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1 A Quick Recap.

Last time, we looked at situations in which LP has integral solutions. Consider an LP:
min{c’ z|Az < b,z > 0}
where c € R*,b € R™, A € R™*"

Theorem 1 All vertices of the feasibility polytope are integral if A is totally unimodular (TUM) and
b is integral.

Proof: Any vertex v of the polytope is the intersection of atleast m-dimensional hyperplanes de-
scribed by the L.P. constraints. In other words, there exists an n X n matrix A; and bs; € R™ such
that v is described by:

As-x =0,

Note that some of these equations come from the non—negativity constraints. (Basically, we take m—+n
of the inequalities and then we turn them into equalities.)

Aty
m- adj(As)- bs

X

Recall,
det(A) = Zai_j‘ A;j, for any i

=1

where A;; is a cofactor of A and A;; is defined as follows:

Aij = (—1)i+j-det(M,~j
where M;; is called the “minor”.
A]_]_ . A]_n
adi(4) = | .
An ... Apn

If A is TUM, then det(4;) € {£1}.
Also, adj(A) is a matrix where A;; = {£1}.
It follows that if b is integral, then m. adj(A,)-b, is an integral vector. 0



2 Application of the Theorem

2.1 Maximum Matching Problem in a Bipartite Graph

Let G = (V, E) be a bipartite graph. Express the maximum matching problem on G as an L.P.
Let z, € {0,1} be an indicator variable denoting the presense of edge e in the solution:

max E Te

such that,
Z e <1, forveV
e isincident on v

and,
z, € {0,1}, fore € E

The corresponding relaxation replaces z, € {0,1} by z. > 0.
Claim 1 This relazation always has an integral solution.

Also, consider the L.P. relaxation of the L.P. for the Vertex Cover (VC) problem.
min Z Cy Ty
veV

such that,
Ty + T, > 1, for each edge e = {u,v}
Ty >0, foreachv e V
What is the matrix corresponding to contraints other than the non-negativity constraints?
Each row of the matrix corresponds to vertices in G and each column corresponds to edges in G. An

element A,. € {0,1} represents whether an edge e is incident upon vertex v in G. This matrix is also
known as an incidence matriz.

Claim 2 The incidence matriz of a bipartite graph is TUM.

2.2 Vertex Cover Problem

Likewise, consider an I.P. for the vertex cover problem of a bipartite graph. What does the matrix
look like?

Each row of the matrix corresponds to edges in G and each column represents vertices of G. An
element in the matrix tells us if an edge e is incident upon vertex v. This matrix is just the transpose
of the incident matrix.

Theorem 2 Let A be a matriz with entries in the set {—1,0,+1}, such that, each column has atmost
two non—zero entries. Suppose the rows of A are partitioned in two sets, namely, I, I, such that,

1. If a column contains two non—zero entries of the same sign then they appear in differnt partitions.

2. If a column contains two non—zero entries of different signs then they appear in the same parti-
tion.

Subject to the above conditions, A is TUM.



Proof: By induction on the size of sub—matrices.
Base Case:

Claim trivially true for a 1 matrix.

Inductive Case:

Consider a k x k submatrix C. There are two cases:

e If C has a column with all zeros then det(C) = 0 = C is singular.

e If C has a column with exactly one non zero entry. Let this entry be in position (i, j). Then,
det(C) = (—I)H_j' Mij

where Mj;; is obtained by deleting row ¢ and column j from C'. An immediate implication then
is that det(C) € {0, £1}.

e All columns of C' has two non-zero elements. This implies that the sum of all rows of C in
I; = sum of all rows of C in I,. Which, in turn, implies that the rows of C' are not linearly
independent, which implies that det(C') = 0.

3 Implication of the Theorem
A direct implication of the above theorem is that the incidence of a bipartite graph is TUM.
Corollary 1 The incidence matriz of any directed graph is TUM.

Proof: Denote each incoming edge with a +1 and outgoing edge with a —1. After that, the appli-
cation of the above theorem is trivial. O

4 Half-Integrality of the Vertex Cover Problem

In this section we present a remarkable result due to G. Nemhauser and L. Trotter.
Definition 1 A point z € R" is half-integral if z; € {0, %, 1},Vie {1,2,...,n}
Theorem 3 Any vertex of the feasibility polytope of the vC problem is half—integral.

Proof: Assume the contrary. Hence there exists a vertex of the feasibility polytope of vC that is
not half-integral. Let z € R™ be that vertex. Let

1 1
Vi= {z|§ <z; <1}, and Vo ={il0< z; < 5}

We are assuming that V, UV_ # ¢ and z = (z1,...,2,).
For € > 0, define two new points in R" as follows:

T; —€ 1fl€V+ x;+e€ 1fZ€V+
Yi = z;,+e ifieV_ , 2= z,—e ifieV_
z; otherwise x; otherwise



Note:

y#£r,z#4zx (1)
=2 +7) )

According to Claim 3 (proved subsequently), € can be made small enough so that both y and z are
feasible.

This implies that x is the convex combination of two points in the feasibility polytope.

The above in turn implies that x is not a vertex of the feasibility polytope. A contradiction.

So, x is half-integral. O

Claim 3 Given z,y, 2z and € in the above € can be made small enough so that both y and z are feasible.
Proof: Since z is a vertex of the feasibility polytope, x is feasible. This implies that,
x; +x; > 1, for all edges {i,j}.

Consider all edges {4, 5}, such that,
T + x5 > 1

and pick € > 0 small enough so that all such edges
ity >1&zi+2;>1
Now, we consider constraints that hold tightly for 2. In other words,
Tit+w;=1

Look at such an edge {7,j}. The only possible cases are:

Ti=x;=5=>i¢ VUV jeVLUV. 2y =z =24,y = 2; = x5

z; > %;xj < % Si€eEVL,jEVoSy=2—6yj=zj+€=>y;+y; = x; +x; =1; Similarly, z; +z; =1

Symmetric case to the above

|



