22C: 253 Lecture 9

Scribe: Zhihong Wang

September 25, 2002

Last class we presented a factor-1/2 approximation algorithm for MAX-SAT. Now our goal is to improve this to a factor-3/4 approximation algorithm. Here is our factor-1/2 algorithm:

Algorithm 1: Set each variable x_i to TRUE independently, with probability 1/2.

Our next algorithm uses LP relaxation followed by randomized rounding.

Algorithm 2 (Randomized Rounding Algorithm)

Start with an IP for MAX_SAT. Let z_C be an indicator variable indicating if clause C is TRUE or FALSE. For each clause C, let L_C^+ denote the set of positive literals in C, and L_C^- denote the set of negative literals in C.

$$\max \sum_{C} w_{C} z_{C}$$

$$subject \ to$$

$$z_{C} \leq \sum_{i \in L_{C}^{+}} x_{i} + \sum_{i \in L_{C}^{-}} (1 - x_{i})$$

$$z_{C} \in \{0, 1\} \text{for each clause } C$$

$$x_{i} \in \{0, 1\} \text{for each } i = 1, 2, \dots, n$$

Let $x_i = 1$ denote setting of $x_i = TRUE$ and $x_i = 0$ denote setting of $x_i = FALSE$. In the corresponding LP-relaxation, we replace $z_C \in \{0,1\}$ by $0 \le z_C \le 1$, and $x_i \in \{0,1\}$ by $0 \le x_i \le 1$.

Randomized Rounding Algorithm

Step 1: Solve the LP-relaxation and let (x^*, z^*) denote an optimal solution.

Step 2: For each i = 1, 2, 3, ..., n, set $x_i = TRUE$ with probability x_i^* , and $x_i = FALSE$ with probability $(1 - x_i^*)$.

Let us analyze this algorithm. Pick an arbitrary clause C and suppose it has k literals. Without loss of generality, assume

- The literals in C involve distinct variables.
- The literals in C are all positive.
- $C = (x_1 \lor x_2 \lor x_3 \lor \cdots lor x_k).$

Then $\operatorname{Prob}[C \text{ is FALSE}] = \prod_{i=1}^{k} (1-x_i^*)$. It is a fact that for nonnegative numbers of a_1, a_2, \ldots, a_k , the arithmetic mean is at least as large as the geometric mean. In other words,

$$\frac{a_1 + \dots + a_n}{k} \ge \sqrt[k]{a_1 a_2 \cdots a_k}.$$

This implies that

$$\operatorname{Prob}[C \text{ is FALSE}] \leq \left(\sum_{i=1}^{k} \frac{(1-x_i^*)}{k}\right)^k$$

Since x^* is feasible for the LP-relaxation, it satisfies

$$\sum_{i=1} k x_i^* \ge z_C^*.$$

Hence,

$$\operatorname{Prob}[C \text{ is FALSE}] \leq (1 - \frac{z_C^*}{k})^k$$

and this implies that

$$Prob[C \text{ is TRUE}] \le 1 - (1 - \frac{z_C^*}{k})^k.$$

We need to understand the function $g(z) \leq 1 - (1 - \frac{z}{k})^k$ better to take the next step. Suppose $\beta_k = 1 - (1 - frac_1k)^k$.

Lemma 1 $g(z) \geq \beta_k z_k$, for $z \in [0,1]$.

Proof:

$$g'(z) = -k\left(1 - \frac{z}{k}\right)^{k-1} \left(-\frac{1}{k}\right) = \left(1 - \frac{z}{k}\right)^{k-1}$$
$$g''(x) = (k-1)\left(1 - \frac{z}{k}\right)^{k-2} \left(-\frac{1}{k}\right) < 0$$

This implies that g'(z) is decreasing and the function looks as shown in the figure above. So $g(z) \geq \beta_k z$ for $z \in [0,1]$. \square This implies that $\text{Prob}[C \text{ is TRUE}] \geq \beta_k z_C^*$. Therefore $E[W_C] \geq \beta_k z_C^* w_C$. We know $\beta_k = 1 - (1 - \frac{1}{k})^k \geq 1 - \frac{1}{e}$, and therefore

$$E[W_C] \ge (1 - \frac{1}{e}) z_C^* w_C.$$

This implies that

$$E[W] \ge (1 - \frac{1}{e}) \sum_{C} z_C^* w_C \ge (1 - \frac{1}{e})OPT.$$

Let us reexamine the analysis of the two algorithms. Let C be a clause with k literals,

Algorithm 1: Prob[C is TRUE] = $1 - \frac{1}{2^k} = \alpha_k$.

Algorithm 2: Prob[C is TRUE] $\geq \beta_k z_k^* = (1 - (1 - \frac{1}{k})^k) z_C^*$.

	k=1	k=2	k=3	
α_k	$^{1}/_{2}$	3/3	7/8	α_k is an increasing function of k \Rightarrow so algorithm 1 does well
				for large clauses.
β_k	1	3/3	19/27	β_k is a decreasing function of k \Rightarrow algorithm 2 does poorly
				for large clauses.

It is also easy to verify that $\alpha_k + \beta_k \ge 3/2$ for all k. This suggests a third algorithm that performs better by picking one of Algorithm 1 or Algorithm 2, randomly.

Algorithm 3: Toss a coin and run algorithm 1 or algorithm 2 depending on the outcome.

Lemma 2 $E[W] \ge \frac{3}{4}OPT$.

Proof: Let W_1 and W_2 be the random variables denoting weight of solution of algorithm 1 and algorithm 2 respectively. Let C be a clause with k literals. Let W_C^1 and W_C^2 denote the random variable that stands for the weight contribution of clause C for algorithm 1 and algorithm 2 respectively. We know $E[W_C^1] = \alpha_k w_C$ and $E[W_C^2] \ge \beta_k z_C^* w_C$. Let W_C be the weight combination of clause C in combined algorithm. Then,

$$W_C = \begin{cases} W_C^1 \text{ with probability } 1/2\\ W_C^2 \text{ with probability } 1/2 \end{cases}$$

Hence,

$$E[W_C] = (W_C^1 + W_C^2)/2.$$

By substituting the bounds for the individual algorithms we get

$$E[W_C] \ge \frac{1}{2} (\alpha_k w_C + \beta_k w_C z_C^*).$$

Since $z_C^* \leq 1$, this implies

$$E[W_C] \ge \frac{1}{2} (\alpha_k w_C z_C^* + \beta_k w_C z_C^*).$$

Finally,

$$E[W_C] \ge \frac{1}{2}(\alpha_k + \beta_k)w_C z_C^* \ge \frac{3}{4}w_C z_C^*.$$

Therefore,
$$E[W] = \sum_{C} E[W_C] \ge \frac{3}{4} \sum_{C} w_C z_C^* \ge \frac{3}{4} OPT$$
.