
22c181: Formal Methods

in Software Engineering

The University of Iowa

Spring 2010

Propositional Logic

Copyright 2010 Cesare Tinelli.
These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form or
modified form without the express written permission of one of the copyright holders.

22c181: Formal Methods in Software Engineering – p.1/19

Mathematical Logic

A discipline that studies the precise formalization of knowledge

and reasoning

Provides the foundations of Formal Methods

In this field the word logic is also use to denote specific formal

reasoning systems

there are several logics in that sense:

propositional, first-order, higher-order, modal, temporal,

intuitionistic, linear, non-monotonic, . . .

We will concentrate on propositional logic and first-order logic

(But we’ll also work in some temporal logic in disguise)

22c181: Formal Methods in Software Engineering – p.2/19

Logics

A logic is a triple 〈L,S,R〉 where

L, the logic’s language, is a class of sentences described by a

formal grammar.

S, the logic’s semantics is a formal specification of how to

assign meaning in the “real world” to the elements of L.

R, the logic’s inference system, is a set of formal inference

rules over L.

22c181: Formal Methods in Software Engineering – p.3/19

Propositional Logic

Each sentence (called a formula) is made of

propositional variables, a, b, . . . , p, q, . . .

logical constants, ⊤,⊥

logical connectives ∧,∨,⇒, . . .

Every propositional variable stands for a basic fact

Examples: I’m hungry, Apples are red, Joe and Jill are married

22c181: Formal Methods in Software Engineering – p.4/19

Propositional Logic

Ontological Commitments

Propositional Logic is about facts, statements that are either true or

false, nothing else.

Semantics of Propositional Logic

Since each propositional variable stands for a fact about the world,

its meaning ranges over the Boolean values {True,False}.

Same for more complex formulas.

Remark: Note the difference between True,False, semantical

entities here, with ⊤,⊥, syntactical entities standing for them.

22c181: Formal Methods in Software Engineering – p.5/19

Formulas of Propositional Logic

Each propositional variable (a, b, . . . , p, q, . . .) is a formula

Each logical constant (⊤,⊥) is a formula

If ϕ and ψ are formulas, all of the following are also formulas

¬ϕ ϕ∧ψ ϕ⇒ ψ

(ϕ) ϕ∨ψ ϕ⇔ ψ

Nothing else is a formula

22c181: Formal Methods in Software Engineering – p.6/19

The Language of Propositional Logic

Formally, it is the language generated by the following grammar.

Symbols:

Propositional variables: a, b, . . . , p, q, . . .

Logical symbols:

⊤ (true) ∧ (and) ⇒ (implies) ¬ (not)

⊥ (false) ∨ (or) ⇔ (equivalent)

Grammar Rules:

Conn ::= ∧ | ∨ | ⇒ | ⇔

AtomicF ::= ⊤ | ⊥ | a | b | . . . | p | q | . . .

Formula ::= AtomicF | ¬Formula |

Formula Conn Formula | (Formula)

22c181: Formal Methods in Software Engineering – p.7/19

Semantics of Propositional Logic

The meaning (value) of ⊤ is always True . The meaning of ⊥ is

always False.

The meaning of the other formulas depends on the meaning of

the propositional variables.

Base cases: Truth Tables

P Q :P P ^Q P _Q P) Q P , Q

False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Non-base Cases: Given by reduction to the base cases

Example: the meaning of (p∨ q)∧ r is the same as the

meaning of a∧ r where a has the same meaning as p∨ q.

22c181: Formal Methods in Software Engineering – p.8/19

The Meaning of Logical Connectives: A Warning

Disjunction

φ∨ ψ is true when φ or ψ or both are true (inclusive or).

Implication

φ⇒ ψ does not require a causal connection between φ and ψ.

Ex: Sky-is-blue ⇒ Snow-is-white

When φ is false, φ⇒ ψ is true regardless of the value of ψ.

Ex: ⊥ ⇒ p

Beware of negations in implications.

Ex: Is-bird ⇒ Lays-eggs

¬Is-bird ⇒ ¬Lays-eggs

22c181: Formal Methods in Software Engineering – p.9/19

Semantics of Propositional Logic

An assignment of Boolean values to the propositional variables

of a formula is an interpretation of the formula.

P H P _H (P _H) ^:H ((P _H) ^ :H)) P

False False False False True
False True True False True
True False True True True
True True True False True

Interpretations:

{P 7→ False,H 7→ False},{P 7→ False,H 7→ True}, . . .

The semantics of Propositional logic is compositional:

the meaning of a formula is defined recursively in terms of the

meaning of the formula’s components.

22c181: Formal Methods in Software Engineering – p.10/19

Semantics of Propositional Logic

The meaning of a formula in general depends on its interpretation.

Some formulas, however, have always the same meaning.

P H P _H (P _H) ^:H ((P _H) ^ :H)) P

False False False False True
False True True False True
True False True True True
True True True False True

A formula is

(un)satisfiable if it is true in some (no) interpretation,

valid if it is true in every possible interpretation.

22c181: Formal Methods in Software Engineering – p.11/19

Entailment in Propositional Logic

Given

a set Γ of formulas and

a formula ϕ,

we write

Γ |= ϕ

iff every interpretation that makes all formulas in Γ true makes ϕ

also true.

Γ |= ϕ is read as “Γ entails ϕ” or “ϕ logically follows from Γ.”

22c181: Formal Methods in Software Engineering – p.12/19

Entailment in Propositional Logic: Examples

{A,A ⇒ B} |= B

{A} |= A∨B

{A,B} |= A∧B

{} |= A∨¬A

{A} 6|= A∧B

{A∨¬A} 6|= A

A B A ⇒ B A∨B A∧B A∨¬A

1. False False True False False True

2. False True True True False True

3. True False False True False True

4. True True True True True True

22c181: Formal Methods in Software Engineering – p.13/19

Properties of Entailment

Γ |= ϕ, for all ϕ ∈ Γ (inclusion property of |=)

if Γ |= ϕ, then Γ′ |= ϕ for all Γ′ ⊇ Γ (monotonicity of |=)

ϕ is valid iff {} |= ϕ (also written as |= ϕ)

ϕ |= ⊥ iff ϕ is unsatisfiable

Γ |= ϕ iff the set Γ∪ {¬ϕ} is unsatisfiable

22c181: Formal Methods in Software Engineering – p.14/19

Logical Equivalence

Two formulas ϕ1 and ϕ2 are logically equivalent, written ϕ1 ≡ ϕ2, if

ϕ1 |= ϕ2 and ϕ2 |= ϕ1.

Note:

ϕ1 ≡ ϕ2 if and only if every interpretation assigns the same

Boolean value to ϕ1 and ϕ2.

Implication and equivalence (⇒,⇔), which are syntactical

entities, are intimately related to entailment and logical

equivalence (|=,≡), which are semantical notions:

ϕ1 |= ϕ2 iff |= ϕ1 ⇒ ϕ2

ϕ1 ≡ ϕ2 iff |= ϕ1 ⇔ ϕ2

22c181: Formal Methods in Software Engineering – p.15/19

Example

A |= (A∨B) holds and A⇒ (A∨B) is valid.

A B A∨B A⇒ (A∨B)

1. False False False True

2. False True True True

3. True False True True

4. True True True True

22c181: Formal Methods in Software Engineering – p.16/19

Properties of Logical Connectives

∧ and ∨ are:

commutative
ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1

ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1

associative
ϕ1 ∧ (ϕ2 ∧ϕ3) ≡ (ϕ1 ∧ϕ2)∧ϕ3

ϕ1 ∨ (ϕ2 ∨ϕ3) ≡ (ϕ1 ∨ϕ2)∨ϕ3

mutually distributive

ϕ1 ∧ (ϕ2 ∨ϕ3) ≡ (ϕ1 ∧ϕ2)∨ (ϕ1 ∧ϕ3)

ϕ1 ∨ (ϕ2 ∧ϕ3) ≡ (ϕ1 ∨ϕ2)∧ (ϕ1 ∨ϕ3)

related by ¬ (DeMorgan’s Laws)

¬(ϕ1 ∧ϕ2) ≡ ¬ϕ1 ∨¬ϕ2

¬(ϕ1 ∨ϕ2) ≡ ¬ϕ1 ∧¬ϕ2

22c181: Formal Methods in Software Engineering – p.17/19

Properties of Logical Connectives

∧, ⇒, and ⇔ are actually redundant:

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨¬ϕ2)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ϕ2

ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2)∧ (ϕ2 ⇒ ϕ1)

We keep them all mainly for convenience.

Exercise. Use the truth tables to verify all the logical equivalences

seen so far.

22c181: Formal Methods in Software Engineering – p.18/19

Computational Properties of Propositional Logic

Satisfiability in PL is decidable (hence, so are entailment,

validity, and equivalence).

That is, there is a general algorithm that given any PL formula ϕ

can always determine whether ϕ is satisfiable or not.

However, satisfiability is NP-complete (and the rest are

co-NP-complete).

22c181: Formal Methods in Software Engineering – p.19/19

Computational Properties of Propositional Logic

Satisfiability in PL is decidable (hence, so are entailment,

validity, and equivalence).

That is, there is a general algorithm that given any PL formula ϕ

can always determine whether ϕ is satisfiable or not.

However, satisfiability is NP-complete (and the rest are

co-NP-complete).

Note

Many problems in formal verification can be reduced to

checking the satisfiability of a propositional formula.

Despite NO-completeness, many realistic instances can be

checked very efficiently by state-of-the-art SAT solvers.

22c181: Formal Methods in Software Engineering – p.19/19

	
	Mathematical Logic
	Logics
	Propositional Logic
	Propositional Logic
	Formulas of Propositional Logic
	The Language of Propositional Logic
	Semantics of Propositional Logic
	The Meaning of Logical Connectives: A Warning
	Semantics of Propositional Logic
	Semantics of Propositional Logic
	Entailment in Propositional Logic
	Entailment in Propositional Logic: Examples
	Properties of Entailment
	Logical Equivalence
	Example
	Properties of Logical Connectives
	Properties of Logical Connectives
	Computational Properties of Propositional Logic

