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Randomized Rounding

The main idea behind randomized rounding is the following

1 Solve the LP-relaxation in polynomial time

2 Interpret the solution obtained as a probability vector

This idea was proposed in the 1980s by Raghavan and Thompson to solve a problem in VLSI
Design Automation. We present two examples of randomized rounding: Set Cover and MAX-SAT.

Set Cover

We now discuss a randomized algorithm that gives a O(log n) approximation algorithm for the set
cover problem. Recall that the LP-relaxation for the set cover problem can be stated as follows:
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Now carry out the following two steps
Step 1: Solve the LP-relaxation and let z = (x1,x9, ..., xx) represent the solution.
Step 2: Interpret each z; as a probability and perform the following:

for ¢ = 1,2,...,k include S; in the solution with probability z;
Another way of stating the above is
for ¢ =1,2,...,k do set y; = 1 with probability z;

Here y;s represent the integral solutions for the set cover ILP.
Some remarks about the above chosen method:

e The elements in S; are chosen independently



e The resulting solution need not be feasible

Now we proceed to analyze steps 1 and 2. Let ¥ = Ef cost(S;) * y;. Note that the y}s are all
binary random variables and

Probly; = 1] = z; and Probly; =0] =1 — z;.

Therefore E[y;] = z;. Furthermore,

k k k
ElY] = E[Z cost(S;) * y;] = Z cost(S;) * Ely;] = Zcost(Si) * T

The RHS represents the optimal solution of the LP-relaxation and so E[Y] < OPT. where OPT
represents the optimal solution of the ILP. The probability that j € U is NOT covered is [, ; S¢(1 —
z;). Therefore the probability P; that an element j € U is covered is given by:

Pi=1- ] (1 -)
1:5€S;

It is easy to see that the quantity in the RHS is minimized when z; = 1/f; where f; is the frequency
of j for alli: j € S;. Hence,

Pix1- [[a-1/f)=1-(1~1/f)"
2:5€S;
Recall that for all real z, e > (1 + z) and hence
e Vi > (1—1/f;)= et > (1-1/f;)%.
Hence,
P> (1-1/e)

Therefore the probability that each element is covered is at least a constant. So the expected
number of elements covered is at least (1 — 1/e)™. This fact motivates step 3 as follows:
Step 3: Repeat step 2 clogn times for some positive ¢ to be fixed later.
Note that each repetition is independent of all other repetitions. Let C’ be the collection of subsets
thus obtained. The probability of j € U is not covered by a subset in C" is atmost (1/e)“/*9". Now
pick ¢ such that:

(1/€)¥°9m > 1/4n = € < 4

Therefore the probability a j € U is not covered by a subset in C' is atmost 1/4n. Let ch represent
the probability that there exists at least one j € U that is not covered.

ch’ <1/4 (1)

By using the union bound:

n
Prob[zy Vzo V-V z,] < Z Prob[z;] (2)
%



We get ’
Elcost(C')] < clogn * OPT (3)

Notice that (2) is not dependent on the fact that z}s are all independent. Recall Markov’s inequal-
ity:

Prob[X > k] < % (4)
By using (3) and (4) we get
Prob[cost(C') > 4clogn « OPT] < 1/4 (5)

We need two things:
e The cost(C’) should be less than 4clogn*OPT
e C' should be feasible

Let the probability that the above two things happen be Pyegireq- Then from (1) and (5) it is easy
to see that:

Pdesired > 1/2 (6)

Now simply run steps 2 and 3 until the above conditions are met. By (6) we expect to repeat steps
2 and 3 not more than 2 times.

Note: OPT in (5) actually refers to the optimal solution of the ILP which is incalculable. However
we could use the optimal solution of the LP-relaxation for practical purposes.

MAX-SAT

Input: A boolean formula fin CNF defined on boolean variables x1,zs,...,z, and associated
with each clause ¢ of fa weight w, .

Output: A truth assignment to 1,2, ... ,T, that maximizes the weight of satisfied clauses.

We now discuss a simple randomized algorithm that give a 1/2 factor approximation (We shall
later use this to produce a 3/4 factor approximation scheme)
foreachi=1,2,...,n do

Set x; = TRU E with probability 1/2 (independently)

Let W be the sum of the weights of satisfied edges:
E[W]=E[)_ W
ceC

where

W, = { 0 if ¢ is not satisfied

w, otherwise
EW,.] = w.(1 —1/2F)
where k represents the number of literals in clause c. Since k > 1, (1 — 1/2%) > 1/2. Hence

EW.] > w./2



Therefore

since



