22C:253 Lecture 7

Imran A. Pirwani

September 30, 2002

A Quick Recap. 1

Last time, we looked at situations in which LP has integral solutions. Consider an LP:

$$\min\{c^T x | Ax \le b, x \ge 0\}$$

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$

Theorem 1 All vertices of the feasibility polytope are integral if A is totally unimodular (TUM) and b is integral.

Proof: Any vertex v of the polytope is the intersection of atleast n-dimensional hyperplanes described by the L.P. constraints. In other words, there exists an $n \times n$ matrix A_s and $b_s \in \mathbb{R}^n$ such that v is described by:

$$A_s \cdot x = b_s$$

Note that some of these equations come from the non-negativity constraints. (Basically, we take m+nof the inequalities and then we turn them into equalities.)

$$x = A_s^{-1} \cdot b_s$$

= $\frac{1}{\det(A_s)} \cdot \operatorname{adj}(A_s) \cdot b_s$

Recall,

$$\det(A) = \sum_{j=1}^{n} a_{ij} \cdot A_{ij}, \text{ for any } i$$

where A_{ij} is a cofactor of A and A_{ij} is defined as follows:

$$A_{ij} = (-1)^{i+j} \cdot \det(M_{ij})$$

where M_{ij} is called the "minor".

$$\operatorname{adj}(A) = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix}$$

If A is TUM, then $det(A_s) \in \{\pm 1\}$.

Also, $\operatorname{adj}(A)$ is a matrix where $A_{ij} = \{\pm 1\}$. It follows that if b is integral, then $\frac{1}{\det(A_s)}$ adj $(A_s) \cdot b_s$ is an integral vector.

2 Application of the Theorem

2.1 Maximum Matching Problem in a Bipartite Graph

Let G = (V, E) be a bipartite graph. Express the maximum matching problem on G as an I.P. Let $x_e \in \{0, 1\}$ be an indicator variable denoting the presense of edge e in the solution:

$$\max \sum_{e \in E} x_e$$

such that,

$$\sum_{e \text{ is incident on } v} x_e \le 1, \text{ for } v \in V$$

and,

$$x_e \in \{0,1\}, \text{ for } e \in E$$

The corresponding relaxation replaces $x_e \in \{0, 1\}$ by $x_e \ge 0$.

Claim 1 This relaxation always has an integral solution.

Also, consider the L.P. relaxation of the I.P. for the Vertex Cover (VC) problem.

$$\min \sum_{v \in V} c_v \cdot x_v$$

such that,

$$x_u + x_v \ge 1$$
, for each edge $e = \{u, v\}$
 $x_v \ge 0$, for each $v \in V$

What is the matrix corresponding to contraints other than the non-negativity constraints? Each row of the matrix corresponds to vertices in G and each column corresponds to edges in G. An element $A_{ve} \in \{0,1\}$ represents whether an edge e is incident upon vertex v in G. This matrix is also known as an incidence matrix.

Claim 2 The incidence matrix of a bipartite graph is TUM.

2.2 Vertex Cover Problem

Likewise, consider an I.P. for the vertex cover problem of a bipartite graph. What does the matrix look like?

Each row of the matrix corresponds to edges in G and each column represents vertices of G. An element in the matrix tells us if an edge e is incident upon vertex v. This matrix is just the transpose of the incident matrix.

Theorem 2 Let A be a matrix with entries in the set $\{-1, 0, +1\}$, such that, each column has atmost two non-zero entries. Suppose the rows of A are partitioned in two sets, namely, I_1, I_2 , such that,

- 1. If a column contains two non-zero entries of the same sign then they appear in differnt partitions.
- 2. If a column contains two non-zero entries of different signs then they appear in the same partition

Subject to the above conditions, A is TUM.

Proof: By induction on the size of sub-matrices.

Base Case:

Claim trivially true for a 1 matrix.

Inductive Case:

Consider a $k \times k$ submatrix C. There are two cases:

- If C has a column with all zeros then $det(C) = 0 \Rightarrow C$ is singular.
- If C has a column with exactly one non zero entry. Let this entry be in position (i,j). Then,

$$\det(C) = (-1)^{i+j} \cdot M_{ij}$$

where M_{ij} is obtained by deleting row i and column j from C. An immediate implication then is that $det(C) \in \{0, \pm 1\}$.

• All columns of C has two non-zero elements. This implies that the sum of all rows of C in $I_1 = \text{sum of all rows of } C$ in I_2 . Which, in turn, implies that the rows of C are **not** linearly independent, which implies that $\det(C) = 0$.

3 Implication of the Theorem

A direct implication of the above theorem is that the incidence of a bipartite graph is TUM.

Corollary 1 The incidence matrix of any directed graph is TUM.

Proof: Denote each incoming edge with a +1 and outgoing edge with a -1. After that, the application of the above theorem is trivial.

4 Half-Integrality of the Vertex Cover Problem

In this section we present a remarkable result due to G. Nemhauser and L. Trotter.

Definition 1 A point $x \in \mathbb{R}^n$ is half-integral if $x_i \in \{0, \frac{1}{2}, 1\}, \forall i \in \{1, 2, \dots, n\}$

Theorem 3 Any vertex of the feasibility polytope of the VC problem is half-integral.

Proof: Assume the contrary. Hence there exists a vertex of the feasibility polytope of VC that is not half-integral. Let $x \in \mathbb{R}^n$ be that vertex. Let

$$V_{+} = \{i | \frac{1}{2} < x_{i} < 1\}, \text{ and } V_{-} = \{i | 0 < x_{i} < \frac{1}{2}\}$$

We are assuming that $V_+ \cup V_- \neq \emptyset$ and $x = (x_1, \dots, x_n)$. For $\epsilon > 0$, define two new points in \mathbb{R}^n as follows:

$$y_i = \begin{cases} x_i - \epsilon & \text{if } i \in V_+ \\ x_i + \epsilon & \text{if } i \in V_- \\ x_i & \text{otherwise} \end{cases}, \quad z_i = \begin{cases} x_i + \epsilon & \text{if } i \in V_+ \\ x_i - \epsilon & \text{if } i \in V_- \\ x_i & \text{otherwise} \end{cases}$$

Note:

$$y \neq x, z \neq x \tag{1}$$

$$x = \frac{1}{2}(y+z) \tag{2}$$

According to Claim 3 (proved subsequently), ϵ can be made small enough so that both y and z are feasible.

This implies that x is the convex combination of two points in the feasibility polytope.

The above in turn implies that x is **not** a vertex of the feasibility polytope. A contradiction.

So, x is half-integral. \Box

Claim 3 Given x, y, z and ϵ in the above ϵ can be made small enough so that both y and z are feasible.

Proof: Since x is a vertex of the feasibility polytope, x is feasible. This implies that,

$$x_i + x_j \ge 1$$
, for all edges $\{i, j\}$.

Consider all edges $\{i, j\}$, such that,

$$x_i + x_j > 1$$

and pick $\epsilon > 0$ small enough so that all such edges

$$y_i + y_j \ge 1 \& z_i + z_j \ge 1$$

Now, we consider constraints that hold tightly for x. In other words,

$$x_i + x_j = 1$$

Look at such an edge $\{i, j\}$. The only possible cases are:

$$\begin{array}{l} x_i=x_j=\frac{1}{2}\Rightarrow i\notin V_+\cup V_-, j\in V_+\cup V_-\Rightarrow y_i=z_i=x_i, y_j=z_j=x_j\\ x_i>\frac{1}{2}; x_j<\frac{1}{2}\Rightarrow i\in V_+, j\in V_-\Rightarrow y_i=x_i-\epsilon, y_j=x_j+\epsilon\Rightarrow y_i+y_j=x_i+x_j=1; \text{ Similarly, } z_i+z_j=1 \\ \text{Symmetric case to the above} \end{array}$$