22C: 253 Lecture 9

Scribe: Zhihong Wang
September 25, 2002

Last class we presented a factor-1/2 approximation algorithm for MAX-SAT. Now our goal is to
improve this to a factor-3/4 approximation algorithm. Here is our factor-1/2 algorithm:
Algorithm 1: Set each variable z; to TRUE independently, with probability 1/2.

Our next algorithm uses LP relaxation followed by randomized rounding.

Algorithm 2 (Randomized Rounding Algorithm)

Start with an IP for MAX_SAT. Let z¢ be an indicator variable indicating if clause C' is TRUE
or FALSE. For each clause C, let L, denote the set of positive literals in C, and L denote the
set, of negative literals in C.

max Y wezc

c

subject to

ZCS Z $i+ Z (1—£L‘Z‘)
iELE €Ly

z¢ € {0, 1}for each clause C
z; € {0,1Hor each i =1,2,...,n

Let x; = 1 denote setting of ; = TRUFE and z; = 0 denote setting of x; = FALSE. In the
corresponding LP-relaxation, we replace
20 €{0,1} by 0<2¢ <1, and z; € {0,1} by 0 < z; < 1.

Randomized Rounding Algorithm

Step 1: Solve the LP-relaxation and let (z*, z*) denote an optimal solution.

Step 2: For each 1 =1,2,3,...,n, set x; = TRUE with probability z}, and z; = FALSE with
probability (1 — z7).

Let us analyze this algorithm. Pick an arbitrary clause C' and suppose it has £ literals. Without
loss of generality, assume

e The literals in C involve distinct variables.
e The literals in C are all positive.

o C=(r1VazaVazV---lorzy).

o
—_
Ny

Then Prob[C is FALSE] = [[(1—x}). It is a fact that for nonnegative numbers of a1, as, . . .

i=1

the arithmetic mean is at least as large as the geometric mean. In other words,
a+-ta
% 2 ka/la/Z...a/k.

This implies that

Prob[C' is FALSE] < (Z
=1

Since z* is feasible for the LP-relaxation, it satisfies
Z kx; > 2.
i=1

Hence,
Prob[C is FALSE] < (1 — %’)’“

and this implies that
Prob[C is TRUE] < 1 — (1 — %C)k.

y Ak,

We need to understand the function g(z) < 1 — (1 — £)* better to take the next step.Suppose

B =1— (1 — fraclk)*.
Lemma 1 g(2) > Byzx, for z €/0,1].

Proof:

This implies that ¢'(z) is decreasing and the function looks as shown in the figure above. So
g(z) > Bz for z € [0,1]. 0 This implies that Prob[C is TRUE] > pByz5. Therefore
EW¢| > Brzigwe. We know B, =1— (1 — %)k >1-— %, and therefore

1
EWe] > (1 — ;)zgwc.

This implies that
1 . 1
EW]>(1- g) EC zgwe > (1 — E)OPT.

Let us reexamine the analysis of the two algorithms. Let C be a clause with k literals,
Algorithm 1: Prob[C is TRUE] =1 — 5 = o.

Algorithm 2: Prob[C is TRUE] > B2; = (1 — (1 — 1)*)z¢.

k=1 k=2 k=3

ap | 3/3 7/8 oy is an increasing function of k = so algorithm 1 does well
for large clauses.
Be |1 3/3 19/27 | Biis a decreasing function of k = algorithm 2 does poorly

for large clauses.

It is also easy to verify that ay + S >3/2 for all k. This suggests a third algorithm that
performs better by picking one of Algorithm 1 or Algorithm 2, randomly.

Algorithm 3: Toss a coin and run algorithm 1 or algorithm 2 depending on the outcome.
Lemma 2 E[W]> 30PT.

Proof: Let W; and Wsbe the random variables denoting weight of solution of algorithm 1 and
algorithm 2 respectively. Let C be a clause with k literals. Let W} and Wg denote the random
variable that stands for the weight contribution of clause C' for algorithm 1 and algorithm 2
respectively. We know E[W}] = aywe and E[W2] > Brziwe. Let We be the weight combination
of clause C' in combined algorithm. Then,

W4 with probability 1/2
We =
W& with probability 1/2

Hence,
E[W¢| = (Wé + Wé)/?

By substituting the bounds for the individual algorithms we get

1
E[Wc] > i(akwc + ﬂk’bUcZér)

Since 2§ < 1, this implies
1 * *
E[Wc] 2 é(akwczc -+ ﬂkaZC).

Finally,

*

1 3
E[Wc] > E(Oék + 519)’(1}028 > chzc.
a

Therefore, E[W] =Y E[W¢] > 23 wezg > 30PT.
]]

