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Introduction



Satisfiability Modulo Theories (SMT)

• Subfield of automated deduction focussing on specialized
reasoning in certain logical theories

• Used in large and diverse number of applications

• Traditionally, strong on quantifier-free reasoning

• However, many applications require a mix of built-in and
axiomatically defined symbols
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Need for Quantifiers in SMT Applications

Automated Theorem Proving

Background axioms: ∀x.g(e, x) = g(x, e) = x, ∀x.g(x, i(x)) = e
∀x.g(x,g(y, z)) = g(g(x, y), x)

Software Verification

Unfolding: ∀x. foo(x) = bar(x+ 1)
Code contracts: ∀x.pre(x) ⇒ post(f(x))
Frame axioms: ∀x. x 6= t⇒ A′(x) = A(x)

Function Synthesis

Synthesis conjectures: ∀i:input.∃o:output.R[o, i]

Planning

Specifications: ∃p:plan ∀t:time F[p, t]
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Grand Challenge in Automated Deduction

Reasoning efficiently about

theory symbols and quantifiers
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Reasoning with Theories and Quantifiers in FOL — ATP case

First-order theorem provers focus mostly on reasoning with
quantifiers but some have been extended to theory reasoning:

Vampire, E, SPASS, Beagle

• First-order resolution/superposition [Nieuwenhuis&Rubio
1999, Prevosto&Waldman 2006, Althaus et al. 2009,
Baumgartner&Waldman 2013]

• AVATAR [Voronkov 2014, Reger et al. 2015]

iProver

• InstGen calculus [Ganzinger&Korovin 2003]

Princess

• Sequent calculus [Rümmer 2008]
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Reasoning with Theories and Quantifiers in FOL — SMT case

SMT solvers focus mostly on quantifier-free theory reasoning
but some have been extended to reasoning with quantifiers:

Alt-Ergo, CVC3, CVC4, veriT, Z3

• Some superposition-based [deMoura et al. 2009]
• Most instantiation-based [Detlefs et al. 2005, deMoura et al.
2007, Ge et al. 2007, …]
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SMT Solvers using Quantifier Instantiation

Traditionally:

• E-matching [Detlefs et al. 2005, Bjørner et al. 2007, CADE 2007]

More recently:

• Model-Based Instantiation [Ge et al. 2009, CADE 2013]

• Conflict-Based Instantiation [FMCAD 2014, TACAS 2017]

• Theory-specific Approaches
• Linear arithmetic [Bjørner 2012, CAV 2015, Janota et al. 2015]
• Bit-Vectors [Wintersteiger et al. 2013, Dutertre 2015]
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SMT Solvers for Ground Formulas

Ground Solver
Theory
Solver

Qffs F

SAT
Engine

Context M

Bool abstraction of F

selected literals from F with M |=p F
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Adding Quantifier Instantiation to SMT Solvers

Context M

Formulas F {a ≈ b ⇒ ∀x ∀y P(x) ∨ Q(x, y)︸ ︷︷ ︸
q

, . . .}

E

Q

partition {a ≈ b, f(a) ̸= b, P(a) ≈ ⊥, . . .}

{∀x ∀y P(x) ∨ Q(x, y), . . .}
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Quantifier
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Context M

Formulas F

E

Q

partition
Quantifier
Instantiation

Solver
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sat
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Adding Quantifier Instantiation to SMT Solvers

Context M

Formulas F

E

Q

partition
Quantifier
Instantiation

Solver

Instantiation lemmas

Main Questions:
• Which instantiations likely lead to unsat?
• When can we answer sat?
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Instantiations by E-matching

Basic Idea: Choose instances based on pattern matching over
E-graph of asserted ground (dis-)equalities [Nelson 80]

Most widely used technique for refuting quantified problems
in SMT

Exploited in:

• Software Verification
(Boogie, Dafny, Leon, SPARK, Why3, …)

• …
• Automated Theorem Proving
(Sledgehammer)
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E-matching’s Challenge #1 : Too Many Instances
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10,000s
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Ground solver gets overloaded and times out
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E-matching’s Challenge #2 : Incompleteness

Context M

Ground
Solver

R(a), ¬∀x.P(x),
∀x.P(f(x))

R(a)

¬∀x.P(x),
∀x.P(f(x))

E-Matching
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Solver
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R(a)

¬∀x.P(x),
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E-Matching

No instances!

Unsatisfiability goes undetected
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Addressing E-matching’s Challenges

Too many instances?

▷ Try conflict-based instantiation first [FMCAD 2014]

Apply E-matching

No instances and input may be satisfiable?

▷ Try model-based instantiation next [Ge&deMoura 2009]
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Conflict-Based QI

Basic idea: Given E ∪ {∀x. φ[x], . . .},

• Try to find one conflict instance ∀x. φ[x] ⇒ φ[t] such that
E, φ[t] |=T ⊥

• If this is possible, E-matching is not needed

Leads to fewer instances, improving ability to answer unsat

18
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Impact of Conflict-Based QI in CVC4

CBQI (cvc4+ci) needs 10−1x instances to show unsat vs.
E-matching alone

(evaluation on SMT-LIB, TPTP, and Isabelle benchmarks [FMCAD 2014])
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CBQI’s Challenge #1: Finding Conflicting Instances

Our solution: Construct instances via a stronger version of
matching [FMCAD 2014]

Intuition: with ∀x.P[x] ∨ Q[x] only match on P[t] where

P[t] ≡EUF ⊥

Formalized as calculus based on ground E-(dis)unification
[TACAS 2017]
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CBQI’s Challenge #2: Theory Symbols

Difficulty of finding conflicting instances in the presence of
theory symbols:

E = {f(1) ≈ 5, . . .} Q = {∀x, y. f(x+ y) > x+ 2 · y︸ ︷︷ ︸
q

, . . .}

Generally, use fast and incomplete procedure for quantifiers +
theories

21
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Model-based Quantifier Instantiation

E = {ground literals} Q = {quantified formulas}

Basic idea:

If E-matching saturates, build a candidate model I satisfying E

1. Check if I also satisfies Q
(using a ground satisfiability query)

2. If not, add instance of formula in Q falsified by I
3. Repeat

Gives ability to answer sat

23
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Impact of Model-Based QI in CVC4

x = 1,203 satisfiable TPTP benchmarks

y = # of instances potentially generated by exhaustive instantiation

E.g. 43 = 64 instances for ∀x, y, z : A.P(x, y, z) when |A| = 4

24



Impact of Model-Based QI in CVC4

CVC4 Finite Model Finding + Model-Based instantiation [CADE 2013]

Scales only up to ∼150K instances with a 30s timeout
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Impact of Model-Based QI in CVC4

CVC4 Finite Model Finding + Model-Based instantiation [CADE 2013]

Scales to >2B instances with a 30s timeout,
generates only a fraction of possible instances

24



Model-Based QI: Challenges

How do we build interpretations I?

Typically, build I where every function is almost constant:

fI := λx. ite(x = t1, v1, ite(x = t2, v2, . . . , ite(x = tn, vn, vdef) . . .))

This works well in EUF
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However, more sophisticated models are needed when other
theories are involved:

∀x, y : Int. (f(x, y) ≥ x ∧ f(x, y) ≥ y) fI := λx, y : Int. ite(x ≥ y, x, y)
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Model-Based QI: Challenges

How do we build interpretations I?
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∀x, y : Int. (f(x, y) ≥ x ∧ f(x, y) ≥ y) fI := λx, y : Int. ite(x ≥ y, x, y)
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hI := λx. 2 · x

∀x, y : Int.u(x+ y) + 11 · v(w(x)) = x ??

(may leverage recent advantages in syntax-guided synthesis?)
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More research is needed!



Putting It All Together in CVC4

26

Quantifier Solver

E-matching

Model Based

Conflict-Based
E,Q is unsat P(a), where

E,P(a)╞ ^

I is not a 
model for Q

I is a 
model for E,Q

model 
for E

where "x.P(x)ÎQ

P(b),P(c), 

P(d),P(e),P(f),…

P(z), where
I  ╞ P(z)

pattern matching

I

sat

Q

E



General Challenge

Reasoning efficiently about quantifiers + EUF + other theories
is still hard!

E-matching: Pattern selection, matching modulo theories

Conflict-based: Matching is incomplete, entailment tests are
expensive

Model-based: Models are complex, interpreted domains may
be infinite

27
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Bright Spot

Reasoning efficiently about quantifiers + EUF + other theories
is not as bad

• Classic QE algorithms are decision procedures for LRA
[Ferrante&Rackoff 79, Loos&Wiespfenning 93], LIA [Cooper 72],
datatypes [Maher 1988], …

• Some have been leveraged successfully in SMT
applications [Monniaux 2010, Bjorner 2012, Reynolds et al.
2015, Bjorner&Janota 2016, …]
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Counterexample-Guided Quantifier Instantiation

Variants implemented in number of tools:

• Z3 [Bjorner 2012, Bjorner&Janota 2016]
• SPACER [Komuravelli et al. 2014]1

• Yices [Dutertre 2015]
• CVC4 [CAV 2015, CAV 2018]
• UFO [Fedyukovich et al. 2016]2

• Boolector [Preiner et al. 2017]

1Originally using Z3 as backend, now integrated in Z3
2Using Z3 as backend

29



Counterexample-Guided Instantiation

Basic idea: Derived from quantifier elimination (e.g., for LIA):

∃x. ψ[x, y] ≡T ψ[t1, y] ∨ · · · ∨ ψ[tn, y] for some t1, . . . , tn

30
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Counterexample-Guided Instantiation

Basic idea: Derived from quantifier elimination (e.g., for LIA):

∀x.¬ψ[x, y] ≡T ¬ψ[t1, y] ∧ · · · ∧ ¬ψ[tn, y] for some t1, . . . , tn

Enumerate instances via a counterexample-guided loop that is

1. terminating: generate a finite set S ⊇ {t1, . . . , tn}
2. efficient in practice: typically terminates after << n
instances
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High-level View of Basic Procedure

basic-CEGQI(∀x. ψ[x, y])
G := ∅ (instances of ∀x. ψ)
repeat
if G is T-unsatisfiable
return unsat (because ∀x. ψ |=T G)

else
let G′ = G ∪ {¬ψ}
if is G′ is T-unsatisfiable
return sat (because G |=T ∀x. ψ)

else
let I be a T-model of G′

let t[y] = Sel(x, ψ, I,G)
G := G ∪ {ψ[t, y]}

31
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function Sel



Selection Function

Right selection functions make CEGQI a decision procedure
for various theories T

Termination Requirements:

1. Quantifier-free fragment of T is decidable

2. For all qffs ψ[x, y], selection function Sel is
2.1 finite:

there is a finite set Sψ,x s.t. Sel(x, ψ, I,G) ∈ Sψ,x for all legal
I,G

2.2 monotonic:
if G |=T ψ[t, y] then Sel(x, ψ, I,G) 6= t for all legal I,G

32
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Theorem. Under (1), procedure basic-CEGQI
always terminates if sel is finite and mono-
tonic



From CEGQI …

basic-CEGQI(∀x. ψ[x, y])
G := ∅
repeat
if G is T-unsatisfiable
return unsat

else
let G′ = G ∪ {¬ψ}
if is G′ is T-unsatisfiable
return sat

else
let I be a T-model of G′

let t[y] = Sel(x, ψ, I,G)
G := G ∪ {ψ[t, y]}

33



From CEGQI to Quantifier Elimination

project(x, ψ[x, y])
G := ∅
repeat
if G is T-unsatisfiable
return ⊥

else
let G′ = G ∪ {¬ψ}
if is G′ is T-unsatisfiable
return

∧
G

else
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repeat
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Note:
Let φ[y] = project(x, ψ[x, y])

Then φ ≡T ∀x. ψ



From CEGQI to QE: General Case

Assumption: Consider only NNF formulas φ containing a
subformula ∀x. φ1 ∨ φ2 (resp. ∃x. φ1 ∧ φ2) only if φ1 ∨ φ2
(resp. φ1 ∧ φ2) is quantifier-free3

3For simplicity and wlog by (lazy) PNF transformation
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From CEGQI to QE: General Case

qe(x, φ) := if φ is quantifier-free then

project(x, φ)

else

match φ with

φ1 ∧ φ2 : qe(x, φ1) ∧ qe(x, φ2)

∃z. ψ : ¬ qe(x, ∀z.nnf(¬ψ))

∀z. ψ : qe(x, qe(z, ψ))

nnf(φ) := negation normal form of φ
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project(x, φ)

else

match φ with

φ1 ∧ φ2 : qe(x, φ1) ∧ qe(x, φ2)

∃z. ψ : ¬ qe(x, ∀z.nnf(¬ψ))
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nnf(φ) := negation normal form of φ

34

Theorem. If the quantifier-free fragment of T
is decidable and sel is finite and monotonic,

qe(x, φ) terminates and qe(x, φ) ≡T ∀x. φ
for any x and φ

Note:

1. Avoiding full prenex normal form transformation
increases scalability in practice

2. Implementation of general CEBQI in CVC4 is similar in
spirit to qe but is fully integrated into SMT loop [FMSD
2017]



Selection Functions

Linear real arithmetic (LRA) [FMSD 2017]

• Maximal lower (minimal upper) bounds [Loos+Wiespfenning
1993]

l1 < k, . . . , ln < k =⇒ {x 7→ lmax + d}

(may involve virtual terms δ,∞)

• Interior point method [Ferrante&Rackoff 1979]

lmax < k < umin =⇒ {x 7→ (lmax + umin)/2}

Linear integer arithmetic (LIA) [FMSD 2017]

• Maximal lower (minimal upper) bounds [Cooper 1972]

l1 < k, . . . , ln < k =⇒ {x 7→ lmax + c}
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Common termination argument:
a finite number of instances cover all cases



Selection Functions

Finite domains

• Model-based value instantiations [Wintersteiger et al. 2013]

D = {d1, . . . ,dn} =⇒ {x 7→ di}

Fixed-size Bit vectors

• Value instantiations [Neimetz et al. 2016]

0 ≤ i < w =⇒ {x 7→ 2i}

• Invertibility conditions [CAV 2018]

(next slides)

Datatypes

• Stay tuned …
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Quantifier Instantiation

E-matching
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Motivation

Example: Prove unsatisfiability of
ψ = ∀x. x+ s 6≈ t

with x, s, t bit vectors of size n

It is crucial to find good set of instantiation candidates for x
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Motivation

Example: Prove unsatisfiability of
ψ = ∀x. x+ s 6≈ t

with x, s, t bit vectors of size n

Naive approach: Enumerate 2n possible values for x

38



Motivation

Example: Prove unsatisfiability of
ψ = ∀x. x+ s 6≈ t

with x, s, t bit vectors of size n

Better approach:

1. Try to solve ¬(x+ s 6≈ t) for x (yielding x = t− s)
2. Instantiate ψ with computed symbolic solution

x︷︸︸︷
t− s + s 6≈ t︸ ︷︷ ︸

UNSAT

38



Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints
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Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints

Problem: hard or impossible in general

▶ Example: 2 · x ≈ 3 is unsolvable
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Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints

Problem: hard or impossible in general

Our Answer:

1. Consider restricted case where φ has the form
x � s ▷◁ t or s � x ▷◁ t

with ▷◁ relational operator and x not in s or t

2. Consider conditional symbolic solutions

(e.g., identify conditions under which s · x ≈ t is solvable)

39



Invertibility Condition

Exact condition under which a bit vector operation is solvable
for some x

Example: x · s ≈ t
• Invertibility condition: (−s | s) & t ≈ t
• (−s | s) & t ≈ t ≡BV ∃x. x · s ≈ t

Invertibility Conditions
• 162 IC’s for: {≈, 6≈, <u,≤u, >u,≥u, <s,≤s, >s,≥s} ×

{∼ ,&, |, <<,>>,>>a,−,+, ·,mod,÷, ◦, [:]}
• 83 crafted manually
• 79 generated automatically with syntax-guided synthesizer
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x · s = t is solvable for x
iff

s has fewer trailing zeroes than t



Invertibility Condition

Exact condition under which a bit vector operation is solvable
for some x

Example: x · s ≈ t
• Invertibility condition: (−s | s) & t ≈ t
• (−s | s) & t ≈ t ≡BV ∃x. x · s ≈ t

Invertibility Conditions
• 162 IC’s for: {≈, 6≈, <u,≤u, >u,≥u, <s,≤s, >s,≥s} ×

{∼ ,&, |, <<,>>,>>a,−,+, ·,mod,÷, ◦, [:]}
• 83 crafted manually
• 79 generated automatically with syntax-guided synthesizer

40



A Few Invertibility Conditions

ℓ[x] ≈ ̸≈
x · s ▷◁ t (−s | s) & t ≈ t s ̸≈ 0 ∨ t ̸≈ 0

x mod s ▷◁ t ∼(−s) ≥u t s ̸≈ 1 ∨ t ̸≈ 0
s mod x ▷◁ t (t+ t− s) & s ≥u t s ̸≈ 0 ∨ t ̸≈ 0
x÷ s ▷◁ t (s · t)÷ s ≈ t s ̸≈ 0 ∨ t ̸≈ ∼0

s÷ x ▷◁ t s÷ (s÷ t) ≈ t
{
s & t ≈ 0 for κ(s) = 1
⊤ otherwise

x & s ▷◁ t t & s ≈ t s ̸≈ 0 ∨ t ̸≈ 0
x | s ▷◁ t t | s ≈ t s ̸≈ ∼0 ∨ t ̸≈ ∼0

x>> s ▷◁ t (t<< s)>> s ≈ t t ̸≈ 0 ∨ s <u κ(s)

s>> x ▷◁ t
κ(s)∨
i=0

s>> i ≈ t s ̸≈ 0 ∨ t ̸≈ 0

x>>a s ▷◁ t (s <u κ(s) ⇒ (t<< s)>>a s ≈ t) ∧ ⊤
(s ≥u κ(s) ⇒ (t ≈ ∼0 ∨ t ≈ 0))

s>>a x ▷◁ t
κ(s)∨
i=0

s>>a i ≈ t (t ̸≈ 0 ∨ s ̸≈ 0) ∧
(t ̸≈ ∼0 ∨ s ̸≈ ∼0)
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A Few More Invertibility Conditions

ℓ[x] <s >s

x · s ▷◁ t ∼(−t) & (−s | s) <s t t <s t− ((s | t) | −s)
x mod s ▷◁ t ∼t <s (−s | −t) (s >s 0 ⇒ t <s ∼(−s)) ∧

(s ≤s 0 ⇒ t ̸≈ maxs) ∧
(t ̸≈ 0 ∨ s ̸≈ 1)

s mod x ▷◁ t s <s t ∨ 0 <s t (s ≥s 0 ⇒ s >s t) ∧
(s <s 0 ⇒ ((s− 1)>> 1) >s t)

x÷ s ▷◁ t t ≤s 0 ⇒ mins ÷ s <s t ∼0÷ s >s t ∨ maxs ÷ s >s t

s÷ x ▷◁ t s <s t ∨ t ≥s 0


s >s t for κ(s) = 1

(s ≥s 0 ⇒ s >s t) ∧ otherwise
(s <s 0 ⇒ s>> 1 >s t)

x & s ▷◁ t ∼(−t) & s <s t t <s s & maxs
x | s ▷◁ t ∼(s− t) | s <s t t <s (s | maxs)
s | x ▷◁ t

x>> s ▷◁ t ∼(−t)>> s <s t t <s (maxs<< s)>> s
s>> x ▷◁ t s <s t ∨ 0 <s t (s <s 0 ⇒ s>> 1 >s t) ∧

(s ≥s 0 ⇒ s >s t) 42



From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions εx. φ
• Represents a solution for φ if there is one
• Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal: l[x] = x � s ▷◁ t
Inv. condition: ICx
Symbolic solution: εy. (ICx ⇒ l[y])
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Note 1: Choice function expresses all conditional
solutions with a single term



From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions εx. φ
• Represents a solution for φ if there is one
• Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal: l[x] = x � s ▷◁ t
Inv. condition: ICx
Symbolic solution: εy. (ICx ⇒ l[y])

43

Note 2: The ε binder can be later eliminated from
instances by Skolemization:

φ[εy. (ICx ⇒ l[y])] −→ φ[k] ∧ (ICx ⇒ l[k])



More General Case by Example: ∀x. (s2 + x) · s1 ≤u t

>u

· t

+ s1

s2 x

1. Pick variable to solve for (x)

2. Compute inverse/IC’s along path
to x

3. Solve z · s1 >u t for z
ICz = t <u −s | s
z = εy. ICz ⇒ y · s1 >u t

4. Solve s2 + x ≈ z for x
ICx = >
x = z− s2

Instantiation for x: εy. (t <u −s | s⇒ s1 · y >u t)− s2
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Multiple Variable Occurrences

Non-linear constraints (multiple occurrences of a variable)

• Try to linearize with rewriting/normalization
e.g., x+ x+ s ≈ t −→ 2 · x+ s ≈ t

• Otherwise, replace extra occurrences of x with value in
current model I
e.g., x · x+ s ≈ t −→ x · xI + s ≈ t

▶ Future work: Use SyGuS to synthesize IC’s for non-linear
cases
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Experimental Results

CVC4base Q3B Boolector Z3 CVC4ic
keymaera (4035) 3823 3805 4025 4031 3993

psyco (194) 194 99 193 193 190
scholl (374) 239 214 289 271 246

tptp (73) 73 73 72 73 73
uauto (284) 112 256 180 190 274

wintersteiger (191) 168 184 154 162 168
Total (5151) 4609 4631 4913 4920 4944

Limits: 300 seconds CPU time limit, 100G memory limit

CVC4ic won division BV at SMT-COMP 2018
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Invertibility Conditions for Floating Point Arithmetic

Similar approach can be applied to Floating Points [CAV 2019]

However, invertibility conditions are much more complex
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Similar approach can be applied to Floating Points [CAV 2019]

However, invertibility conditions are much more complex
(found 167/188 IC’s so far)
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(white dot = IC is sat, black dot = IC is unsat)
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Invertibility Conditions for Floating Point Arithmetic

Similar approach can be applied to Floating Points [CAV 2019]

However, invertibility conditions are much more complex

(Shown for FP[3,5])

(white dot = IC is sat, black dot = IC is unsat)
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(a) (t
RTN
− s)

R
+ s ≈ t ∨ t ≈ s ∨ (t

RTP
− s)

R
+ s ≈ t

(b) t ≈ (t
RTP
÷ s) R· s ∨ t ≈ (t

RTN
÷ s) R· s ∨ (s ≈ ±∞∧t ≈ ±∞) ∨ (s ≈ ±0∧t ≈ ±0)

…



Invertibility Conditions for Floating Point Arithmetic

∃x. x
R
+ s ≈ t

≡BV

(t
RTN
− s)

R
+ s ≈ t ∨ t ≈ s ∨ (t

RTP
− s)

R
+ s ≈ t

rounding towards corner case rounding towards
negative (zero) positive

x = t
RTP
− s x = ±0 x = t

RTN
− s
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Conclusion



Conclusion

• SMT solvers do not operate just on ground formulas
• There has been considerable progress on reasoning with
quantified formulas in SMT

• Still, a lot more needs to be done
• The quest of combining theory and quantifier reasoning
efficiently is still on

• The CVC4 team is at the forefront of this quest
• CVC4 is available at http://cvc4.cs.stanford.edu/
• Join our quest!
• We are hiring PhD students and postdocs and welcome
collaborations with other groups

50
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Related and Future Work

• Symmetry elimination

• Proofs

• Synthesis

• Abduction

51



Thank you
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