
The DPLL Procedure

Cesare Tinelli
tinelli@cs.uiowa.edu

The University of Iowa

22c:196, Feb 2007 – p.1/17

Propositional Satisfiability: SAT

• Deciding the satisfiability of a propositional formula is a
well-studied and important problem.

• Theoretical interest: first established NP-Complete
problem, phase transition, . . .

• Practical interest: applications to scheduling, planning,
logic synthesis, verification, . . .

• Development of algorithms and enhancements.
• Implementation of extremely efficient tools.
• Solvers based on the DPLL procedure have been the

most successful so far.

22c:196, Feb 2007 – p.2/17

The Original DPLL

• Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

• M is grown by
• deducing the truth value of a literal from M and F ,

or
• guessing a truth value.

• If a wrong guess for a literal leads to an inconsistency,
the procedure backtracks and tries the opposite value.

22c:196, Feb 2007 – p.3/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

22c:196, Feb 2007 – p.4/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

22c:196, Feb 2007 – p.4/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

22c:196, Feb 2007 – p.4/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

22c:196, Feb 2007 – p.4/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

22c:196, Feb 2007 – p.4/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Inconsistency!

22c:196, Feb 2007 – p.4/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

22c:196, Feb 2007 – p.5/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

22c:196, Feb 2007 – p.5/17

The Original DPLL – Example

Operation Assign. Formula

1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Model Found!

22c:196, Feb 2007 – p.5/17

An Abstract Framework for DPLL

• The DPLL procedure can be described declaratively by
simple sequent-style calculi.

• Such calculi however cannot model meta-logical features
such as backtracking, learning and restarts.

• We model DPLL and its enhancements as transition
systems instead.

• A transition system is a binary relation over states,
induced by a set of conditional transition rules.

22c:196, Feb 2007 – p.6/17

An Abstract Framework for DPLL

Our states:

fail or M || F

where F is a CNF formula, a set of clauses, and

M is a sequence of annotated literals

denoting a partial truth assignment.

22c:196, Feb 2007 – p.7/17

An Abstract Framework for DPLL

Our states:

fail or M || F

Initial state:

• ∅ || F , where F is to be checked for satisfiability.

Expected final states:

• fail , if F is unsatisfiable

•
M || G, where M is a model of G and

G is logically equivalent to F .

22c:196, Feb 2007 – p.7/17

Transition Rules for the Original DPLL

Extending the assignment:

Propagate

M || F, C ∨ l → M l || F, C ∨ l if

{

M falsifies C,

l is undefined in M

22c:196, Feb 2007 – p.8/17

Transition Rules for the Original DPLL

Extending the assignment:

Propagate

M || F, C ∨ l → M l || F, C ∨ l if

{

M falsifies C,

l is undefined in M

Decide

M || F → M l• || F if

{

l or l occurs in F,

l is undefined in M

Notation: l• annotates l as a decision literal.

22c:196, Feb 2007 – p.8/17

Transition Rules for the Original DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{

M falsifies C,

M contains no decision literals

22c:196, Feb 2007 – p.9/17

Transition Rules for the Original DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{

M falsifies C,

M contains no decision literals

Backtrack

M l• N || F,C → M l || F,C if

{

M l• N falsifies C,

l last decision literal

22c:196, Feb 2007 – p.9/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

p1
•, p2, p3

•, p4, p5 Backtrack 4.

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

p1
•, p2, p3

•, p4, p5 Backtrack 4.

p1
•, p2, p3

•, p4, p5, p7 Propagate 5.

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

p1
•, p2, p3

•, p4, p5 Backtrack 4.

p1
•, p2, p3

•, p4, p5, p7 Propagate 5.

p1
•, p2, p3 Backtrack 6.

22c:196, Feb 2007 – p.10/17

Original DPLL System – Example

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

p1
•, p2, p3

•, p4, p5 Backtrack 4.

p1
•, p2, p3

•, p4, p5, p7 Propagate 5.

p1
•, p2, p3 Backtrack 6.

. . .
22c:196, Feb 2007 – p.10/17

From Backtracking to Backjumping
Backtrack

M l• N || F,C → M l || F,C if

{

M l• N falsifies C,

l last decision literal

22c:196, Feb 2007 – p.11/17

From Backtracking to Backjumping
Backtrack

M l• N || F,C → M l || F,C if

{

M l• N falsifies C,

l last decision literal

Backjump

M l• N || F,C → M k || F,C if















































1. M l• N falsifies C,

2. for some clause D ∨ k:

F,C |= D ∨ k,

M falsifies D,

k is undefined in M,

k or k occurs in

M l• N || F,C

22c:196, Feb 2007 – p.11/17

From Backtracking to Backjumping
Backtrack

M l• N || F,C → M l || F,C if

{

M l• N falsifies C,

l last decision literal

Backjump

M l• N || F,C → M k || F,C if















































1. M l• N falsifies C,

2. for some clause D ∨ k:

F,C |= D ∨ k,

M falsifies D,

k is undefined in M,

k or k occurs in

M l• N || F,C

Note: D ∨ k is computed by conflict analysis.
22c:196, Feb 2007 – p.11/17

Example Revised

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

22c:196, Feb 2007 – p.12/17

Example Revised

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

p1
•, p2, p5 Backjump with p2 ∨ p5.

22c:196, Feb 2007 – p.12/17

Example Revised

F := 1. p1 ∨ p2, 2. p3 ∨ p4, 3. p6 ∨ p5 ∨ p2

4. p5 ∨ p6, 5. p5 ∨ p7, 6. p1 ∨ p5 ∨ p7

M Rule

p1
• Decide

p1
•, p2 Propagate 1.

p1
•, p2, p3

• Decide

p1
•, p2, p3

•, p4 Propagate 2.

p1
•, p2, p3

•, p4, p5
• Decide

p1
•, p2, p3

•, p4, p5
•, p6 Propagate 3.

p1
•, p2, p5 Backjump with p2 ∨ p5.

. . .

22c:196, Feb 2007 – p.12/17

Basic DPLL System

At the core, current DPLL-based SAT solvers are
implementations of the transition system:

Basic DPLL

• Propagate

• Decide

• Fail

• Backjump

22c:196, Feb 2007 – p.13/17

The Basic DPLL System – Correctness
Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and

starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible state.

22c:196, Feb 2007 – p.14/17

The Basic DPLL System – Correctness
Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and

starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible state.

Proposition (Strong Termination) Every execution in Basic
DPLL is finite.

Note: This is not so immediate, because of Backjump.

22c:196, Feb 2007 – p.14/17

The Basic DPLL System – Correctness
Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and

starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible state.

Proposition (Soundness) For every exhausted execution
starting with ∅ || F and ending in M || F , M satisfies F .

Proposition (Completeness) If F is unsatisfiable, every
exhausted execution starting with ∅ || F ends with fail .

22c:196, Feb 2007 – p.14/17

Enhancements to Basic DPLL

22c:196, Feb 2007 – p.15/17

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{

all atoms of C occur in F,

F |= C

22c:196, Feb 2007 – p.15/17

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{

all atoms of C occur in F,

F |= C

Forget

M || F, C → M || F if F |= C

22c:196, Feb 2007 – p.15/17

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{

all atoms of C occur in F,

F |= C

Forget

M || F, C → M || F if F |= C

Usually C is a clause identified during conflict analysis.

22c:196, Feb 2007 – p.15/17

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{

all atoms of C occur in F,

F |= C

Forget

M || F, C → M || F if F |= C

Restart
M || F → ∅ || F if . . . you want to

22c:196, Feb 2007 – p.15/17

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{

all atoms of C occur in F,

F |= C

Forget

M || F, C → M || F if F |= C

Restart
M || F → ∅ || F if . . . you want to

The DPLL system =

{Propagate,Decide,Fail,Backjump, Learn,Forget,Restart}

22c:196, Feb 2007 – p.15/17

The DPLL System – Strategies
• Applying one Basic DPLL rule between each two Learn

and applying Restart less and less often ensures
termination.

22c:196, Feb 2007 – p.16/17

The DPLL System – Strategies
• Applying one Basic DPLL rule between each two Learn

and applying Restart less and less often ensures
termination.

• In practice, Learn is usually (but not only) applied right
after Backjump.

22c:196, Feb 2007 – p.16/17

The DPLL System – Strategies
• Applying one Basic DPLL rule between each two Learn

and applying Restart less and less often ensures
termination.

• In practice, Learn is usually (but not only) applied right
after Backjump.

• A common strategy is to apply the rules with these
priorities:

22c:196, Feb 2007 – p.16/17

The DPLL System – Strategies
• Applying one Basic DPLL rule between each two Learn

and applying Restart less and less often ensures
termination.

• In practice, Learn is usually (but not only) applied right
after Backjump.

• A common strategy is to apply the rules with these
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart.

22c:196, Feb 2007 – p.16/17

The DPLL System – Strategies
• Applying one Basic DPLL rule between each two Learn

and applying Restart less and less often ensures
termination.

• In practice, Learn is usually (but not only) applied right
after Backjump.

• A common strategy is to apply the rules with these
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart.

2. If a current clause is falsified by the current
assignment,
apply Fail or Backjump + Learn.

22c:196, Feb 2007 – p.16/17

The DPLL System – Strategies
• Applying one Basic DPLL rule between each two Learn

and applying Restart less and less often ensures
termination.

• In practice, Learn is usually (but not only) applied right
after Backjump.

• A common strategy is to apply the rules with these
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart.

2. If a current clause is falsified by the current
assignment,
apply Fail or Backjump + Learn.

3. Apply Propagate

22c:196, Feb 2007 – p.16/17

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

22c:196, Feb 2007 – p.17/17

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Proposition (Soundness) For every execution
∅ || F =⇒ · · · =⇒ M || F with M || F irreducible wrt. Basic
DPLL, M models F .

22c:196, Feb 2007 – p.17/17

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Proposition (Soundness) For every execution
∅ || F =⇒ · · · =⇒ M || F with M || F irreducible wrt. Basic
DPLL, M models F .

Proposition (Completeness) If F is unsatisfiable, for every
execution ∅ || F =⇒ · · · =⇒ S with S irreducible wrt. Basic
DPLL, S = fail .

22c:196, Feb 2007 – p.17/17

	Propositional Satisfiability: SAT
	The Original DPLL
	The Original DPLL -- Example
	The Original DPLL -- Example
	An Abstract Framework for DPLL
	An Abstract Framework for DPLL
	Transition Rules for the Original DPLL
	Transition Rules for the Original DPLL
	Original DPLL System -- Example
	From Backtracking to Backjumping
	Example Revised
	Basic DPLL System
	The Basic DPLL System -- Correctness
	Enhancements to Basic DPLL
	The DPLL System -- Strategies
	The DPLL System -- Correctness

