22C:253 Lecture 6

Scribe: George Thomas

September 25, 2002

The integer program for SET COVER is the following: Let x_i be an indicator variable for set S_i . Minimize

$$\sum_{i=1}^{k} x_i \cdot c(S_i)$$

subject to

$$\sum_{i:j\in S_i} x_i \geq 1 \text{ for } j=1,2,\cdots,n$$

$$x_i \in \{0,1\} \text{ for } i=1,2,\cdots,k$$

The corresponding LP-relaxation replaces $x_i \in \{0,1\}$ by $x_i \ge 0$ for each $i = 1, 2, \dots, k$. Recall that $x_i \le 1$ is unnecessary.

Here is a deterministic rounding approximation algorithm for SET COVER that uses the above LP relaxation. Let f_j be the frequency of element $j=1,2,\cdots,n$ (that is, the number of sets S_i that j appears in). Let $f=\max_j f_j$. The algorithm provides a factor-f approximation for SET COVER.

Algorithm

- 1. Solve the LP-relaxation (using your favorite polynomial-time LP solver).
- 2. For any variable $x_i \ge \frac{1}{f}$ in the solution of the LP-relaxation computed in step 1, round x_i to 1. Round all other x_i s down to 0.

Lemma 1 The above algorithm produces a feasible solution for SET COVER.

Proof: Note that for each element j = 1, 2, ..., n, the constraint

$$\sum_{i:j\in S_i} x_i \ge 1$$

contains f_j terms (one term for every set j belongs to). Therefore, the maximum number of terms in any such constraint is f. This implies that for each such constraint, there is a variable $x_i, j \in S_i$, such that $x_i \geq 1/f_j \geq 1/f$. This implies that x_i is rounded to 1 by the above algorithm and hence the inequality continues to be satisfied even after the rounding step, implying feasibility. \square

Lemma 2 The cost of the solution produced by the above algorithm is at most $f \cdot OPT$.

Proof: First note that if C^* is the optimal cost of the solution to the LP-relaxation, then

$$C^* < OPT$$

This follows from the fact that the feasible region of the LP-relaxation contains everything that is feasible for original SET COVER IP.

Let C be the cost of the solution produced by our algorithm. Let $x = (x_1, x_2, ..., x_n)$ denote an optimal solution of the LP-relaxation and let $x' = (x'_1, x'_2, ..., x'_n)$ denote the solution after rounding. Now

$$C = \sum_{i=1}^{k} c(S_i) \cdot x_i'.$$

Also note that

$$x_i' \leq f \cdot x_i$$
.

This implies that

$$C \le f \sum_{i=1}^{k} c(S_i) \cdot x_i = f \cdot C^* \le f \cdot OPT.$$

How good is this algorithm?

- 1. It yields a factor-2 approximation algorithm for Vertex Cover.
- 2. This is incomparable to the $O(\log n)$ -factor greedy approximation algorithm for Set Cover discussed earlier. (Performance varies depending on the value of f.)

LP-Based Techniques

LP-based techniques can be partitioned into two groups:

- 1. Algorithms that work by rounding:
 - Simpler, more intuitive.
 - More costly because solving an LP is relatively costly.
- 2. Primal-dual schema algorithms:
 - They are based on LP-relaxation but eventually have *combinatorial* versions.
 - Faster, because they are combinatorial.
 - More amenable to fine-tuning.

Elementary LP Theory

An LP has a linear objective function subject to linear constraints. There are various forms of writing LPs, such as standard, canonical, slack, etc.

Standard Form of LP

Minimize

$$\sum_{j=1}^{n} c_j x_j$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \text{ for } i = 1, 2, \dots, n$$

$$x_{j} \geq 0 \text{ for } j = 1, 2, \dots, n$$

All other forms of LP(maximization of objective,non-negativity and equality constraints,etc) can be easily transformed into standard form.

More compactly, given $c \in \Re^n$, $b \in \Re^m$ and $A \in \Re^{m \times n}$, LP in standard form is

$$\min c^T x$$

subject to

Note that the solution vector x belongs to \Re^n .

Geometric aspects of LP

The (m+n) constraints define a feasible region of the LP. Each constraint corresponds to an *n*-dimensional half-space. Therefore, the feasible region is the intersection of (m+n) n-dimensional half-spaces. It is well known that this is a *convex polytope* (in \Re^n).

If the LP has an optimal solution, then it has one at a vertex of the feasibility polytope. The LP may not have an optimal solution because either

- 1. Feasible region is empty
- 2. Feasible region is unbounded

But this is not an issue for us as we will usually be working with non-empty, bounded feasible regions.

There are three well known algorithmic techniques for solving an LP:

- 1. Simplex method (Dantzig, 1949): This is fast, but exponential in worst case.
- 2. Ellipsoid method (Khachiyan, 1979): Polynomial time, but expensive; this was an important theoretical result showing that LP was in P.
- 3. Interior point methods (Karmarkar, 1980s): Polynomial time, it competes with Simplex. Its worst case is large polynomial time.

Integrality Gap

Let Π be an optimization problem, P be an IP for it, and L be an LP-relaxation of P. Let OPT(I) denote the cost of an optimal solution of Π for instance I. Let $OPT_f(I)$ denote the cost of the optimal solution of L. For a minimization problem, $OPT_f(I) \leq OPT(I)$ for all I. The ratio

$$\begin{array}{cc} sup & \underbrace{OPT(I)}_{I} & \underbrace{OPT_f(I)} \end{array}$$

is the integrality gap of the (P, L) pair.

Examples

CVC: For K_3 , OPT = 2 and $OPT_f = 1.5$

 \Rightarrow Integrality Gap for $CVC \ge 2/1.5$

MMS: Consider the case of 1 job (n = 1) of time P and m machines, OPT = P and $OPT_f = P/m$

 \Rightarrow Integrality Gap for $MMS \ge m$, ie. unbounded

Situations in which good integrality gap is guaranteed: Best possible integrality gap is 1. In some cases, this is achieved. eg. Vertex cover for bipartite graphs.

Total Unimodularity. A square matrix B is unimodular if $det(B) \in \{+1, -1\}$. A matrix A is $totally\ unimodular(TUM)$ if for every non-singular, square submatrix B of A, $det(B) \in \{+1, -1\}$.

Theorem 3 Given an LP, min c^Tx subject to $Ax \leq b$ and $x \geq 0$, if A is TUM then every vertex of the feasibility polytope is integral, provided b is integral.