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Prologue: The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.
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Prologue: The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.

Given ϕ in L, is it the case that

T |= ϕ ?
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Prologue: The Combined Validity Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.
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For i = 1, 2,
• let Ti a first-order theory of signature Σi and
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Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.
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Prologue: The Combined Validity Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

Given any ϕ in L1 ⊕L2, is it the case that

T1 ⊕ T2 |= ϕ ?
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Prologue: The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

such that the Ti-validity problem for Li is decidable.
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Prologue: The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas.

such that the Ti-validity problem for Li is decidable.

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

Is the (T1 ⊕ T2)-validity problem for L1 ⊕ L2 decidable?
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Prologue: The Combined Decidability Problem II

For i = 1, 2,
• let Pi be a decision procedure for the Ti-validity problem

for Li,

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.
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Prologue: The Combined Decidability Problem II

For i = 1, 2,
• let Pi be a decision procedure for the Ti-validity problem

for Li,

Let T1 ⊕ T2 be a combination of T1 and T2.

Let L1 ⊕L2 be a combination of L1 and L2.

Can we combine P1 and P2 modularly into a decision

procedure for the (T1 ⊕ T2)-validity problem for L1 ⊕ L2?
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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FOL with Equality: Lexicon

• We will assume the following pairwise disjoint sets:

◦ a countably-infinite set X = {x, y, z, v, . . .} of variables
◦ a countably infinite set F = {c, d, f, g, . . .} of function

symbols, each with an associated arity n ≥ 0
◦ a countably infinite set P = {p, q, . . .} of predicate

symbols, each with an associated arity n ≥ 0

• A signature Σ is a subset of F ∪ P.

• If C is a set of constant (i.e. 0-arity) symbols from F ,
Σ(C) denotes the signature Σ ∪ C.
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FOL with Equality: Language

Let Σ be a signature and Y ⊆ X a set of variable.

• Σ-terms (over Y ) are defined as usual.

• Σ-formulas are defined as usual over ∧,∨,¬,∀,∃,≈.

• Free (occurrences of) variables in a formula are those not
bound by a quantifier.

• Literals are atomic formulas or their negation.

• Sentences are formulas with no free variables.

• Theories are sets of sentences.
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FOL with Equality: Notation

Let Σ be a signature and Y ⊆ X a set of variable.

≈: the equality predicate symbol.

T(Σ, Y ): the set of Σ-terms over Y .

ϕ(x): a formula whose free variables occur in the tuple x.

ϕ[t]: a formula with a subterm t.
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FOL with Equality: Semantics

Let Σ be a signature.

A first-order Σ-structure A is defined as usual as consisting
of:

• a set A of elements, the domain,
• a mapping of each n-ary function symbol f ∈ Σ to a total

function fA : An → A,
• a mapping of each n-ary predicate symbol p ∈ Σ to a

relation pA ⊆ An.

Note: the equality symbol ≈ is always interpreted as the
identity relation.

CAV 2005 – p.12/100



FOL with Equality: Semantics

Let A denote a structure, ϕ a formula, and T a theory, all of
signature Σ.

The reduct AΩ of a A to Ω ⊆ Σ is an Ω-structure with same
domain and interpretation of Ω’s symbols as A.

(A, α) |= ϕ: ϕ is true in A under the variable assignment
α : X → A.

ϕ is satisfiable in (satisfied by) A: (A, α) |= ϕ for some α.

⊥: a formula satisfied by no structure.

ϕ is valid in A (A |= ϕ): (A, α) |= ϕ for every α.

Model of T : structure in which every sentence of T is valid.
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FOL with Equality: Semantics

Let A denote structures,
α valuations of variables into A,
ϕ formulas,
Φ sets of formulas,
T theories (sets of closed formulas),

all of signature Σ.

Φ |= ϕ: For all (A, α) if (A, α) |= Φ then (A, α) |= ϕ

Φ1,Φ2, ϕ |= ψ: Φ1 ∪ Φ2 ∪ {ϕ} |= ψ.

ϕ is T -satisfiable: T, ϕ 6|= ⊥.

ϕ is T -valid: T |= ϕ.
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FOL with Equality: Homomorphisms

Let A, B be Σ-structures.

A homomorphism of A into B is a function h : A→ B such
that

• for all a1, . . . , an ∈ A and n-ary f ∈ Σ,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

• for all a1, . . . , an ∈ A and n-ary p ∈ Σ,

(h(a1), . . . , h(an)) ∈ pB whenever (a1, . . . , an) ∈ pA.
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FOL with Equality: Isomorphisms

Let A, B be Σ-structures with the same cardinality.

An isomorphism of A into B is an invertible function
h : A→ B s.t.

• h is a homomorphism of A into B,

• h−1 is a homomorphism of B into A.

A and B are isomorphic, written A ∼= B, if there is an
isomorphism of A into B.

Fact 1: ∼= is an equivalence relation over structures.

Fact 2: Isomorphic Σ-structures satisfy exactly the same
Σ-formulas.
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.

Given ϕ in L, is it the case that

T |= ϕ ?
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The T -Validity Problem

Let T be a first-order theory of signature Σ.

Let L be a class of Σ-formulas.

Given ϕ in L, is it the case that

T |= ϕ ?

This problem is decidable only for restricted L and T .
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Common Restrictions on L

L =

• {∀xA(x) | A atomic},
the word problem.
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Common Restrictions on L

L =

• {∀xA(x) | A atomic},
the word problem.

• {∀x(A1 ∧ · · · ∧ An → B)(x) | A1, . . . , An, B atomic},
the conditional (or uniform) word problem.
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Common Restrictions on L

L =

• {∀xA(x) | A atomic},
the word problem.

• {∀x(A1 ∧ · · · ∧ An → B)(x) | A1, . . . , An, B atomic},
the conditional (or uniform) word problem.

• {∀xC(x) | C disjunction of literals},
the clausal validity problem.

• {∀xϕ(x) | ϕ quantifier-free},
the universal validity problem.
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Common Restrictions on L

L =

• {∃x∀y(A1 ∧ · · · ∧ An)(x,y) | A1, . . . , An atomic},
the unification problem (with constants).
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Common Restrictions on L
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• {∃x∀y(A1 ∧ · · · ∧ An)(x,y) | A1, . . . , An atomic},
the unification problem (with constants).

• {∃x∀y(L1 ∧ · · · ∧ Ln)(x,y) | L1, . . . , Ln literals},
the disunification problem (with constants).
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Common Restrictions on L

L =

• {∃x∀y(A1 ∧ · · · ∧ An)(x,y) | A1, . . . , An atomic},
the unification problem (with constants).

• {∃x∀y(L1 ∧ · · · ∧ Ln)(x,y) | L1, . . . , Ln literals},
the disunification problem (with constants).

• {Qϕ | Q ∈ {∃,∀}∗, ϕ ∈ ϕ quantifier-free and positive},
the positive validity problem.
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The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

such that the Ti-validity problem for Li is decidable.

Is the (T1 ⊕ T2)-satisfiability for L1 ⊕ L2 decidable?
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The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

such that the Ti-validity problem for Li is decidable.

Is the (T1 ⊕ T2)-satisfiability for L1 ⊕ L2 decidable?

In general: No.

Main issue: how T1 ⊕ T2 and L1 ⊕ L2 are defined.
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The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

such that the Ti-validity problem for Li is decidable.

Is the (T1 ⊕ T2)-satisfiability for L1 ⊕ L2 decidable?

In general: No.

Main issue: how T1 ⊕ T2 and L1 ⊕ L2 are defined.

Restrictions on T1, T2, L1, L1, T1 ⊕ T2, and L1 ⊕ L2 are
needed to answer the questions affirmatively.
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The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

Usually,

Σ1 ∩ Σ2 = ∅,

Li = LΣi = {ϕ ∈ L | ϕ has signature Σi} for some L.
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For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

Usually,

Σ1 ∩ Σ2 = ∅,

Li = LΣi = {ϕ ∈ L | ϕ has signature Σi} for some L.

Then, one possibility is

L1 ⊕L2 = LΣ1∪Σ2

T1 ⊕ T2 = T1 ∪ T2
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The Combined Decidability Problem I

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Li be a class of Σi-formulas

Usually,

Σ1 ∩ Σ2 = ∅,

Li = LΣi = {ϕ ∈ L | ϕ has signature Σi} for some L.

Then, one possibility is

L1 ⊕L2 = LΣ1∪Σ2

T1 ⊕ T2 = T1 ∪ T2

We will focus on this case here.
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The Combined Decidability Problem II

Assume
• P1, a procedure deciding the T1-validity problem for LΣ1,

• P2, a procedure deciding the T2-validity problem for LΣ2.

Can we compose P1 and P2 modularly into a procedure
that decides the (T1 ∪ T2)-validity problem for LΣ1∪Σ2?
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The Combined Decidability Problem II

Assume
• P1, a procedure deciding the T1-validity problem for LΣ1,

• P2, a procedure deciding the T2-validity problem for LΣ2.

Can we compose P1 and P2 modularly into a procedure
that decides the (T1 ∪ T2)-validity problem for LΣ1∪Σ2?

Almost invariably, additional functionalities are required of P1

and P2 (more on this in Part II).
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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The T -Satisfiability Problem

Every T -validity problem has a dual T -satisfiability problem.

Note: T |= ϕ iff T,¬ϕ |= ⊥
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The T -Satisfiability Problem

Every T -validity problem has a dual T -satisfiability problem.

Note: T |= ϕ iff T,¬ϕ |= ⊥

Hence the T -validity problem for L is reducible to the
T -satisfiability problem for LD = {¬ψ | ψ ∈ L} :

Given ψ ∈ LD, is ψ is T -satisfiable?
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The T -Satisfiability Problem

Every T -validity problem has a dual T -satisfiability problem.

Note: T |= ϕ iff T,¬ϕ |= ⊥

Hence the T -validity problem for L is reducible to the
T -satisfiability problem for LD = {¬ψ | ψ ∈ L} :

Given ψ ∈ LD, is ψ is T -satisfiable?

For combination purposes, it is more convenient to work with
satisfiability problems.
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T -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability
problems.

But be careful:
• In Constraint Solving one is interested in whether a

formula ψ ∈ L is satisfiable in a given, fixed model of a
theory T .

• In constrast, in T -satisfiability one is interested in whether
ψ is satisfiable in any model of T at all.

These are different problems!
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T -satisfiability vs. Constraint Solving

Unfortunately, to confuse things, there are

(i) languages L, (ii) theories T and (iii) structures A

for which the two problems are equivalent:

for all ψ ∈ L, ψ is T -satisfiable iff ψ is satisfiable in A.
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T -satisfiability vs. Constraint Solving

Unfortunately, to confuse things, there are

(i) languages L, (ii) theories T and (iii) structures A

for which the two problems are equivalent:

for all ψ ∈ L, ψ is T -satisfiable iff ψ is satisfiable in A.

Examples:
• (i) FOL formulas, (ii) the theory of real closed fields, (iii)

the structure of the real numbers.
• (i) unification problems, (ii) any equational theory E, (iii)

the initial model of E.
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T -satisfiability vs. Constraint Solving

Unfortunately, to confuse things, there are

(i) languages L, (ii) theories T and (iii) structures A

for which the two problems are equivalent:

for all ψ ∈ L, ψ is T -satisfiable iff ψ is satisfiable in A.

Nevertheless, when theories are combined this equivalence
may be lost.

Be warned.
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The Combined Satisfiability Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and

• let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.
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The Combined Satisfiability Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and

• let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2,
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The Combined Satisfiability Problem

For i = 1, 2,
• let Ti a first-order theory of signature Σi and

• let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2, i.e., such that

the (T1 ∪ T2)-satisfiability of a formula ϕ ∈ LΣ1∪Σ2

is effectively reducible to
the (T1 ∪ T2)-satisfiability of formulas of the form ϕ1 ∧ ϕ2

with ϕi ∈ LΣi for i = 1, 2.
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An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.
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An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

Let ϕ be a conjunction of (Σ1 ∪ Σ2)-literals.

1. Apply to completion to ϕ (modulo AC of ∧) the following
term abstraction rule:

L[t] ∧ ψ

L[x] ∧ x ≈ t ∧ ψ
if

x is a fresh variable and

t is an alien subterm of L

2. Group the Σ1-literals in ϕ1 and the rest in ϕ2.
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An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

Let ϕ be a conjunction of (Σ1 ∪ Σ2)-literals.

1. Apply to completion to ϕ (modulo AC of ∧) the following
term abstraction rule:

L[t] ∧ ψ

L[x] ∧ x ≈ t ∧ ψ
if

x is a fresh variable and

t is an alien subterm of L

2. Group the Σ1-literals in ϕ1 and the rest in ϕ2.

Proposition For every (Σ1 ∪ Σ2)-structure A, ϕ is satisfiable
in A iff ϕ1 ∧ ϕ2 is satisfiable in A.
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Alien Subterms

Let Σ0 = Σ1 ∩ Σ2 and i ∈ {1, 2}.

A term t ∈ T(Σ1 ∪ Σ2, X) is an i-term
if t ∈ X or t = f(t1, . . . , tn) with f ∈ Σi.

Let t[s] ∈ T(Σ1 ∪ Σ2, X),

Case 1: the top symbol of t is in Σi \ Σ0

s is an alien subterm of t
if every superterm of s in t is an i-term, but s is not.

Case 2: the top symbol of t is in Σ0.
Consider it arbitrarily as a symbol of Σ1 or of Σ2 and
proceed as in Case 1. (See [BT02] for a better definition.)
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Alien Subterms

Let Σ0 = Σ1 ∩ Σ2 and i ∈ {1, 2}.

Let L = (¬)A[s] be a (Σ1 ∪ Σ2)-literal.

The term s is an alien subterm of L
if it is an alien subterm of A[s]

when A’s top symbol is treated as a function symbol,
with ≈ treated as a symbol of Σ0.
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A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.
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A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.

Let ϕ ∈ QF(Σ1 ∪ Σ2, X).

1. Let ψ1 ∨ · · · ∨ ψn be ϕ’s disjunctive normal form.

2. Purify each disjunct ψj into ψj,1 ∧ ψj,2.
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A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.

Let ϕ ∈ QF(Σ1 ∪ Σ2, X).

1. Let ψ1 ∨ · · · ∨ ψn be ϕ’s disjunctive normal form.

2. Purify each disjunct ψj into ψj,1 ∧ ψj,2.

For any (Σ1 ∪ Σ2)-structure A,
ϕ is satisfiable in A iff
ψj,1 ∧ ψj,2 is satisfiable in A for some j ∈ {1, . . . , n}.
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A Larger Effectively Purifiable Language

The language of quantifier free formulas is effectively
purifiable for any T1 and T2.

Let ϕ ∈ QF(Σ1 ∪ Σ2, X).

1. Let ψ1 ∨ · · · ∨ ψn be ϕ’s disjunctive normal form.

2. Purify each disjunct ψj into ψj,1 ∧ ψj,2.

For any (Σ1 ∪ Σ2)-structure A,
ϕ is satisfiable in A iff
ψj,1 ∧ ψj,2 is satisfiable in A for some j ∈ {1, . . . , n}.

Exercise**. Purify ϕ by first turning it into conjunctive normal
form. Proof that satisfiability in any structure is preserved.
(Hint: every conjunct C[s] is equisatisfiable with x 6≈ s ∨ C[x] for a fresh x.)
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More Effectively Purifiable Languages

A few more complex languages are effective purifiable, for
given theories T1 and T2, if one is allowed to introduce
additional (free/uninterpreted) symbols.

For instance, the full language of FOL≈ is effectively purifiable
for any T1 and T2. (How? Exercise***.)
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Combined Satisfiability of Pure Literals

From now on, wlog we consider only

combined satisfiability problems of the form

ϕ1 ∧ ϕ2

where each ϕi is a Σi-formula.
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Combined Satisfiability of Pure Literals

From now on, wlog we consider only

combined satisfiability problems of the form

ϕ1 ∧ ϕ2

where each ϕi is a Σi-formula.

Observation: Such problems are really just interpolation
problems.
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

The problem then is “just” computing the interpolant ϕ.
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

Unfortunately, Craig’s lemma provides no information on
• what ϕ looks like or
• how to compute ϕ without an explicit proof that
T1, T2, ϕ1, ϕ2 |= ⊥.
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Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

All existing combination methods are in essence ways to
compute ϕ, possibly incrementally, in finite time.
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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The Combination Problem for Universal Formulas

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Pi be a procedure that decides the Ti-validity problem

for universal Σi-formulas.

CAV 2005 – p.37/100



The Combination Problem for Universal Formulas

For i = 1, 2,
• let Ti a first-order theory of signature Σi and
• let Pi be a procedure that decides the Ti-validity problem

for universal Σi-formulas.

How to decide the (T1 ∪ T2)-validity problem for universal
(Σ1 ∪ Σ2)-formulas using P1 and P2 modularly?
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The Combination Problem for Universal Formulas

• Problem most people mean when talking about
combining decision procedures.

• Problem with the largest impact and most practical uses
so far.

• Most common settings:
◦ T1 and T2 are signature-disjoint.
◦ presented as a satisfiability problem for qffs

(as T |= ∀xϕ(x) iff ¬ϕ(x) is T -unsatisfiable).

• Basic combination method for the problem due to Greg
Nelson and Derek Oppen [NO79].
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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The Nelson-Oppen Method

• For i = 1, 2, let Ti a first-order theory of signature Σi.
• Let T = T1 ∪ T2.
• Let C be a set of free constants (i.e., not in Σ1 ∪ Σ2).
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The Nelson-Oppen Method

• For i = 1, 2, let Ti a first-order theory of signature Σi.
• Let T = T1 ∪ T2.
• Let C be a set of free constants (i.e., not in Σ1 ∪ Σ2).

We consider only input problems of the form

Γ1 ∪ Γ2

where each Γi is a finite set of ground Σi(C)-literals.

CAV 2005 – p.40/100



The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:
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The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

CAV 2005 – p.41/100



The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

CAV 2005 – p.41/100



The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

3. for each conjunction ψ of literals,
ψ is T -sat iff its separate form ψ1 ∧ ψ2 is T -sat
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The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

3. for each conjunction ψ of literals,
ψ is T -sat iff its separate form ψ1 ∧ ψ2 is T -sat

4. for each conjunction ψ1 ∧ ψ2 of literals,

ψ1 ∧ ψ2 is T -sat iff
Γ1 ∪ Γ2 is T -sat
where each Γi is the set of literals in ψi.
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The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:
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The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.
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The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:
• Choose any equivalence relation R on the constants

from C shared by Γ1 and Γ2.
• Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}
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The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:
• Choose any equivalence relation R on the constants

from C shared by Γ1 and Γ2.
• Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

2. If Γi ∪ ∆ is Ti-unsatisfiable for i = 1 or i = 2, return unsat
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The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:
• Choose any equivalence relation R on the constants

from C shared by Γ1 and Γ2.
• Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

2. If Γi ∪ ∆ is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat
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Total Correctness of the NO Method

The method is always terminating because there is only a
finite number of arrangements to guess.
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Total Correctness of the NO Method

The method is always terminating because there is only a
finite number of arrangements to guess.

When
• Σ1 ∩ Σ2 = ∅ and
• T1 and T2 are stably infinite,

the method is sound and complete.

Soundness:
If the answer is unsat for every arrangement,
then the input is (T1 ∪ T2)-unsatisfiable.

Completeness:
If the input is (T1 ∪ T2)-is unsatisfiable,
then the answer is unsat for every arrangement.
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Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .
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Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:
• Theories of an infinite structure.
• Complete theories with an infinite model.
• Convex theories with no trivial models (see later).
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Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:
• Theories of an infinite structure.
• Complete theories with an infinite model.
• Convex theories with no trivial models (see later).

But others are not stably infinite:
• Theories of a finite structure.
• Theories with models of bounded cardinality.
• Some equational/Horn theories.
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The NO Method: Soundness Proof

Recall:

If the answer is unsat for every arrangement, then the input
Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable.

Equivalently (because of guaranteed termination):

If the input Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable, then the answer is
sat for some arrangement.

Proof Sketch: Let C0 be the free constants shared by Γ1 and
Γ2. Let A be a Σ1(C) ∪ Σ2(C)-model of T1 ∪ T2 ∪ Γ1 ∪ Γ2. Let
∆ = {c ≈ d | c, d ∈ C0, c

A = dA} ∪ {c 6≈ d | c, d ∈ C0, c
A 6= dA}.

The set ∆ is a possible arrangement of C0. Moreover,
AΣi(C) |= Ti ∪ Γi ∪ ∆ for i = 1, 2. So the procedure will return
sat for ∆’s choice.
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The Combined Satisfiability Theorem

Theorem [TR03] For i = 1, 2, let Φi be a set of Ωi-sentences.
The following are equivalent:

1. Φ1 ∪ Φ2 is satisfiable.

2. There are an Ω1-structure A satisfying Φ1 and a
Ω2-structure B satisying Φ2 such that

AΩ1∩Ω2 ∼= BΩ1∩Ω2.
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The Combined Satisfiability Theorem

Theorem [TR03] For i = 1, 2, let Φi be a set of Ωi-sentences.
The following are equivalent:

1. Φ1 ∪ Φ2 is satisfiable.

2. There are an Ω1-structure A satisfying Φ1 and a
Ω2-structure B satisying Φ2 such that

AΩ1∩Ω2 ∼= BΩ1∩Ω2.

Proof Sketch.

1 ⇒ 2. Assume some (Ω1 ∩ Ω2)-structure C satisfies Φ1 ∪ Φ2.
Then, A = CΩ1 and B = CΩ2 will do.
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The Combined Satisfiability Theorem

Theorem [TR03] For i = 1, 2, let Φi be a set of Ωi-sentences.
The following are equivalent:

1. Φ1 ∪ Φ2 is satisfiable.

2. There are an Ω1-structure A satisfying Φ1 and a
Ω2-structure B satisying Φ2 such that

AΩ1∩Ω2 ∼= BΩ1∩Ω2.

Proof Sketch.

2 ⇒ 1. If AΣ1∩Σ2 ∼= BΣ1∩Σ2 , then A and B have the same
cardinality and agree on the shared symbols. Then, they can
be amalgamated into a (Ω1 ∩ Ω2)-structure C such that
A ∼= CΩ1 and B ∼= CΩ2. Clearly, C satisfies both Φ1 and Φ2.
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The NO Method: Completeness Proof

Recall:

If the input Γ1 ∪ Γ2 is (T1 ∪ T2)-is unsatisfiable, then the
answer is unsat for every arrangement.
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The NO Method: Completeness Proof

Equivalently:

If the answer is sat for some arrangement, then the input
Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable.

Proof Sketch: Let Ci collect the free constants in Γi for
i = 1, 2, and let C0 = C1 ∩ C2. Let ∆ be an arrangement of C0

and Ai a Σi(Ci)-model of Ti ∪ Γi ∪ ∆ for i = 1, 2.
By the stable infiniteness of each Ti, we can assume that Ai

is infinite. By the Löwenheim-Skolem theorems, we can
assume that A1 and A2 have the same cardinality. Since they
both satisfy ∆ and their signatures share only C0, one can
show that AC0

1
∼= AC0

2 . By the Combined Satisfiability
Theorem, T1 ∪ Γ1 ∪ T2 ∪ Γ2 is satisfiable.
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The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method
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The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.
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The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

Apply these rules exhaustively, starting with the triple
Γ0

1; ∅; Γ0
2:
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The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

Apply these rules exhaustively, starting with the triple
Γ0

1; ∅; Γ0
2:

Γ1; ∆; Γ2

⊥
if Γi,∆ |=Ti

⊥ for i = 1 or i = 2

Γ1; ∆; Γ2

Γ1; ∆, c ≈ d; Γ2 Γ1; ∆, c 6≈ d; Γ2
if







c, d ∈ C0,

c ≈ d /∈ ∆,

c 6≈ d /∈ ∆
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Correctness of the NO Calculus

Some terminology:

• A derivation tree in the NO calculus is a tree such that
◦ every node is either a triple Γ; ∆; Γ or ⊥
◦ a node N is a child of a M only if it is a direct

consequence of M .
• A derivation tree for Γ1; ∆; Γ2 is a derivation tree with root

Γ1; ∆; Γ2.
• A refutation tree is a derivation tree all of whose leaves

are ⊥.
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Correctness of the NO Calculus

The NO calculus is sound, complete and terminating
whenever T1 and T2 are stably infinite and signature-disjoint.

Termination:
Every derivation tree in NO is finite.

Soundness and Completeness:
Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable
iff
Γ1; ∅; Γ2 has a refutation tree in NO.

Proof: Exercise*
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The d-NO Calculus

Declarative, (more) deterministic, incremental version of
the NO method (more faithful to the original [NO79])
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The d-NO Calculus

Declarative, (more) deterministic, incremental version of
the NO method (more faithful to the original [NO79])

Apply these rules exhaustively, starting with Γ0
1; ∅; Γ0

2:

Γ1; ∆; Γ2

⊥
if Γi,∆ |=Ti

⊥ for i = 1 or i = 2

Γ1; ∆; Γ2

Γ1; ∆, c1 ≈ d1; Γ2 · · · Γ1; ∆, cn ≈ dn; Γ2
if (∗)

(∗) =







n ≥ 1, c1, . . . , cn, d1, . . . , dn ∈ C0,

i ∈ {1, 2}, J = {1, . . . , n},

Γi,∆ |=Ti

∨

j∈J cj ≈ dj

Γi,∆ 6|=Ti

∨

j∈J ′ cj ≈ dj for any J ′ ( J
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Correctness of the d-NO Calculus

The d-NO calculus is sound, complete and terminating
whenever T1 and T2 are stably infinite and signature-disjoint.

Termination:
Every derivation tree in d-NO is finite.

Soundness and Completeness:
Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable
iff
Γ1; ∅; Γ2 has a refutation tree in d-NO.

Proof: Exercise*
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The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.
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The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

A Σ-theory T is convex iff
for all finite sets Γ of Σ-literals and
for all non-empty disjunctions

∨

i∈I xi ≈ yi of variables,

Γ |=T

∨

i∈I xi ≈ yi iff Γ |=T xi ≈ yi for some i ∈ I.
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The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

A Σ-theory T is convex iff
for all finite sets Γ of Σ-literals and
for all non-empty disjunctions

∨

i∈I xi ≈ yi of variables,

Γ |=T

∨

i∈I xi ≈ yi iff Γ |=T xi ≈ yi for some i ∈ I.

Useful fact: Every convex theory T with no trivial models
(i.e., such that T |= ∃x, y.x 6≈ y) is stably infinite [BDS02b].
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The d-NO Calculus and Convex Theories

Many interesting theories are convex (not immediate to
show):

• All Horn theories—this includes all (conditional)
equational theories.

• Some non-Horn theories, like linear rational arithmetic.
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The d-NO Calculus and Convex Theories

Many interesting theories are convex (not immediate to
show):

• All Horn theories—this includes all (conditional)
equational theories.

• Some non-Horn theories, like linear rational arithmetic.

But many more are not convex:
• All theories of a finite structure. (Why?)
• Non-linear rational arithmetic. (Why?)
• Linear integer arithmetic. (Why?)
• The theory of arrays. (Why?)
• The theory of sets. (Why?)
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Extending Nelson-Oppen

The main requirements of the method:

• The disjointness of Σ1 and Σ2 and
• the stable infiniteness of T1 and T2

are only sufficient conditions for its correctness.

Can they be relaxed?
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Extending Nelson-Oppen

The main requirements of the method:

• The disjointness of Σ1 and Σ2 and
• the stable infiniteness of T1 and T2

are only sufficient conditions for its correctness.

Can they be relaxed?

Relaxing either of them turns out to be rather hard.

Only few results in this direction, all very recent, and perhaps
mainly of academic interest for now.
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Extending NO: Non-Stably Infinite Theories

The only existing results (we are aware of) are about

• combining arbitrary theories with the theory of equality
(aka the empty theory, EUF, . . . ) [Gan02],

• about combining arbitrary theories with shiny or polite
theories [TZ05, RRZ05]

• combining universal theories [Zar04].

The results in [TZ05, RRZ05] subsume those in [Gan02] but
are not comparable to those in [TZ05].

The results in [Zar04] also lift the disjointness restriction.
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Extending Nelson-Oppen: Non-Disjoint Theories

Three main approaches, respectively described in: [TR03],
[Ghi04], and [Zar04].

All of them need to extend the constraint sharing mechanism
beyond (dis)equalities of shared constants.

None of them is more general than the others.

[TR03] and [Ghi04] are rather technical and beyond the scope
of this tutorial.

[Zar04] is very general but yields weaker results both in theory
(only semi-decidability) and in practice (too much to guess).
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Extending Nelson-Oppen: Sorted Logics

Extending the method of many sorted logics (no subsorts) is
intuitively simple [TZ04]:.

• Use a notion of stable infiniteness wrt. a set of sorts.
• Require component theories to be stably infinite only

wrt. their shared sorts.
• Consider only well-sorted arrangements.
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Extending Nelson-Oppen: Sorted Logics

Extending the method of many sorted logics (no subsorts) is
intuitively simple [TZ04]:.

• Use a notion of stable infiniteness wrt. a set of sorts.
• Require component theories to be stably infinite only

wrt. their shared sorts.
• Consider only well-sorted arrangements.

The advantages of sorts are:
• Combining sorted theories is more natural.
• It is easier for a sorted theory to be stably infinite wrt. just

a subset of its sorts.
• No need to propagate equalities between variables of

different sorts.
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Extending Nelson-Oppen: Sorted Logics

Extending the method of many sorted logics (no subsorts) is
intuitively simple [TZ04]:.

• Use a notion of stable infiniteness wrt. a set of sorts.
• Require component theories to be stably infinite only

wrt. their shared sorts.
• Consider only well-sorted arrangements.

Extending the method of order-sorted logics (with subsorts) is
non-trivial.

Currently, relatively strong restrictions on the component
signatures are needed [TZ04].
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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Extending Nelson-Oppen: More than Literals

• The Nelson-Oppen method combines procedures for the
satisfiability of sets of ground literals.

• However, actual problems involve, more generally, ground
formulas.

• How to combine decision procedures for them?

• Before that, how to extend a decision procedure to
ground formulas?
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Satisfiability Modulo a Theory T (SMT)

• Observation: T -satisfiability is decidable for ground
formulas whenever it is decidable for sets of literals.
(By converting the formula in DNF.)

• Problem: In practice, dealing with Boolean combinations
of literals is as hard as in the propositional case.

• Current solution: Exploit latest advances in propositional
satisfiability technology.
Specifically, use DPLL-based methods.
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The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .
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The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
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The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or
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The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or
◦ guessing a truth value.
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The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or
◦ guessing a truth value.

• If a wrong guess leads to an inconsistency, the procedure
backtracks and tries the opposite one.
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The Original DPLL Procedure [DLL62]

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
◦ deducing the truth value of a literal from M and F , or
◦ guessing a truth value.

• If a wrong guess leads to an inconsistency, the procedure
backtracks and tries the opposite one.

• Modern implementations add several sophisticated
search techniques.
(Backjumping, learning, restarts, watched literals, etc.)
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Inconsistency!
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1
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The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Model Found!
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Lifting SAT to SMT

Eager approach [BLS02, SLB03, CKSY04, . . . ]:
• translate into an equisatisfiable propositional formula,
• feed it to any SAT solver.
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Eager approach [BLS02, SLB03, CKSY04, . . . ]:
• translate into an equisatisfiable propositional formula,
• feed it to any SAT solver.

Lazy approach
[ACG00, ABC+02, BDS02a, dMR02, FJOS03, BCLZ04, . . . ]:

• abstract the input formula into a propositional one,
• feed it to a DPLL-based SAT solver,
• use a theory decision procedure to refine the formula.
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Lifting SAT to SMT

Eager approach [BLS02, SLB03, CKSY04, . . . ]:
• translate into an equisatisfiable propositional formula,
• feed it to any SAT solver.

Lazy approach
[ACG00, ABC+02, BDS02a, dMR02, FJOS03, BCLZ04, . . . ]:

• abstract the input formula into a propositional one,
• feed it to a DPLL-based SAT solver,
• use a theory decision procedure to refine the formula.

DPLL(T ) [Tin02, GHN+04, NO05]:
• use the decision procedure to guide the search of a DPLL

solver.
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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An Abstract Framework for DPLL

• The DPLL procedure can be described declaratively by
simple sequent-style calculi [Tin02, BT03].

• Such calculi, however, cannot model meta-logical
features such as backtracking, learning and restarts.

• One can better model DPLL and its enhancements as
transition systems [NOT05].

• A transition system is a binary relation over states,
induced by a set of conditional transition rules.
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An Abstract Framework for DPLL [NOT05]

States:

fail or M || F

where F is a CNF formula, a set of clauses, and
M is a sequence of annotated literals
denoting a partial truth assignment.
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An Abstract Framework for DPLL [NOT05]

States:

fail or M || F

Initial state:
• ∅ || F , where F is to be checked for satisfiability.

Expected final states:
• fail , if F is unsatisfiable

•
M || G, where M is a model of G and

G is logically equivalent to F .
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Transition Rules for Basic DPLL

Extending the assignment:

UnitProp

M || F, C ∨ l → M l || F, C ∨ l if

{
M |= ¬C,

l is undefined in M
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Transition Rules for Basic DPLL

Extending the assignment:

UnitProp

M || F, C ∨ l → M l || F, C ∨ l if

{
M |= ¬C,

l is undefined in M

Decide

M || F → M ld || F if

{
l or l occurs in F,
l is undefined in M

Notation: ld annotates l as a decision literal.
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Transition Rules for Basic DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{
M |= ¬C,

M contains no decision literals
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Transition Rules for Basic DPLL

Repairing the assignment:

Backjump

M ldN || F,C → M k || F,C if







1. M ldN |= ¬C,

2. for some D ∨ k:
F,C |= D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ldN || F,C
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Basic DPLL System

At the core, current DPLL-based SAT solvers are
implementations of the transition system:

Basic DPLL
• UnitProp

• Decide

• Fail

• Backjump
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
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Basic DPLL System – Example

∅ || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Decide)

1 2 3 4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (UnitProp)

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

Backjump with clause 1 ∨ 5
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Basic DPLL System – Example

. . .

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2.

Backjump with clause 1 ∨ 5







M ldN |= ¬C,

for some clause D ∨ k:
F |= D ∨ k,

M |= ¬D,

k is undefined in M
k or k occurs in F







1 2 3 4 5 6 |= ¬(6 ∨ 5 ∨ 2),

for clause 1 ∨ 5:
F |= 1 ∨ 5,

1 2 |= 1,

5 is undefined in 1 2

5 occurs in F
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Basic DPLL System – Example

. . .

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2.

Indeed, F |= 1 ∨ 5. For instance, by resolution,

1 ∨ 2 6 ∨ 5 ∨ 2

1 ∨ 6 ∨ 5 5 ∨ 6

1 ∨ 5

Therefore, instead deciding 3, we could have deduced 5.
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Basic DPLL System – Example

. . .

1 2 3 4 5 6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 =⇒ (Backjump)

1 2 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2.

Indeed, F |= 1 ∨ 5. For instance, by resolution,

1 ∨ 2 6 ∨ 5 ∨ 2

1 ∨ 6 ∨ 5 5 ∨ 6

1 ∨ 5

Therefore, instead deciding 3, we could have deduced 5.

Clauses like 1 ∨ 5 are computed by navigating conflict graphs.
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The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules
and starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible
state.
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The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules
and starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible
state.

Proposition (Strong Termination) Every execution in Basic
DPLL is finite.

Note: This is not so immediate, because of Backjump.
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The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules
and starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible
state.

Proposition (Soundness) For every exhausted execution
starting with ∅ || F and ending in M || F , M |= F .

Proposition (Completeness) If F is unsatisfiable, every
exhausted execution starting with ∅ || F ends with fail .
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The Basic DPLL System – Correctness Proofs

The termination argument is based on the fact that each rule
produces a smaller (i.e. more determined) state.
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The Basic DPLL System – Correctness Proofs

The termination argument is based on the fact that each rule
produces a smaller (i.e. more determined) state.

The soundness and completeness arguments are based on
the following invariants.

Proposition If M || G is reachable from ∅ || F then

1. All atoms in M and all atoms in G are in F .

2. M is a (partial) truth assignment.

3. G is logically equivalent to F

4. If M = M0 l
d

1 M1 · · · ldn Mn, then F ∪ {l1, . . . , li} |= Mi for
i = 0, . . . , n.
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Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |= C

Forget

M || F, C → M || F if F |= C

Restart
M || F → ∅ || F if . . . you want to
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Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |= C

Forget

M || F, C → M || F if F |= C

Restart
M || F → ∅ || F if . . . you want to

We will ignore these enhancements here for simplicity.
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Roadmap

• Introduction to First-order Logic with Equality
• The Combined Validity Problem in FOL
• The Combined Satisfiability Problem
• The Combination Problem for Universal Formulas
• The Nelson-Oppen method
• From Literals to Clauses
• An Abstract DPLL Framework for SAT
• Extensions to Satisfiability Modulo Theories
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From SAT to SMT — A (Very) Lazy Approach

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory: Equality
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From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4
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From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

CAV 2005 – p.79/100



From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2
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3

∧ c 6= d
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4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.
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From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.
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From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1
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3

∧ c 6= d
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4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

• SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.
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From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

• SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
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From SAT to SMT — A (Very) Lazy Approach

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

• SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2∨ 3, 4, 1∨ 2, 1∨ 3∨ 4} unsatisfiable.
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Modeling the Lazy Approach

Let T be the background theory.

The previous process can be modeled in Abstract DPLL using
the following rules:

• UnitProp, Decide, Fail, Restart

(as in the propositional case) and

• T -Backjump, Very Lazy Theory Learning

Note: The first component of a state M || F is still a truth
assignment, but now for ground, first-order literals.
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Modeling the Lazy Approach

T -Backjump

M ldN || F,C → M k || F,C if







1. M ldN |= ¬C,

2. for some D ∨ k:
F,C |=T D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ldN || F,C

Only change: |=T instead of |=

Notation: F |=T G iff T, F |= G
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Modeling the Lazy Approach

The interaction between theory solver and SAT solver in the
previous example can be modeled with the rule

Very Lazy Theory Learning

M || F → ∅ || F, l1 ∨ . . . ∨ ln if







M |= F

{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥
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Modeling the Lazy Approach

The interaction between theory solver and SAT solver in the
previous example can be modeled with the rule

Very Lazy Theory Learning

M || F → ∅ || F, l1 ∨ . . . ∨ ln if







M |= F

{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥

A better approach is to detect partial assignments that are
already T -unsatisfiable.
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Modeling the Lazy Approach

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥

l1 ∨ · · · ∨ ln /∈ F
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Modeling the Lazy Approach

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







{l1, . . . , ln} ⊆M

l1 ∧ · · · ∧ ln |=T ⊥

l1 ∨ · · · ∨ ln /∈ F

• The learned clause is false in M , hence either Backjump or
Fail applies.

• If this is always done, the third condition of the rule is
unnecessary

• In some solvers, the rule is applied as soon as possible,
i.e., with M = N ln.
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Lazy Approach – Strategies

A common strategy is to apply the rules using the following
priorities:

1. If a current clause is falsified by the current assignment,
apply Fail/Backjump.

2. If the assignment is T -unsatisfiable,
apply Lazy Theory Learning + Fail/Backjump.

3. Apply UnitProp.

4. Apply Decide.
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DPLL( T ) – Eager Theory Propagation

Use the theory information as soon as possible by eagerly
applying

Theory Propagate

M || F → M l || F if







M |=T l

l or l occurs in F
l is undefined in M

Note: Test M |=T l provided by decision procedure
(as M |=T l iff M l |=T ⊥).
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Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4
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Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4
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Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4
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Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 =⇒ (Fail)

fail
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Eager Theory Propagation

• By eagerly applying Theory Propagate every assignment is
T -satisfiable, since M l is T -unsatisfiable iff M |=T l.

• As a consequence, Lazy Theory Learning never applies.

• For some logics, e.g., difference logic, his approach is
extremely effective.

• For some others, e.g., the theory of equality, it is too
expensive to detect all T -consequences.

• If Theory Propagate is not applied eagerly, Lazy Theory Learning
is needed to repair T -unsatisfiable assignments.

CAV 2005 – p.87/100



Lazy Theory Propagation

• Assume a decision procedure P for the T -satisfiability of
sets of ground literals.

• The 4 rules of the DPLL system + Lazy Theory Learning +
Theory Propagate + P provide a decision procedure for the
T -satisfiability of sets of ground clauses.

• Termination can be guaranteed by applying Fail/Backjump
immediately after Lazy Theory Learning.

• Soundness and completeness are proved similarly to the
propositional case.

• Arbitrary ground formulas can be dealt as usual by a
preliminary CNF translation.
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Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective decision
procedures P1, . . . , Pn.

How can we reason over all of them with Abstract DPLL?
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Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective decision
procedures P1, . . . , Pn.

How can we reason over all of them with Abstract DPLL?

Quick Solution:

1. Combine P1, . . . , Pn with Nelson-Oppen into a decision
procedure for T1 ∪ · · · ∪ Tn.

2. Use Abstract DPLL with T = T1 ∪ · · · ∪ Tn.
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Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective decision
procedures P1, . . . , Pn.

How can we reason over all of them with Abstract DPLL?

Better Solution [Bar02, Tin04, BBC+05]:

1. Lift Nelson-Oppen to the DPLL level.

2. Use Abstract DPLL with multiple theories.
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Abstract DPLL Modulo Multiple Theories

Preliminaries

• Let n = 2, for simplicity.

• Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅.

• Let C be a set of free constants.

• Assume wlog that each input literal has signature Σ1(C)
or Σ2(C) (no mixed literals).

• Let M i = {Σi(C)-literals of M}.

• Let se(M) = {c ≈ d | c, d occur in C, M 1 and M 2}
(shared equalities).
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Abstract DPLL – Rules for Multiple Theories

UnitProp (unchanged)

Fail (unchanged)

T -Backjump (unchanged, with T = T1 ∪ T2)

Decide

M || F → M ld || F if

{
l or l occurs in F or in se(M),

l is undefined in M

Only change: decide on (undefined) shared equalities as well.
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Abstract DPLL – Rules for Multiple Theories

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







i ∈ {1, 2}

{l1, . . . , ln} ⊆M i

l1 ∧ · · · ∧ ln |=Ti
⊥

l1 ∨ · · · ∨ ln /∈ F

Theory Propagate

M || F → M l || F if







i ∈ {1, 2}

M i |=Ti
l

l or l occurs in F ∪ se(M)

l is undefined in M

Changes: (i) reason locally in Ti, (ii) theory propagate shared
equalities as well.
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