Solutions to Homework 7

22C:044 Algorithms, Fall 2000

1 The p'th slot to try after the initial position h(k) is

$$h(k)+1+2+\ldots+p \equiv h(k)+p(p+1)/2 \equiv h(k)+p^2/2+p/2 \pmod{m}$$
.

So the proposed scheme is quadratic probing with $c_1 = c_2 = 1/2$.

Let $m=2^t$ be a power of two. The p'th and the q'th probe positions of key k are $h(k)+p^2/2+p/2$ and $h(k)+q^2/2+q/2$, respectively. Let us show that these two positions are distinct for any $p \neq q$, $0 \leq p, q < 2^t$. Namely, if

$$h(k) + p^2/2 + p/2 \equiv h(k) + q^2/2 + q/2 \pmod{2^t}$$

then

$$(p-q)(p+q+1)/2 \equiv 0 \pmod{2^t}$$
.

This means that (p-q)(p+q+1) is divisible by 2^{t+1} . Because p-q or p+q+1 is odd, either p-q or p+q+1 must be divisible by 2^{t+1} . Number p+q+1 can not be a multiple of 2^{t+1} because

$$p + q + 1 \le (2^t - 1) + (2^t - 1) + 1 = 2^{t+1} - 1.$$

But neither can p-q be a multiple of 2^{t+1} because $p \neq q$.

We conclude that the probe positions with $p = 0, 1, 2, ..., 2^t - 1$ are all distinct, so all 2^t positions are among them.

- 2 Knapsack(s[1...n], S)
 - allocate array c[0...S]
 - 2. for $i \leftarrow 1$ to S do c[i]=nil
 - 3. c[0]=0
 - 4. for $i \leftarrow 1$ to n do
 - 5. for $j \leftarrow s[i]$ to S do
 - 6. if (c[j]=nil) and $(c[j-s[i]] \neq nil)$ then c[j]=i
 - 7. if c[S]=nil then return FALSE
 - 8. i ← S
 - 9. while (j>0) do print c[j]; $j \leftarrow j-s[c[j]]$

First we build an array c[0...S] whose element c[j] is the smallest number i such that some subset of the first i rods has total length exactly j. If there is no subset whose sum is i then we set c[i]=nil. The array is built on lines 1–6 of the pseudo-code. On line 6 we test whether length j can be made of rod number i and some subset of the first i-1 rods.

If c[S] remains nil then no subset has total length S and we return value FALSE (line 7). Otherwise, we print out the rods whose lengths sum up to S (lines 8–9).

The time complexity is dominated by the two nested for -loops on lines 4–5. The total time complexity is $\Theta(nS)$. The space complexity is $\Theta(S)$.

3 Assumptions about the input: A[0] and A[n] are the beginning and the end positions of the string, A[1...n-1] are the positions of the break points that need to be made, ordered from left to right.

```
Breaks(A[0...n])
1. allocate array c[0...n][0...n]
2. for k \leftarrow 1 to n do
     for a \leftarrow 0 to n-k do
3.
4.
     begin
5.
        b \leftarrow a+k
        if (k=1) then c[a][b] \leftarrow 0 else
6.
7.
        begin
8.
          \min \leftarrow \infty
9.
          for x \leftarrow a+1 to b-1 do
10.
          begin
            w \leftarrow c[a][x]+c[x][b]
11.
12.
            if w<min then min \leftarrow w
13.
          c[a][b] \leftarrow min+(A[b]-A[a])
14.
15.
        end
16.
     end
17.PrintBreaks(A[0...n])
PrintBreaks(A[a...b])
1. if (b-a < 2) then return else
2. for x \leftarrow a+1 to b-1 do
      if c[a][b] = c[a][x]+c[x][b] + (A[b]-A[a]) then
3.
4.
        begin
5.
          Print x
6.
          PrintBreaks(a,x)
7.
          PrintBreaks(x,b)
8.
          return
9.
        end
```

The algorithm resembles the optimal triangulation algorithm. Element c[a][b] will store the minimum cost of the cuts A[a+1...b-1] between positions A[a] and A[b], assuming that cuts has been made at positions A[a] and A[b]. We try all possible choices x for the next cut to be made between positions A[a] and A[b], and choose one that gives the smallest total cost. Value (A[b]-A[a]) is the cost of the cut x, and c[a][x] and c[x][b] are the costs of making the remaining cuts between positions A[a] and A[x], and A[x] and A[b], respectively.

In the end, a recursive PrintBreaks is used to print the cuts in the optimal order.

4 Let us assume the points are given in the order from left to right. In other words, point 1 is the leftmost point and point n is the rightmost point. Let $w_{i,j}$ be the distance between points i and j.

A bitonic tour through the points consists of a left-to-right path from point 1 to point n, followed by a right-to-left path from n back to 1. All points must be visited.

Clearly points n and n-1 are connected on every bitonic tour. Let us define a bitonic path from node i to node i-1 as follows: it is a path that starts with a right-to-left path from point i to point 1, followed by a left-to-right path from point 1 to point i-1. All points $1, 2, 3, \ldots i$ must be on the path.

Let P be such a bitonic path from node i to node i-1. Let j be the second node on the path, that is, the node connected to i. Then nodes $j+1, j+2, \ldots, i-1$ must be the last nodes of path P. This means that P consists of edge $i \longrightarrow j$, a bitonic path between points j+1 and j, and edges $j+1 \longrightarrow j+2 \longrightarrow \ldots \longrightarrow i-1$. If we know the lengths of the shortest bitonic paths between points j+1 and j for all j < i-1 then we can easily find the length of the shortest bitonic path between nodes i and i-1 by trying all choices of j and choosing the one that gives the shortest path.

We use an array c[2...n] whose element c[i] stores the length of the shortest bitonic path between nodes i and i-1. The shortest bitonic tour must then have length $c[n] + w_{n,n-1}$.

Here's the first part of the algorithm. Variable sum is used to accumulate the sum of the lengths of the path $j+1 \longrightarrow j+2 \longrightarrow \ldots \longrightarrow i-1$.

```
Bitonic

1. allocate array c[2...n]

2. c[2] \longleftarrow w_{1,2}

3. for i \longleftarrow 3 to n do

4. begin

5. \min \longleftarrow \infty

6. \sup \longleftarrow 0

7. for j \longleftarrow i-2 downto 1 do

8. begin

9. \forall \longleftarrow c[j+1] + w_{j,i} + sum
```

- 10. if w < min then min \longleftarrow w
- io. II w < min then min ←
- 11. $\operatorname{sum} \longleftarrow \operatorname{sum} + w_{j,j+1}$
- 12. end
- 13. $c[i] \leftarrow min$
- 14.end

Once the array c[2...n] is filled we can make a second pass to print out the actual line segments:

```
15.print line segment n \longleftrightarrow n-1
16.i \leftarrow n
17.while (i>2) do
18.begin
19. \min \longleftarrow \infty
20. sum \leftarrow 0
21. for j \leftarrow i-2 downto 1 do
22.
        if c[i] \neq c[j+1] + w_{j,i} + sum thenum \longleftarrow sum + w_{j,j+1} else
23.
        begin
24.
          print line segment i <-> j
         for k \leftarrow j+1 to i-2 do
25.
             print line segment k <-> k+1
26.
27.
           i \leftarrow j+1
28.
          break (=goto 17)
29.
30.end
33.print line segment 1 \longleftrightarrow 2
```