
Computer Science III (22C:30, 22C:115)
Exam 2, 11/1/02

The exam is worth 150 points (15% of your total grade).

Problem 1. [40 points]
The problem concerns the adjacency list representation of the graph class that you have to implement
for Project 2.

(a) [15 points] Write down the data members of the graph class for this implementation. Remember
that the graph class is a template class. It will help to use the definition of the node class from
your textbook (pages 306–313).

(b) [25 points] Assuming the data members from Part (a) of this problem, write a member function
of the graph class called NumberOfEdges, that returns the number of edges in the graph. This
function is just 4-5 lines of code if you use the list length function defined in the linked list
toolkit (page 309 of your textbook).

1



Problem 2. [40 points]
Consider the implementation of the bfs function discussed in class (a printout of this function is attached
to your exam). Now make the following two changes to this function:

1. Replace the definition “queue<int> Q” by “stack<int> Q”.

2. Replace the line “int current = Q.front();” by “int current = Q.top();”

Show how this modified bfs will work for the graph given below.

A

B

C D

E

F

G

H I

J

K L

M

N

O

P Q

R

S

T

In particular, assume that node “A” is the source for the search. Show distance-values that are assigned
by the function to each of the nodes. These are the values that are computed by bfs and stored in
the apvector distances. Assume that the function get neighbors returns neighbors of a node in
alphabetical order.

To answer this question, just mark the distance-values next to the nodes. If you are confused about
which label matches up with which node in the above picture, the rule is that each node’s label occurs
just to its northeast.

2



Problem 3. [40 points]
Here is a recursive function that takes pointers head1 and head2 that point to singly linked lists and
returns a pointer to a linked list that is somehow obtained by “merging” the lists pointed to by head1

and head2.

node<int> * merge(node<int> * head1, node<int> * head2){

if(head1 == NULL)

return head2;

else if (head2 == NULL)

return head1;

else{

if(head1->data() < head2->data()){

node<int> * temp = merge(head1->link(), head2);

head1->set_link(temp);

return head1;

}

else{

node<int> * temp = merge(head1, head2->link());

head2->set_link(temp);

return head2;

}

}

}

(a) [20 points] Suppose that we send to the above function two pointers, head1 and head2, that are
pointing to lists 3, 7, 11, 30 and 1, 3, 7, 9 respectively. The function returns a node pointer; write
down the list of integers that this is pointing to.

(b) [20 points] In two sentences explain what the function does.

3



Problem 4. [30 points]
The graphs we have been talking about in class are undirected graphs, because the edges in these graphs
have no associated direction. As a result, if there is an edge between a node with index i and a node with
index j, then in the adjacency matrix representation, the edge between these two nodes is represented by
a true value in slot [i][j] as well as in slot [j][i] in the matrix. Suppose we decide that this is somewhat
redundant and we will adopt the convention that the only slots in the matrix that we will use are slots
[i][j] where i < j. This is the same as saying that we will only use the triangle of the matrix that is
above and to the right of the diagonal that can be drawn from the top-left corner to the bottom-right
corner.

If we adopt this convention, then we will have to change each of the functions in the graph class that
we implemented for Project 1. Here is the implementation of the get neighbors function from Version
3 of my Project 1 solution, but with a few lines removed. The lines that were removed are the lines of
code that would have to be modified as a result of adopting the above convention. Fill in these lines to
complete the function.

apvector<node> graph::get_neighbors(const node & x){

// Set up a vector for the list of neighbors

apvector<node> neighbors;

// Get the index of the node

int i = getIndex(x);

// Check if node exists in the graph

if(i < 0){

cout << "Node " << x.getName() << " is not in the graph" << endl;

return neighbors;

}

// Fill in your lines here

return neighbors;

}

4


