Solutions to Homework 7

22C:044 Algorithms, Fall 2000
1 The p'th slot to try after the initial position h(k) is
h(k)+14+2+...+p= h(k)+p(p+1)/2 = h(k)+p*/2+p/2 (mod m).

So the proposed scheme is quadratic probing with ¢; = ¢y = 1/2.

Let m = 2! be a power of two. The p’th and the ¢’th probe positions of
key k are h(k) +p*/2+p/2 and h(k) + ¢*/2 + q/2, respectively. Let us
show that these two positions are distinct for any p # ¢, 0 < p,q < 2%
Namely, if

h(k) +p*/2 +p/2 = h(k) +¢*/2+q/2 (mod 2")

then
(P—a)(p+q+1)/2=0 (mod 2.

This means that (p — ¢)(p + ¢ + 1) is divisible by 27!, Because p — ¢
or p+ q+ 1 is odd, either p — q or p+ ¢ + 1 must be divisible by 2!1.
Number p + ¢ + 1 can not be a multiple of 2t because

pHg+1<(2 =1+ @2 -1)+1=2""—1.

But neither can p — ¢ be a multiple of 27! because p # q.

We conclude that the probe positions with p = 0,1,2,...,2' =1 are all
distinct, so all 2¢ positions are among them.

2 Knapsack(s[1...n], S)
. allocate array c[0...S]
. for i«— 1 to S do c[i]=nil
. c[0]=0
. for i«— 1 to n do
for j«—— s[i] to S do
if (c[jl=nil) and (c[j-s[il] # nil) then c[jl=i
. if c[S]=nil then return FALSE

je 3

© 00 ~NO O W N =

. while (j>0) do print c[jl; j «— j-slc[j]l]

First we build an array c[0...S] whose element c[j] is the smallest
number ¢ such that some subset of the first ¢ rods has total length
exactly j. If there is no subset whose sum is ¢ then we set c[i]=nil.
The array is built on lines 1-6 of the pseudo-code. On line 6 we test
whether length j can be made of rod number ¢ and some subset of the
first ¢ — 1 rods.



If ¢[S] remains nil then no subset has total length S and we return
value FALSE (line 7). Otherwise, we print out the rods whose lengths
sum up to S (lines 8-9).

The time complexity is dominated by the two nested for -loops on
lines 4-5. The total time complexity is O(n.S). The space complexity
is O(9).

Assumptions about the input: A[0] and A[n] are the beginning and
the end positions of the string, A[l...n-1] are the positions of the break
points that need to be made, ordered from left to right.

Breaks(A[O...n])
1. allocate array c[0...n][O...n]
2. for k «+—— 1 to n do

3. for a«—— 0 to n-k do

4. Dbegin

5. b «—— a+tk

6. if (k=1) then cla]l[b] «— O else
7. begin

8. min «— oo

9. for x «+—— a+l to b-1 do
10. begin

11. w «— cla] [x]+c[x] [b]
12. if w<min then min+— w
13. end

14. clal] [b]«— min+(A[b]-Al[al)
15. end

16. end

17 .PrintBreaks(A[O...n])

PrintBreaks(A[a...b])
1. if (b-a < 2) then return else
2. for x «—— atl to b-1 do
3. if clallb] = clal [x]+clx][b] +(A[b]l-A[a]) then
begin
Print x
PrintBreaks(a,x)
PrintBreaks(x,b)
return
end

© 00 N O O b



The algorithm resembles the optimal triangulation algorithm. Element
cla][b] will store the minimum cost of the cuts Ala+1...b-1] between
positions A[a] and A[b], assuming that cuts has been made at positions
Ala] and A[b]. We try all possible choices x for the next cut to be made
between positions A[a] and A[b], and choose one that gives the smallest
total cost. Value (A[b]-Ala]) is the cost of the cut x, and c[a|[x] and
c[x|[b] are the costs of making the remaining cuts between positions
Ala] and A[x], and A[x| and A[b], respectively.

In the end, a recursive PrintBreaks is used to print the cuts in the
optimal order.

Let us assume the points are given in the order from left to right. In
other words, point 1 is the leftmost point and point n is the rightmost
point. Let w; ; be the distance between points ¢ and j.

A bitonic tour through the points consists of a left-to-right path from
point 1 to point n, followed by a right-to-left path from n back to 1.
All points must be visited.

Clearly points n and n — 1 are connected on every bitonic tour. Let us
define a bitonic path from node 7 to node i — 1 as follows: it is a path
that starts with a right-to-left path from point ¢ to point 1, followed by
a left-to-right path from point 1 to point ¢ — 1. All points 1,2,3,...1
must be on the path.

Let P be such a bitonic path from node ¢ to node i — 1. Let j be the
second node on the path, that is, the node connected to z. Then nodes
j+1,74+2,...,i—1 must be the last nodes of path P. This means that
P consists of edge i — 7, a bitonic path between points j + 1 and j,
and edges j+1 — j+2 — ... — i — 1. If we know the lengths of
the shortest bitonic paths between points j + 1 and j for all j <7 —1
then we can easily find the length of the shortest bitonic path between
nodes i and ¢ — 1 by trying all choices of j and choosing the one that
gives the shortest path.

We use an array c|2...n] whose element c[i] stores the length of the
shortest bitonic path between nodes ¢ and 2 — 1. The shortest bitonic
tour must then have length c[n| + wy, ;,—1.



Here’s the first part of the algorithm. Variable sum is used to accumu-
late the sum of the lengths of the path j+1 — j+2 — ... — i —1.

Bitonic
. allocate array c[2...n]
. cl2] «—w
. for i «+— 3 to n do
. begin
min «— o0
sum «— O
for j «— i-2 downto 1 do
begin
w +— c[j+1] + w;; + sum
10. if w < min then min «— w
sum «— sum + Wj 41

© 00 ~NO O WN =

=
N =

end
13. cl[i] «— min
14 .end

Once the array ¢[2...n] is filled we can make a second pass to print out
the actual line segments:

15.print line segment n «— n-1
16.i «— n

17.while (i>2) do

18.begin

19. min «— 00

20. sum «— O

21. for j +— 1i-2 downto 1 do

22. if c[i] # cl[j+1] + wj; + sum thenum «— sum + w;;;1 else
23. begin

24. print line segment i <-> j

25. for k «+—— j+1 to i-2 do

26. print line segment k <-> k+1

27. i— j+1

28. break (=goto 17)

29. end

30.end

33.print line segment 1 +— 2



