of Lecture Notes in Artificial
Intelligence, pages 36–50. Springer, 2005

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical
Computer Science, 12:291–302, 1980

[Rin96] Christophe Ringeissen. Cooperation of decision procedures for the satisfiability
problem. In F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems:
Proceedings of the 1st International Workshop, Munich (Germany), Applied Logic,
pages 121–140. Kluwer Academic Publishers, March 1996

CAV 2005 – p.97/100

References

[RRZ05] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining data
structures with nonstably infinite theories using many-sorted logic. In B. Gramlich,
editor, Proceedings of the Workshop on Frontiers of Combining Systems, Lecture
Notes in Computer Science. Springer, 2005. (To appear.)

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In F. Baader and K.U. Schulz, editors, Frontiers of Combining
Systems: Proceedings of the 1st International Workshop (Munich, Germany), Applied
Logic, pages 103–120. Kluwer Academic Publishers, March 1996

[SLB03] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hybrid SAT-based
decision procedure for separation logic with uninterpreted functions. In Proc. 40th
Design Automation Conference, pages 425–430. ACM Press, 2003

[Tin02] Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In
Giovambattista Ianni and Sergio Flesca, editors, Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (Cosenza, Italy), volume 2424 of Lecture
Notes in Artificial Intelligence. Springer, 2002

CAV 2005 – p.98/100

References

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In F. Baader and K.U. Schulz, editors, Frontiers of Combining
Systems: Proceedings of the 1st International Workshop (Munich, Germany), Applied
Logic, pages 103–120. Kluwer Academic Publishers, March 1996

[Tin02] Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In
Giovambattista Ianni and Sergio Flesca, editors, Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (Cosenza, Italy), volume 2424 of Lecture
Notes in Artificial Intelligence. Springer, 2002

[Tin04] Cesare Tinelli. The DPLL(T1, . . . , Tn): modeling DPLL-based checkers for
satisfiability modulo multiple theories. (Unpublished), 2004

[TR03] Cesare Tinelli and Christophe Ringeissen. Unions of non-disjoint theories and
combinations of satisfiability procedures. Theoretical Computer Science,
290(1):291–353, January 2003

[TZ04] Cesare Tinelli and Calogero Zarba. Combining decision procedures for sorted
theories. In J. Alferes and J. Leite, editors, Proceedings of the 9th European
Conference on Logic in Artificial Intelligence (JELIA’04), Lisbon, Portugal, volume
3229 of Lecture Notes in Artificial Intelligence, pages 641–653. Springer, 2004

CAV 2005 – p.99/100

References

[TZ05] Cesare Tinelli and Calogero Zarba. Combining non-stably infinite theories. Journal of
Automated Reasoning, 2005. (To appear.)

[Zar04] Calogero G. Zarba. C-tableaux. Technical Report RR-5229, INRIA, 2004

CAV 2005 – p.100/100

	Credits
	Prologue: The T-Validity Problem
	Prologue: The Combined Validity Problem
	Prologue: The Combined Decidability Problem I
	Prologue: The Combined Decidability Problem II
	Roadmap
	Roadmap
	FOL with Equality: Lexicon
	FOL with Equality: Language
	FOL with Equality: Notation
	FOL with Equality: Semantics
	FOL with Equality: Semantics
	FOL with Equality: Semantics
	FOL with Equality: Homomorphisms
	FOL with Equality: Isomorphisms
	Roadmap
	The T-Validity Problem
	Common Restrictions on $lan $
	Common Restrictions on $lan $
	The Combined Decidability Problem I
	The Combined Decidability Problem I
	The Combined Decidability Problem II
	Roadmap
	The T-Satisfiability Problem
	T-satisfiability vs. Constraint Solving
	T-satisfiability vs. Constraint Solving
	The Combined Satisfiability Problem
	An Effectively Purifiable Language
	Alien Subterms
	Alien Subterms
	A Larger Effectively Purifiable Language
	More Effectively Purifiable Languages
	Combined Satisfiability of Pure Literals
	Combined Satisfiability as Interpolation
	Roadmap
	The Combination Problem for Universal Formulas
	The Combination Problem for Universal Formulas
	Roadmap
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	Total Correctness of the NO Method
	Stably Infinite Theories
	The NO Method: Soundness Proof
	The Combined Satisfiability Theorem
	The NO Method: Completeness Proof
	The NO Calculus
	Correctness of the NO Calculus
	Correctness of the NO Calculus
	The d-NO Calculus
	Correctness of the d-NO Calculus
	The d-NO Calculus and Convex Theories
	The d-NO Calculus and Convex Theories
	Extending Nelson-Oppen
	Extending NO: Non-Stably Infinite Theories
	Extending Nelson-Oppen: Non-Disjoint Theories
	Extending Nelson-Oppen: Sorted Logics
	Roadmap
	Extending Nelson-Oppen: More than Literals
	Satisfiability Modulo a Theory T (SMT)
	The Original DPLL Procedure~cite {Davis1962a}
	The Original DPLL Procedure -- Example
	The Original DPLL Procedure -- Example
	Lifting SAT to SMT
	Roadmap
	An Abstract Framework for DPLL
	An Abstract Framework for DPLL~cite {NieOT-LPAR-04}
	Transition Rules for Basic DPLL
	Transition Rules for Basic DPLL
	Basic DPLL System
	Basic DPLL System -- Example
	Basic DPLL System -- Example
	The Basic DPLL System -- Correctness
	The Basic DPLL System -- Correctness Proofs
	Enhancements to Basic DPLL
	Roadmap
	From SAT to SMT --- A (Very)
Lazy Approach
	From SAT to SMT --- A (Very)
Lazy Approach
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	Lazy Approach -- Strategies
	DPLL($,T$)
-- Eager Theory Propagation
	Eager Theory Propagation - Example
	Eager Theory Propagation
	Lazy Theory Propagation
	Abstract DPLL Modulo Multiple Theories
	Abstract DPLL Modulo Multiple Theories
	Abstract DPLL -- Rules for Multiple Theories
	Abstract DPLL -- Rules for Multiple Theories
	References
	References
	References
	References
	References
	References
	References
	References

