22C:44 Homework 1 Solutions

Solution to Problem 1(a)
Rewrite the algorithm in the model of computation defined in class, as follows:

Line No. Time Units Label Code

1. 1 i« 1

2. 4/5 OUTLOQOP if (i > n-1) goto AFTEROUTLOOP
3. 2 j < n

4. 4/5 INLOQOP if (j < i+1) goto AFTERINLOOP
5. 6/7 if (A[j-1] <= A[j]l) got AFTERIF
6. 3 t «— A[j]

T. 5 Alj] «— A[j-1]

8. 4 Alj-11 «— t

9. 3 AFTERIF je—3j-1

10. 1 goto INLOOP

11. 3 AFTERINLOOP i«— i+ 1

12. 1 goto OUTLOOP

[
w

AFTEROUTLOOP

Alongside each statement, the number of time units required to execute the statement is also given.
For Lines 2, 4, and 5 there are two entries each in the Time Units column. The first entry gives the
time taken if the boolean condition in the statement evaluates to True. The second entry corresponds
to a False evaluation of the boolean condition.

From this it follows that the worst case time taken for a sucessful execution of the inner for-loop is

44+64+3+5+4+3+1=26.

An unsuccessful attempt to execute the inner for-loop takes 5 units of time. For any i, 1 <i < n — 1,
the inner for-loop executes n — ¢ times. Therefore, for any i, 1 < i < n — 1, Lines 4-10 take a total of
26(n — ) + 5 time units.

For any ¢, 1 <i < n — 1, the ith execution of the outer for-loop takes time

442426(n—i)+5+3+1=26(n— i)+ 15.

Therefore, all the successful executions of the outer for-loop take time

n—1 n—1
> [26(n—1i) +15] = 15(n— 1) +26 3 _j =15(n— 1) + 13n(n — 1) = 13n> + 2n — 15.
i=1 j=1

To this quantity we add (i) the time for one unsuccessful execution of the outer for-loop and (ii) time
for Statement 1 to get
13n° +2n—154+1+5=13n>+2n—9

as the total number of time units the program takes to run.

Solution to Problem 1(b)
In the new model of computation the running time of Lines 7 and 8 changes to

Line Time Units
7 (n+4)
8 (n+3)



From this it follows that the worst case running time of each successful execution of the inner for-loop
is, in the worst case,
446+3+(n+4)+n+3)+3+1=2n+24.

So for any i, 1 < ¢ < n — 1, Lines 4-10 take a total of (n — ¢)(2n + 24) + 5 time units. For any i,
1 <i < n—1, the ith execution of the outer for-loop takes

(n—4)(2n+24) + 5+ (4 +2+ 3+ 1) = 2n® — 2in + 24n — 24i + 15.

All successful executions of the outer for-loop takes

n—1
> 20 — 2in + 24n — 24i + 15] = n® + 11n? + 3n — 15.
i=1

To this quantity we add (i) the time for one unsuccessful execution of the outer for-loop and (ii) time
for Statement 1 to get
n®+11n* 4+ 3n — 9

as the total running time of the program.

Solution to Problem 2
The assignment statement inside the inner most for-loop (the k-loop) takes O(1) time. Therefore, the
total running time of the function is
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In evaluating the above sum we use the fact that

iliz _ n(n 4+ 1)6(2n +1)

Solution to Problem 3
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Solution to Problem 4
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(d)

f(n) +g(n) = ©(max(f(n),g(n))). True
Let ¢1 = 1, c2 = 2, and ng be such that for all n > ng g(n), f(n) > 0. We know that ng exists
because the functions are asymptotically non-negative. We now show that for all n > ng

max{f(n),g(n)} < f(n) +g(n) < 2max{f(n),g(n)}.
This is sufficient to show that f(n) + g(n) = ©O(max{f(n), g(n)}).
For all n > ng, f(n),g(n) > 0. This implies that for all n > ng, f(n) + g(n) > f(n) and
f(n) 4+ g(n) > g(n). This further implies that for all n > ng, f(n)+ g(n) > max{f(n),g(n)}.
For all n, f(n) < max{f(n),g(n)} and g(n) < max{f(n),g(n)}. Hence, we have that f(n)+g(n) <
2max{f(n),g(n)}.
f(n) +o(f(n)) = O(f(n)). True.
f(n) +o(f(n)) = f(n) 4+ g(n) where g(n) is some function such that for every constant ¢ > 0,
there is a constant ng > 0 such that 0 < g(n) < ¢f(n) for all n > ng. In particular, letting

¢ = 1, we have that there is a constant ng such that 0 < g(n) < f(n) for all n > ng. Therefore,
f(n) < f(n)+g(n) < 2f(n) for all n > ng. By the definition of the “Big-Theta” notation it follows

that, () + o(f(n)) = O(f (n).
f(n) = O(f(n)?). False.
Let f(n) = 1/n. Clearly, 1/n # O(1/n?).

(n+1)%2 = O(n?). True.
To show this we need to show that there exist constants c¢,ng > 0 such that for all n > ny,
0 < (n+ 1)? < en?. The inequality (n + 1)2 > 0 is true for all n > 0. Now we consider the
inequality (n + 1)% < en?:

n+1)2<cen? = en®>-n+1)2>0

(Ven — (n+1))(Ven+(n+1)) >0

So we can ensure that (n + 1)? < cn? by making sure that
Ven—(n+1)>0 and  en+(n+1)>0.

Now if we let ¢ = 4, we see that both inequalities are true for all n > 1. Hence, we have shown
that for all n > 1, 0 < (n + 1)? < 4n?. By the definition of the “Big-Oh” notation we have that
(n+1) =0(n?).



