From Counter-Model-based Quantifier Instantiation to Quantifier Elimination in SMT
 CADE 27

Andrew Reynolds Cesare Tinelli
August 29, 2019
The University of Iowa

Acknowledgments

Collaborators:
Kshitij Bansal*, Haniel Barbosa*, Clark Barrett*, François Bobot*, Martin Brain*, Morgan Deters*, Pascal Fontaine, Amit Goel, Liana Hadarean*, Dejan Jovanovič*, Guy Katz*, Tim King*, Sava Krstič, Viktor Kunčak, Tianyi Liang*, Paul Meng*, Mudathir Mohammed*, Leonardo de Moura, Aina Niemetz*, Andres Noetzli*, Mathias Preiner*, Arjun Viswanathan, Yoni Zohar*
(*) past or present
developer

Outline

Introduction

Quantifier Instantiation
E-matching
Conflict-Based Quantifier Instantiation
Model-based Quantifier Instantiation
Counter-Example-Guided Quantifier Instantiation
Quantifier Instantiation for Bit Vectors
Quantifier Instantiation for Floating Point Arithmetic
Conclusion

Introduction

Satisfiability Modulo Theories (SMT)

- Subfield of automated deduction focussing on specialized reasoning in certain logical theories
- Used in large and diverse number of applications
- Traditionally, strong on quantifier-free reasoning
- However, many applications require a mix of built-in and axiomatically defined symbols

Need for Quantifiers in SMT Applications

Automated Theorem Proving

Background axioms:

$$
\begin{aligned}
& \forall x \cdot g(e, x)=g(x, e)=x, \forall x \cdot g(x, i(x))=e \\
& \forall x \cdot g(x, g(y, z))=g(g(x, y), x)
\end{aligned}
$$

Software Verification
Unfolding: $\forall x$. $f \circ o(x)=\operatorname{bar}(x+1)$
Code contracts: $\forall x$. pre $(x) \Rightarrow \operatorname{post}(f(x))$
Frame axioms: $\forall x . x \neq t \Rightarrow A^{\prime}(x)=A(x)$
Function Synthesis
Synthesis conjectures: $\forall i$:input. $\exists o$:output. $R[0, i]$
Planning
Specifications: $\exists p:$ plan $\forall t:$ time $F[p, t]$

Grand Challenge in Automated Deduction

Reasoning efficiently about theory symbols and quantifiers

Reasoning with Theories and Quantifiers in FOL - ATP case

First-order theorem provers focus mostly on reasoning with quantifiers but some have been extended to theory reasoning:

Vampire, E, SPASS, Beagle

iProver

Princess

Reasoning with Theories and Quantifiers in FOL - ATP case

First-order theorem provers focus mostly on reasoning with quantifiers but some have been extended to theory reasoning:

Vampire, E, SPASS, Beagle

- First-order resolution/superposition [Nieuwenhuis\&Rubio 1999, Prevosto\&Waldman 2006, Althaus et al. 2009, Baumgartner\&Waldman 2013]
- AVATAR [Voronkov 2014, Reger et al. 2015]
iProver
- InstGen calculus [Ganzinger\&Korovin 2003]

Princess

- Sequent calculus [Rümmer 2008]

Reasoning with Theories and Quantifiers in FOL - SMT case

SMT solvers focus mostly on quantifier-free theory reasoning but some have been extended to reasoning with quantifiers:

Alt-Ergo, CVC3, CVC4, veriT, Z3

Reasoning with Theories and Quantifiers in FOL - SMT case

SMT solvers focus mostly on quantifier-free theory reasoning but some have been extended to reasoning with quantifiers:

Alt-Ergo, CVC3, CVC4, veriT, Z3

- Some superposition-based [deMoura et al. 2009]
- Most instantiation-based [Detlefs et al. 2005, deMoura et al. 2007, Ge et al. 2007, ...]

SMT Solvers using Quantifier Instantiation

Traditionally:

- E-matching [Detlefs et al. 2005, Bjørner et al. 2007, CADE 2007]

More recently:

- Model-Based Instantiation [Ge et al. 2009, CADE 2013]
- Conflict-Based Instantiation [FMCAD 2014, TACAS 2017]
- Theory-specific Approaches
- Linear arithmetic [Bjørner 2012, CAV 2015, Janota et al. 2015]
- Bit-Vectors [Wintersteiger et al. 2013, Dutertre 2015]

SMT Solvers using Quantifier Instantiation

Traditionally:

Implemented in

- E-matching [Detlefs et al. 2005, $\begin{aligned} & \text { Alt-Ergo, CVC3-4, FX7, } \\ & \text { Simplify, veriT, Z3 }\end{aligned}$ More recently:
- Model-Based Instantiation [Ge et al. 2009, CADE 2013]
- Conflict-Based Instantiation [FMCAD 2014, TACAS 2017]
- Theory-specific Approaches
- Linear arithmetic [Bjørner 2012, CAV 2015, Janota et al. 2015]
- Bit-Vectors [Wintersteiger et al. 2013, Dutertre 2015]

SMT Solvers using Quantifier Instantiation

Traditionally:
Implemented in

- E-matching [Detlefs et al. 2005, $\begin{aligned} & \text { Alt-Ergo, CVC3-4, FX7, } \\ & \text { Simplify, veriT, Z3 }\end{aligned}$

More recently:

- Model-Based Instantiation [G CVC4, Z3
- Conflict-Based Instantiation [CVC4, veriT
- Theory-specific Approaches
- Linear arithmetic [Bjфrner 2 CVC4, Yices, veriT, Z3

2015]

SMT Solvers for Ground Formulas

SMT Solvers for Ground Formulas

when F is unsatisfiable
unsat

SMT Solvers for Ground Formulas

Adding Quantifier Instantiation to SMT Solvers

$$
\{a \approx b \Rightarrow \underbrace{\forall x \forall y P(x) \vee Q(x, y)}_{a}, \ldots\}
$$

Adding Quantifier Instantiation to SMT Solvers

Formulas F

Adding Quantifier Instantiation to SMT Solvers

Adding Quantifier Instantiation to SMT Solvers

Adding Quantifier Instantiation to SMT Solvers

Main Questions:

- Which instantiations likely lead to unsat?
- When can we answer sat?

Quantifier Instantiation

Outline

Introduction
Quantifier Instantiation
E-matching
Conflict-Based Quantifier Instantiation
Model-based Quantifier Instantiation
Counter-Example-Guided Quantifier Instantiation
Quantifier Instantiation for Bit Vectors
Quantifier Instantiation for Floating Point Arithmetic
Conclusion

Instantiations by E-matching

Basic Idea: Choose instances based on pattern matching over E-graph of asserted ground (dis-)equalities [Nelson 80]

Instantiations by E-matching

Basic Idea: Choose instances based on pattern matching over E-graph of asserted ground (dis-)equalities [Nelson 80]

Most widely used technique for refuting quantified problems in SMT

Instantiations by E-matching

Basic Idea: Choose instances based on pattern matching over E-graph of asserted ground (dis-)equalities [Nelson 80]

Most widely used technique for refuting quantified problems in SMT

Exploited in:

- Software Verification (Boogie, Dafny, Leon, SPARK, Why3, ...)
- ...
- Automated Theorem Proving (Sledgehammer)

E-matching's Challenge \#1 : Too Many Instances

Ground solver gets overloaded and times out

E-matching's Challenge \#2: Incompleteness

E-matching's Challenge \#2: Incompleteness

Unsatisfiability goes undetected

Addressing E-matching's Challenges

Too many instances?

- Try conflict-based instantiation first [FMCAD 2014]

Addressing E-matching's Challenges

Too many instances?

- Try conflict-based instantiation first [FMCAD 2014]

Apply E-matching

Addressing E-matching's Challenges

Too many instances?

- Try conflict-based instantiation first [FMCAD 2014]

Apply E-matching

No instances and input may be satisfiable?
\triangleright Try model-based instantiation next [Ge\&deMoura 2009]

Outline

Introduction

Quantifier Instantiation
E-matching
Conflict-Based Quantifier Instantiation
Model-based Quantifier Instantiation
Counter-Example-Guided Quantifier Instantiation
Quantifier Instantiation for Bit Vectors
Quantifier Instantiation for Floating Point Arithmetic
Conctusion

Conflict-Based Q।

Basic idea: Given $E \cup\{\forall x . \varphi[x], \ldots\}$,

- Try to find one conflict instance $\forall x . \varphi[x] \Rightarrow \varphi[t]$ such that

$$
E, \varphi[t] \models T \perp
$$

- If this is possible, E-matching is not needed

Conflict-Based Q।

Basic idea: Given $E \cup\{\forall x . \varphi[x], \ldots\}$,

- Try to find one conflict instance $\forall x . \varphi[x] \Rightarrow \varphi[t]$ such that

$$
E, \varphi[t] \models T \perp
$$

- If this is possible, E-matching is not needed

Leads to fewer instances, improving ability to answer unsat

Impact of Conflict-Based QI in CVC4

CBQI (cvc4+ci) needs $10^{-1} \mathrm{X}$ instances to show unsat vs.
E-matching alone

(evaluation on SMT-LIB, TPTP, and Isabelle benchmarks [FMCAD 2014])

CBQI's Challenge \#1: Finding Conflicting Instances

Our solution: Construct instances via a stronger version of matching [FMCAD 2014]

Intuition: with $\forall x . P[x] \vee Q[x]$ only match on $P[t]$ where

$$
P[t] \equiv_{\text {EUF }} \perp
$$

Formalized as calculus based on ground E-(dis)unification [TACAS 2017]

CBQI's Challenge \#2: Theory Symbols

Difficulty of finding conflicting instances in the presence of theory symbols:

$$
E=\{f(1) \approx 5, \ldots\} \quad Q=\{\underbrace{\forall x, y \cdot f(x+y)>x+2 \cdot y}_{q}, \ldots\}
$$

CBQ|'s Challenge \#2: Theory Symbols

Difficulty of finding conflicting instances in the presence of theory symbols:

$$
\begin{aligned}
E=\{f(1) \approx 5, \ldots\} \quad Q= & \{\underbrace{\forall x, y \cdot f(x+y)>x+2 \cdot y}_{q}, \ldots\} \\
& \downarrow \\
q \Rightarrow & f(1)>5
\end{aligned}
$$

CBQ|'s Challenge \#2: Theory Symbols

Difficulty of finding conflicting instances in the presence of theory symbols:

$$
\begin{gathered}
E=\{f(1) \approx 5, \ldots\} \quad Q=\{\underbrace{\forall x, y \cdot f(x+y)>x+2 \cdot y}_{q}, \ldots\} \\
\downarrow \\
q \Rightarrow f(-3+4)>-3+2 \cdot 4
\end{gathered}
$$

CBQI's Challenge \#2: Theory Symbols

Difficulty of finding conflicting instances in the presence of theory symbols:

$$
\begin{gathered}
E=\{f(1) \approx 5, \ldots\} \quad Q=\{\underbrace{\forall x, y \cdot f(x+y)>x+2 \cdot y}_{q}, \cdots\} \\
\downarrow \\
q \Rightarrow f(-3+4)>-3+2 \cdot 4
\end{gathered}
$$

Generally, use fast and incomplete procedure for quantifiers + theories

Outline

Introduction

Quantifier Instantiation
E-matching
Conflict-Based Quantifier Instantiation
Model-based Quantifier Instantiation
Counter-Example-Guided Quantifier Instantiation
Quantifier Instantiation for Bit Vectors
Quantifior Instantiation for Floating Point Arithmetic
Conclusion

$$
E=\{\text { ground literals }\} \quad Q=\{\text { quantified formulas }\}
$$

Model-based Quantifier Instantiation

$$
E=\{\text { ground literals }\} \quad Q=\{\text { quantified formulas }\}
$$

Basic idea:

If E -matching saturates, build a candidate model I satisfying E

1. Check if \mathcal{I} also satisfies Q
(using a ground satisfiability query)
2. If not, add instance of formula in Q falsified by I
3. Repeat

Model-based Quantifier Instantiation

$$
E=\{\text { ground literals }\} \quad Q=\{\text { quantified formulas }\}
$$

Basic idea:

If E-matching saturates, build a candidate model I satisfying E

1. Check if \mathcal{I} also satisfies Q
(using a ground satisfiability query)
2. If not, add instance of formula in Q falsified by \mathcal{I}
3. Repeat

Gives ability to answer sat

Impact of Model-Based QI in CVC4

Impact of Model-Based QI in CVC4

CVC4 Finite Model Finding + Model-Based instantiation [CADE 2013]
Scales only up to $\sim 150 \mathrm{~K}$ instances with a 30 s timeout

Impact of Model-Based QI in CVC4

CVC4 Finite Model Finding + Model-Based instantiation [CADE 2013]
Scales to >2B instances with a 30s timeout, generates only a fraction of possible instances

Model-Based QI: Challenges

How do we build interpretations \mathcal{I} ?
Typically, build I where every function is almost constant:
$f^{\mathcal{I}}:=\lambda x \cdot \operatorname{ite}\left(x=t_{1}, v_{1}, \operatorname{ite}\left(x=t_{2}, v_{2}, \ldots, \operatorname{ite}\left(x=t_{n}, v_{n}, v_{\text {def }}\right) \ldots\right)\right)$
This works well in EUF

Model-Based Ql: Challenges

How do we build interpretations \mathcal{I} ?
However, more sophisticated models are needed when other theories are involved:
$\forall x, y$: Int. $(f(x, y) \geq x \wedge f(x, y) \geq y) \quad f^{\mathcal{I}}:=\lambda x, y:$ Int. ite $(x \geq y, x, y)$

Model-Based QI: Challenges

How do we build interpretations I?
However, more sophisticated models are needed when other theories are involved:

$$
\begin{array}{ll}
\forall x, y: \text { Int. }(f(x, y) \geq x \wedge f(x, y) \geq y) & f^{\mathcal{I}}:=\lambda x, y: \text { Int. ite }(x \geq y, x, y) \\
\forall x: \text { Int. } 3 \cdot g(x)+5 \cdot h(x)=x & \\
& g^{\mathcal{I}}:=\lambda x \cdot x-3 \cdot x \\
h^{\mathcal{I}}:=\lambda x .2 \cdot x
\end{array}
$$

Model-Based QI: Challenges

How do we build interpretations I?
However, more sophisticated models are needed when other theories are involved:

$$
\begin{array}{ll}
\forall x, y: \operatorname{Int} .(f(x, y) \geq x \wedge f(x, y) \geq y) & f^{\mathcal{I}}:=\lambda x, y: \text { Int. ite }(x \geq y, x, y) \\
\forall x: \text { Int. } 3 \cdot g(x)+5 \cdot h(x)=x & \\
& g^{\mathcal{I}}:=\lambda x \cdot x-3 \cdot x \\
& h^{\mathcal{I}}:=\lambda x .2 \cdot x
\end{array}
$$

$\forall x, y: \operatorname{Int} . u(x+y)+11 \cdot v(w(x))=x \quad ? ?$

Model-Based QI: Challenges

How do we build interpretations \mathcal{I} ?
However, more sophisticated models are needed when other theories are involved:

$$
\begin{array}{ll}
\forall x, y: \operatorname{Int} .(f(x, y) \geq x \wedge f(x, y) \geq y) & f^{\mathcal{I}}:=\lambda x, y: \text { Int. ite }(x \geq y, x, y) \\
\forall x: \text { Int. } 3 \cdot g(x)+5 \cdot h(x)=x & \\
& g^{\mathcal{I}}:=\lambda x \cdot x-3 \cdot x \\
h^{\mathcal{I}}:=\lambda x .2 \cdot x
\end{array}
$$

$\forall x, y$: Int. $u(x+y)+11 \cdot v(w(x))=x \quad$??

More research is needed!

(may leverage recent advantages in syntax-guided synthesis?)

Putting It All Together in CVC4

General Challenge

> Reasoning efficiently about quantifiers + EUF + other theories is still hard!

E-matching: Pattern selection, matching modulo theories

Conflict-based: Matching is incomplete, entailment tests are

Model-based: Models are complex, interpreted domains may

General Challenge

Reasoning efficiently about quantifiers + EUF + other theories is still hard!

E-matching: Pattern selection, matching modulo theories
Conflict-based: Matching is incomplete, entailment tests are expensive

Model-based: Models are complex, interpreted domains may be infinite

Bright Spot

Reasoning efficiently about quantifiers + EUF + other theories is not as bad

Bright Spot

Reasoning efficiently about quantifiers + EUF + other theories is not as bad

- Classic QE algorithms are decision procedures for LRA [Ferrante\&Rackoff 79, Loos\&Wiespfenning 93], LIA [Cooper 72], datatypes [Maher 1988], ...
- Some have been leveraged successfully in SMT applications [Monniaux 2010, Bjorner 2012, Reynolds et al. 2015, Bjorner\&Janota 2016, ...]

Bright Spot

Reasoning efficiently about quantifiers + EUF + other theories is not as bad

- Classic QE algorithms are decision procedures for LRA [Ferrante\&Rackoff 79, Loos\&Wiespfenning 93], LIA [Cooper 72], datatypes [Maher 1988], ...
- Some have been leveraged successfully in SMT applications [Monniaux 2010, Bjorner 2012, Reynolds et al. 2015, Bjorner\&Janota 2016, ...]

Counter-Example-Guided Quantifier Instantiation

Counterexample-Guided QI

Counterexample-Guided Quantifier Instantiation

Variants implemented in number of tools:

- Z3 [Bjorner 2012, Bjorner\&Janota 2016]
- SPACER [Komuravelli et al. 2014] ${ }^{1}$
- Yices [Dutertre 2015]
- CVC4 [CAV 2015, CAV 2018]
- UFO [Fedyukovich et al. 2016] ${ }^{2}$
- Boolector [Preiner et al. 2017]

[^0]
Counterexample-Guided Instantiation

Basic idea: Derived from quantifier elimination (e.g., for LIA):

$$
\exists x . \psi[x, y] \equiv \tau \psi\left[t_{1}, y\right] \vee \cdots \vee \psi\left[t_{n}, y\right] \text { for some } t_{1}, \ldots, t_{n}
$$

Counterexample-Guided Instantiation

Basic idea: Derived from quantifier elimination (e.g., for LIA):

$$
\forall x . \neg \psi[x, y] \equiv T \neg \psi\left[t_{1}, y\right] \wedge \cdots \wedge \neg \psi\left[t_{n}, y\right] \text { for some } t_{1}, \ldots, t_{n}
$$

Counterexample-Guided Instantiation

Basic idea: Derived from quantifier elimination (e.g., for LIA):

$$
\forall x . \neg \psi[x, y] \equiv T \neg \psi\left[t_{1}, y\right] \wedge \cdots \wedge \neg \psi\left[t_{n}, y\right] \text { for some } t_{1}, \ldots, t_{n}
$$

Enumerate instances via a counterexample-guided loop that is

1. terminating: generate a finite set $S \supseteq\left\{t_{1}, \ldots, t_{n}\right\}$
2. efficient in practice: typically terminates after $\ll n$ instances

High-level View of Basic Procedure

```
basic-CEGQI(\forallx.\psi[x,y])
    G := \emptyset
    repeat
    if G is T-unsatisfiable
        return unsat
    else
    let G'}=G\cup{\neg\psi
    if is G}\mp@subsup{G}{}{\prime}\mathrm{ is T-unsatisfiable
        return sat
    else
            let I be a T-model of G'
            let t[y] = Sel(x,\psi,\mathcal{I},G)
            G:= G\cup{\psi[t,y]}
```


High-level View of Basic Procedure

```
basic-CEGQI(\forallx.\psi[x,y])
G :=\emptyset
repeat
    if G is T-unsatisfiable
        return unsat
    else
    let G'}=G\cup{\neg\psi
    if is G}\mp@subsup{G}{}{\prime}\mathrm{ is T-unsatisfiable
        return sat
    else
            let I be a T-model of G'
            let t[y] = Sel(x,\psi,\mathcal{I},G)
            G:= G\cup{\psi[t,y]}
```


High-level View of Basic Procedure

basic-CEGQI $(\forall x . \psi[x, y])$
$G:=\emptyset$
repeat
if G is T-unsatisfiable return unsat

(instances of $\forall x . \psi$)

(because $\forall x . \psi \models_{T} G$)
else
let $G^{\prime}=G \cup\{\neg \psi\}$
if is G^{\prime} is T-unsatisfiable return sat else
let \mathcal{I} be a T-model of G^{\prime}
let $t[y]=\operatorname{Sel}(x, \psi, \mathcal{I}, G)$
$G:=G \cup\{\psi[t, y]\}$

High-level View of Basic Procedure

basic-CEGQI $(\forall x . \psi[x, y])$
$G:=\emptyset$
repeat
if G is T-unsatisfiable return unsat

(instances of $\forall x . \psi$)

(because $\forall x . \psi \models_{T} G$)
else
let $G^{\prime}=G \cup\{\neg \psi\}$
if is G^{\prime} is T-unsatisfiable return sat
else
let \mathcal{I} be a T-model of G^{\prime}
let $t[y]=\operatorname{Sel}(x, \psi, \mathcal{I}, G)$
$G:=G \cup\{\psi[t, y]\}$

High-level View of Basic Procedure

basic-CEGQI $(\forall x . \psi[x, y])$
$G:=\emptyset$
repeat
if G is T-unsatisfiable return unsat

(instances of $\forall x . \psi$)

(because $\forall x . \psi \models_{T} G$)
else
let $G^{\prime}=G \cup\{\neg \psi\}$
if is G^{\prime} is T-unsatisfiable return sat else
let \mathcal{I} be a T-model of G^{\prime}
let $t[y]=\operatorname{Sel}(x, \psi, \mathcal{I}, G)$
$\mathrm{G}:=\mathrm{G} \cup\{\psi[t, y]\}$
(because $G \models_{T} \forall x . \psi$)

Relies on selection function Sel

Selection Function

Right selection functions make CEGQI a decision procedure for various theories T

Termination Requirements:
Quantifen fine fingunento T is decidable

Selection Function

Right selection functions make CEGQI a decision procedure for various theories T

Termination Requirements:

1. Quantifier-free fragment of T is decidable

Selection Function

Right selection functions make CEGQI a decision procedure for various theories T

Termination Requirements:

1. Quantifier-free fragment of T is decidable
2. For all qffs $\psi[x, y]$, selection function Sel is
2.1 finite:
there is a finite set $S_{\psi, x} \operatorname{s.t.} \operatorname{Sel}(x, \psi, \mathcal{I}, G) \in S_{\psi, x}$ for all legal \mathcal{I}, G

Selection Function

Right selection functions make CEGQI a decision procedure for various theories T

Termination Requirements:

1. Quantifier-free fragment of T is decidable
2. For all qffs $\psi[x, y]$, selection function Sel is
2.1 finite:
there is a finite set $S_{\psi, x} \operatorname{s.t.} \operatorname{Sel}(x, \psi, \mathcal{I}, G) \in S_{\psi, x}$ for all legal \mathcal{I}, G
2.2 monotonic:
if $G \not \models_{T} \psi[t, y]$ then $\operatorname{Sel}(x, \psi, \mathcal{I}, G) \neq t$ for all legal \mathcal{I}, G

Selection Function

Right selection functions make CEGQI a decision procedure for various theories T

Termination Requirements:

1. Quantifier-free fragment of T is decidable
2. For all qffs $\psi[x, y]$, selection function Sel is

$$
\text { if } G \models_{T} \psi[t, y] \text { then } \operatorname{Sel}(x, \psi, \mathcal{I}, G) \neq t \text { for all legal } \mathcal{I}, G
$$

From CEGQI ...

$$
\begin{aligned}
& \text { basic-CEGQI }(\forall x . \psi[x, y]) \\
& G:=\emptyset \\
& \text { repeat } \\
& \text { if } G \text { is } T \text {-unsatisfiable } \\
& \text { return unsat } \\
& \text { else } \\
& \text { let } G^{\prime}=G \cup\{\neg \psi\} \\
& \text { if is } G^{\prime} \text { is } T \text {-unsatisfiable } \\
& \text { return sat } \\
& \text { else } \\
& \text { let } \mathcal{I} \text { be a } T \text {-model of } G^{\prime} \\
& \text { let } t[y]=\operatorname{Sel}(x, \psi, \mathcal{I}, G) \\
& G:=G \cup\{\psi[t, y]\}
\end{aligned}
$$

From CEGQI to Quantifier Elimination

```
\(\operatorname{project}(x, \psi[x, y])\)
    \(G:=\emptyset\)
    repeat
        if \(G\) is \(T\)-unsatisfiable
        return \(\perp\)
    else
            let \(G^{\prime}=G \cup\{\neg \psi\}\)
            if is \(G^{\prime}\) is \(T\)-unsatisfiable
        return \(\wedge G\)
        else
            let \(\mathcal{I}\) be a \(T\)-model of \(\mathrm{G}^{\prime}\)
            let \(t[y]=\operatorname{Sel}(x, \psi, \mathcal{I}, G)\)
            \(G:=G \cup\{\psi[t, y]\}\)
```


From CEGQI to Quantifier Elimination

```
project(x,\psi[x,y])
    G :=\emptyset
    repeat
        if G is T-unsatisfiable
        return }
    else
            let G' =G\cup{\neg\psi}
if is \(G^{\prime}\) is \(T\)-unsatisfiable return \(\wedge G\) else
let \(\mathcal{I}\) be a \(T\)-model of \(\mathrm{G}^{\prime}\)
let \(t[y]=\operatorname{Sel}(x, \psi, \mathcal{I}, G)\)
\(\mathrm{G}:=\mathrm{G} \cup\{\psi[t, y]\}\)
```


Note:

Let $\varphi[y]=\operatorname{project}(x, \psi[x, y])$
Then $\varphi \equiv_{T} \forall x$. ψ

From CEGQI to QE: General Case

Assumption: Consider only NNF formulas φ containing a subformula $\forall x . \varphi_{1} \vee \varphi_{2}$ (resp. $\exists x . \varphi_{1} \wedge \varphi_{2}$) only if $\varphi_{1} \vee \varphi_{2}$ (resp. $\varphi_{1} \wedge \varphi_{2}$) is quantifier-free ${ }^{3}$

[^1]
From CEGQI to QE: General Case

$\mathrm{qe}(x, \varphi) \quad:=$ if φ is quantifier-free then

$$
\operatorname{project}(x, \varphi)
$$

else
match φ with

$$
\begin{aligned}
\varphi_{1} \wedge \varphi_{2}: & \operatorname{qe}\left(x, \varphi_{1}\right) \wedge \operatorname{qe}\left(x, \varphi_{2}\right) \\
\exists z . \psi: & \neg \operatorname{qe}(x, \forall z . \operatorname{nnf}(\neg \psi)) \\
\forall z . \psi: & \operatorname{qe}(x, \operatorname{qe}(z, \psi))
\end{aligned}
$$

$\operatorname{nnf}(\varphi):=$ negation normal form of φ

From CEGQI to QE: General Case

$\mathrm{qe}(\boldsymbol{x}, \varphi):=\quad$ if φ is quantifier-free then
$\operatorname{project}(\boldsymbol{x}, \varphi)$
else
match φ with
Note:

1. Avoiding full prenex normal form transformation increases scalability in practice
2. Implementation of general CEBQI in CVC4 is similar in spirit to qe but is fully integrated into SMT loop [FMSD 2017]

Selection Functions

Linear real arithmetic (LRA) [FMSD 2017]

- Maximal lower (minimal upper) bounds [Loos+Wiespfenning 1993]

$$
l_{1}<k, \ldots, l_{n}<k \quad \Longrightarrow \quad\left\{x \mapsto l_{\max }+d\right\}
$$

(may involve virtual terms δ, ∞)

- Interior point method [Ferrante\&Rackoff 1979]

$$
l_{\max }<k<u_{\min } \quad \Longrightarrow \quad\left\{x \mapsto\left(l_{\max }+u_{\min }\right) / 2\right\}
$$

Selection Functions

Linear real arithmetic (LRA) [FMSD 2017]

- Maximal lower (minimal upper) bounds [Loos+Wiespfenning 1993]

$$
l_{1}<k, \ldots, l_{n}<k \quad \Longrightarrow \quad\left\{x \mapsto l_{\max }+d\right\}
$$

(may involve virtual terms δ, ∞)

- Interior point method [Ferrante\&Rackoff 1979]

$$
l_{\max }<k<u_{\min } \quad \Longrightarrow \quad\left\{x \mapsto\left(l_{\max }+u_{\min }\right) / 2\right\}
$$

Linear integer arithmetic (LIA) [FMSD 2017]

- Maximal lower (minimal upper) bounds [Cooper 1972]

$$
l_{1}<k, \ldots, l_{n}<k \quad \Longrightarrow \quad\left\{x \mapsto l_{\max }+c\right\}
$$

Selection Functions

Linear real arithmetic (LRA) [FMSD 2017]

- Maximal lower (minimal upper) bounds [Loos+Wiespfenning 1993]

$$
l_{1}<k, \ldots, l_{n}<k \quad \Longrightarrow \quad\left\{x \mapsto l_{\max }+d\right\}
$$

(mav involve virtual terms δ n)

- Ir

Common termination argument: a finite number of instances cover all cases

Linear integer arithmetic (LIA) [FMSD 2017]

- Maximal lower (minimal upper) bounds [Cooper 1972]

$$
l_{1}<k, \ldots, l_{n}<k \quad \Longrightarrow \quad\left\{x \mapsto l_{\max }+c\right\}
$$

Selection Functions

Finite domains

- Model-based value instantiations [Wintersteiger et al. 2013]

$$
D=\left\{d_{1}, \ldots, d_{n}\right\} \quad \Longrightarrow \quad\left\{x \mapsto d_{i}\right\}
$$

Selection Functions

Finite domains

- Model-based value instantiations [Wintersteiger et al. 2013]

$$
D=\left\{d_{1}, \ldots, d_{n}\right\} \quad \Longrightarrow \quad\left\{x \mapsto d_{i}\right\}
$$

Fixed-size Bit vectors

- Value instantiations [Neimetz et al. 2016]

$$
0 \leq i<w \quad \Longrightarrow \quad\left\{x \mapsto 2^{i}\right\}
$$

- Invertibility conditions [CAV 2018]
(next slides)
Datatypes

Selection Functions

Finite domains

- Model-based value instantiations [Wintersteiger et al. 2013]

$$
D=\left\{d_{1}, \ldots, d_{n}\right\} \quad \Longrightarrow \quad\left\{x \mapsto d_{i}\right\}
$$

Fixed-size Bit vectors

- Value instantiations [Neimetz et al. 2016]

$$
0 \leq i<w \quad \Longrightarrow \quad\left\{x \mapsto 2^{i}\right\}
$$

- Invertibility conditions [CAV 2018]
(next slides)

Datatypes

- Stay tuned ...

Outline

Introduction
 Quantifier Instantiation
 E-matching
 Conflict-Based Quantifier Instantiation
 Model-based Quantiner Instantiation

Counter-Example-Guided Quantifier Instantiation
Quantifier Instantiation for Bit Vectors
Quantifier Instantiation for Floating Point Arithmetic
Conclusion

Motivation

Example: Prove unsatisfiability of

$$
\psi=\forall x \cdot x+s \not \approx t
$$

with x, s, t bit vectors of size n

It is crucial to find good set of instantiation candidates for x

Motivation

Example: Prove unsatisfiability of

$$
\psi=\forall x \cdot x+s \not \approx t
$$

with x, s, t bit vectors of size n
Naive approach: Enumerate 2^{n} possible values for x

Motivation

Example: Prove unsatisfiability of

$$
\psi=\forall x \cdot x+s \not \approx t
$$

with x, s, t bit vectors of size n

Better approach:

1. Try to solve $\neg(x+s \not \approx t)$ for $x \quad$ (yielding $x=t-s$)
2. Instantiate ψ with computed symbolic solution

Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints

Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints
Problem: hard or impossible in general

Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints
Problem: hard or impossible in general

- Example: $2 \cdot x \approx 3$ is unsolvable

Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints

Problem: hard or impossible in general
Our Answer:

1. Consider restricted case where φ has the form

$$
x \diamond s \bowtie t \quad \text { or } \quad s \diamond x \bowtie t
$$

with \bowtie relational operator and x not in s or t
2. Consider conditional symbolic solutions
(e.g., identify conditions under which $s \cdot x \approx t$ is solvable)

Invertibility Condition

Exact condition under which a bit vector operation is solvable for some x

Invertibility Condition

Exact condition under which a bit vector operation is solvable for some x

Example: $x \cdot s \approx t$

- Invertibility condition: $(-s \mid s) \& t \approx t$
$\cdot(-s \mid s) \& t \approx t \equiv_{B V} \exists x \cdot x \cdot s \approx t$

Invertibility Condition

Exact condition under which a bit vector operation is solvable for some x

Example: $x \cdot s \approx t$

- Invertibility condition: $(-s \mid s) \& t \approx t$
$\cdot(-s \mid s) \& t \approx t \equiv_{B V} \exists x \cdot x \cdot s \approx t$
$x \cdot s=t$ is solvable for x iff
s has fewer trailing zeroes than t

Invertibility Condition

Exact condition under which a bit vector operation is solvable for some x

Example: $x \cdot s \approx t$

- Invertibility condition: $(-s \mid s) \& t \approx t$
$\cdot(-s \mid s) \& t \approx t \equiv_{\text {BV }} \exists x \cdot x \cdot s \approx t$

Invertibility Conditions

- 162 IC's for: $\left\{\approx \not \approx \not \approx,<_{u}, \leq_{u},>_{u}, \geq_{u},<_{s}, \leq_{s},>_{s}, \geq_{s}\right\} \times$

$$
\{\sim, \&, \mid, \ll, \gg, \gg a,-,+, \cdot, \bmod , \div, \circ,[:]\}
$$

- 83 crafted manually
- 79 generated automatically with syntax-guided synthesizer

A Few Invertibility Conditions

$\ell[x]$	\approx	\nsim
$x \cdot s \bowtie t$	$(-s \mid s) \& t \approx t$	$\mathrm{s} \not \approx 0 \vee t \not \approx 0$
$x \bmod s \bowtie t$	$\sim(-s) \geq u t$	$s \not \approx 1 \vee t \not \approx 0$
$s \bmod x \bowtie t$	$(t+t-s) \& s \geq u t$	$s \not \approx 0 \vee t \not \approx 0$
$x \div s \bowtie t$	$(s \cdot t) \div s \approx t$	$s \not \approx 0 \vee t \not \approx \sim 0$
$s \div x \bowtie t$	$s \div(s \div t) \approx t$	$\begin{cases}s \& t \approx 0 & \text { for } \kappa(s)=1 \\ \top & \text { otherwise }\end{cases}$
$x \& s \bowtie t$	$t \& s \approx t$	$s \not \approx 0 \vee t \not \approx 0$
$x \mid s \bowtie t$	$t \mid s \approx t$	$s \not \approx \sim 0 \vee t \not \approx \sim 0$
$x \gg s \bowtie t$	$(t \ll s) \gg s \approx t$	$t \not \approx 0 \vee s<u \kappa(s)$
$s \gg x \bowtie t$	$\bigvee_{i=0}^{\kappa(s)} s \gg i \approx t$	$s \not \approx 0 \vee t \not \approx 0$
$x \gg a S \bowtie t$	$\begin{aligned} & (s<u \kappa(s) \Rightarrow(t \ll s) \gg a s \approx t) \wedge \\ & (s \geq u \kappa(s) \Rightarrow(t \approx \sim 0 \vee t \approx 0)) \end{aligned}$	T
$s \gg a \times \bowtie t$	$\bigvee_{i=0}^{\kappa(s)} s \ggg_{a} i \approx t$	$\begin{aligned} & (t \not \approx 0 \vee s \not \approx 0) \wedge \\ & (t \not \approx \sim 0 \vee s \not \approx \sim 0) \end{aligned}$

A Few More Invertibility Conditions

From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions $\varepsilon X . \varphi$

- Represents a solution for φ if there is one
- Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions $\varepsilon x . \varphi$

- Represents a solution for φ if there is one
- Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal:
Inv. condition:
Symbolic solution:
$l[x]=x \diamond s \bowtie t$
I_{x}
عy. $\left(I C_{x} \Rightarrow l[y]\right)$

From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions $\varepsilon x . \varphi$

- Represents a solution for φ if there is one
- Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

$$
\begin{array}{ll}
\text { BV literal: } & l[x]=x \diamond S \bowtie t \\
\text { Inv. condition: } & I C_{x} \\
\text { Symbolic solution: } & \varepsilon y \cdot\left(I C_{x} \Rightarrow l[y]\right)
\end{array}
$$

Note 1: Choice function expresses all conditional solutions with a single term

From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions $\varepsilon x . \varphi$

- Represents a solution for φ if there is one
- Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal:
Inv. condition:
Symbolic solution: εy. $\left(I C_{x} \Rightarrow l[y]\right)$

Note 2: The ε binder can be later eliminated from instances by Skolemization:
$\varphi\left[\varepsilon y .\left(I C_{x} \Rightarrow l[y]\right)\right] \longrightarrow \varphi[k] \wedge\left(I C_{x} \Rightarrow I[k]\right)$

More General Case by Example: $\forall x .\left(s_{2}+x\right) \cdot s_{1} \leq{ }_{u} t$

1. Pick variable to solve for (x)
2. Compute inverse/IC's along path to x

More General Case by Example: $\forall x .\left(s_{2}+x\right) \cdot s_{1} \leq{ }_{u} t$

1. Pick variable to solve for (x)
2. Compute inverse/IC's along path to x
3. Solve $z \cdot s_{1}>{ }_{u} t$ for z

$$
\begin{aligned}
I C_{z} & =t<u-s \mid s \\
z & =\varepsilon y \cdot \mid C_{z} \Rightarrow y \cdot s_{1}>_{u} t
\end{aligned}
$$

More General Case by Example: $\forall x .\left(s_{2}+x\right) \cdot s_{1} \leq{ }_{u} t$

1. Pick variable to solve for (x)
2. Compute inverse/IC's along path to x
3. Solve $z \cdot s_{1}>{ }_{u} t$ for z

$$
\begin{aligned}
I C_{z} & =t<_{u}-s \mid s \\
z & =\varepsilon y \cdot \mid C_{z} \Rightarrow y \cdot s_{1}>_{u} t
\end{aligned}
$$

4. Solve $s_{2}+x \approx z$ for x

$$
\begin{aligned}
I C_{x} & =\top \\
x & =z-S_{2}
\end{aligned}
$$

More General Case by Example: $\forall x .\left(s_{2}+x\right) \cdot s_{1} \leq{ }_{u} t$

1. Pick variable to solve for (x)
2. Compute inverse/IC's along path to x
3. Solve $z \cdot s_{1}>{ }_{u} t$ for z

$$
\begin{aligned}
I_{z} & =t<_{u}-s \mid s \\
z & =\varepsilon y \cdot \mid C_{z} \Rightarrow y \cdot s_{1}>_{u} t
\end{aligned}
$$

4. Solve $s_{2}+x \approx z$ for x

$$
\begin{aligned}
I C_{x} & =\top \\
x & =z-S_{2}
\end{aligned}
$$

Instantiation for $x: \varepsilon y \cdot\left(t<u-s \mid s \Rightarrow s_{1} \cdot y>{ }_{u} t\right)-s_{2}$

Multiple Variable Occurrences

Non-linear constraints (multiple occurrences of a variable)

- Try to linearize with rewriting/normalization

$$
\text { e.g., } x+x+s \approx t \longrightarrow 2 \cdot x+s \approx t
$$

Multiple Variable Occurrences

Non-linear constraints (multiple occurrences of a variable)

- Try to linearize with rewriting/normalization

$$
\text { e.g., } x+x+s \approx t \longrightarrow 2 \cdot x+s \approx t
$$

- Otherwise, replace extra occurrences of x with value in current model \mathcal{I}
e.g., $x \cdot x+s \approx t \longrightarrow x \cdot x^{I}+s \approx t$

Multiple Variable Occurrences

Non-linear constraints (multiple occurrences of a variable)

- Try to linearize with rewriting/normalization

$$
\text { e.g., } x+x+s \approx t \longrightarrow 2 \cdot x+s \approx t
$$

- Otherwise, replace extra occurrences of x with value in current model \mathcal{I}

$$
\text { e.g., } x \cdot x+s \approx t \longrightarrow x \cdot x^{\mathcal{I}}+s \approx t
$$

- Future work: Use SyGuS to synthesize IC's for non-linear cases

Experimental Results

	CVC4 $_{\text {base }}$	Q3B	Boolector	Z3	CVC4 $_{\text {ic }}$
keymaera (4035)	3823	3805	4025	4031	3993
psyco (194)	194	99	193	193	190
scholl (374)	239	214	289	271	246
tptp (73)	73	73	72	73	73
uauto (284)	112	256	180	190	274
wintersteiger (191)	168	184	154	162	168
Total (5151)	4609	4631	4913	4920	4944

Limits: 300 seconds CPU time limit, 100G memory limit CVC4 ${ }_{i c}$ won division BV at SMT-COMP 2018

Outline

Introduction

Quantifier Instantiation

E-matching
Conflict-Based Quantifier Instantiation
Model-based Quantifier Instantiation
Counter-Example-Guided Quantifier Instantiation
Quantifier Instantiation for Bit Vectors
Quantifier Instantiation for Floating Point Arithmetic
Conclusion

Invertibility Conditions for Floating Point Arithmetic

Similar approach can be applied to Floating Points [CAV 2019]

Invertibility Conditions for Floating Point Arithmetic

Similar approach can be applied to Floating Points [CAV 2019]
However, invertibility conditions are much more complex (found 167/188 IC's so far)

Invertibility Conditions for Floating Point Arithmetic

Similar approach can be applied to Floating Points [CAV 2019] However, invertibility conditions are much more complex

(Shown for FP[3,5])
(white dot = IC is sat, black dot = IC is unsat)

Invertibility Conditions for Floating Point Arithmetic

Similar approach can be applied to Floating Points [CAV 2019]
However, invertibility conditions are much more complex

(a) $(t \stackrel{R T N}{-} s)+s \approx t \vee t \approx s \vee\left(t^{R}-s\right)+s \approx t$
(b) $t \approx(t \stackrel{R T P}{\div} s)^{R} \cdot s \vee t \approx(t \stackrel{R T N}{\div} s)^{R} \cdot s \vee(s \approx \pm \infty \wedge t \approx \pm \infty) \vee(s \approx \pm 0 \wedge t \approx \pm 0)$

Invertibility Conditions for Floating Point Arithmetic

$$
\begin{aligned}
& \exists x \cdot x+s \approx t \\
& \equiv_{\mathrm{BV}} \\
& (t \stackrel{R T N}{-} s) \stackrel{R}{+} s \approx t \quad v \quad t \approx s \quad \vee \quad(t \stackrel{R T P}{-} s) \stackrel{R}{+} s \approx t
\end{aligned}
$$

Invertibility Conditions for Floating Point Arithmetic

$$
\begin{aligned}
& \exists x \cdot x^{R}+s \approx t \\
& \equiv_{\mathrm{BV}} \\
& (t \stackrel{R T N}{-} s) \stackrel{R}{+} s \approx t \quad v \quad t \approx s \quad \vee \quad(t \stackrel{R T P}{-} s) \stackrel{R}{+} s \approx t \\
& \text { rounding towards } \\
& \text { negative } \\
& x=t \xrightarrow{\text { RTP }} s \\
& \text { corner case } \\
& \text { (zero) } \\
& x= \pm 0 \\
& \text { rounding towards } \\
& \text { positive } \\
& x=t \stackrel{R T N}{-} s
\end{aligned}
$$

Conclusion

Conclusion

- SMT solvers do not operate just on ground formulas
- There has been considerable progress on reasoning with quantified formulas in SMT
- Still, a lot more needs to be done
- The quest of combining theory and quantifier reasoning efficiently is still on
- The CVC4 team is at the forefront of this quest
- CVC4 is available at http://cvc4.cs.stanford.edu/
- Join our quest!
- We are hiring PhD students and postdocs and welcome collaborations with other groups

Related and Future Work

- Symmetry elimination
- Proofs
- Synthesis
- Abduction

Thank you

[^0]: ${ }^{1}$ Originally using Z3 as backend, now integrated in Z3
 ${ }^{2}$ Using Z3 as backend

[^1]: ${ }^{3}$ For simplicity and wlog by (lazy) PNF transformation

