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The integer program for SET COVER is the following;:
Let z; be an indicator variable for set S;.
Minimize

k
Emi - c(S;)

subject to
Z z; > lforj=12,---,n
1:JES;
z; € {0,1}fori=1,2,---,k
The corresponding LP-relaxation replaces z; € {0,1} by z; > 0 for each i = 1,2, ---, k. Recall that

z; < 1 is unnecessary.

Here is a deterministic rounding approximation algorithm for SET COVER that uses the above
LP relaxation. Let f; be the frequency of element j = 1,2,---,n (that is, the number of sets S;
that j appears in). Let f = max; f;. The algorithm provides a factor-f approximation for SET
COVER.

Algorithm
1. Solve the LP-relaxation (using your favorite polynomial-time LP solver).

2. For any variable z; > % in the solution of the LP-relaxation computed in step 1, round z; to
1. Round all other z;s down to 0.

Lemma 1 The above algorithm produces a feasible solution for SET COVER.

Proof: Note that for each element j = 1,2,... n, the constraint

ZZEZ’21

1:JES;

contains f; terms (one term for every set j belongs to). Therefore, the maximum number of terms
in any such constraint is f. This implies that for each such constraint, there is a variable z;, j € S;,
such that z; > 1/f; > 1/f. This implies that z; is rounded to 1 by the above algorithm and hence
the inequality continues to be satisfied even after the rounding step, implying feasibility. O



Lemma 2 The cost of the solution produced by the above algorithm is at most f - OPT.
Proof: First note that if C* is the optimal cost of the solution to the LP-relaxation, then
Cc* < OPT

This follows from the fact that the feasible region of the LP-relaxation contains everything that is
feasible for original SET COVER IP.

Let C be the cost of the solution produced by our algorithm. Let z = (z1,z2,...,Zy) denote
an optimal solution of the LP-relaxation and let ' = (2!, z),...,z}) denote the solution after
rounding. Now

k
C= ZC(SZ) T,
i=1
Also note that
z, < f-x

This implies that

k
C<fd elS) zi=f-C"<f-OPT.
=1
O

How good is this algorithm?
1. It yields a factor-2 approximation algorithm for Vertex Cover.

2. This is incomparable to the O(log n)-factor greedy approximation algorithm for Set Cover
discussed earlier. (Performance varies depending on the value of f.)

LP-Based Techniques
LP-based techniques can be partitioned into two groups:

1. Algorithms that work by rounding:

e Simpler, more intuitive.

e More costly because solving an LP is relatively costly.
2. Primal-dual schema algorithms:

e They are based on LP-relaxation but eventually have combinatorial versions.
e Faster, because they are combinatorial.

e More amenable to fine-tuning.

Elementary LP Theory
An LP has a linear objective function subject to linear constraints. There are various forms of
writing LPs, such as standard, canonical, slack, etc.

Standard Form of LP



Minimize )
Zcﬂj
j=1
subject to
n
Zaijmj < bjfori=1,2,---,n
7j=1
zj > Oforj=1,2,---,n

All other forms of LP(maximization of objective,non-negativity and equality constraints,etc) can
be easily transformed into standard form.
More compactly, given ¢ € R", b € R™ and A € R™*", LP in standard form is

minc’ z

subject to
Ar < b,z > 0.

Note that the solution vector z belongs to ™.

Geometric aspects of LP

The (m + n) constraints define a feasible region of the LP. Each constraint corresponds to an n-
dimensional half-space. Therefore, the feasible region is the intersection of (m + n) n-dimensional
half-spaces. It is well known that this is a convez polytope (in R™).

If the LP has an optimal solution, then it has one at a vertex of the feasibility polytope. The LP
may not have an optimal solution because either

1. Feasible region is empty
2. Feasible region is unbounded

But this is not an issue for us as we will usually be working with non-empty, bounded feasible
regions.
There are three well known algorithmic techniques for solving an LP:

1. Simplex method (Dantzig, 1949): This is fast, but exponential in worst case.

2. Ellipsoid method (Khachiyan, 1979): Polynomial time, but expensive; this was an important
theoretical result showing that LP was in P.

3. Interior point methods (Karmarkar, 1980s): Polynomial time, it competes with Simplex. Its
worst case is large polynomial time.

Integrality Gap

Let I be an optimization problem, P be an IP for it, and L be an LP-relaxation of P. Let OPT(I)
denote the cost of an optimal solution of IT for instance I. Let OPTy(I) denote the cost of the
optimal solution of L. For a minimization problem, OPT}(I) < OPT(I) for all I. The ratio

sup OPT(I)
1 OPT;(I)

3



is the integrality gap of the (P, L) pair.
Examples
CVC: For K3, OPT =2 and OPTy = 1.5
= Integrality Gap for CVC > 2/1.5
MMS: Consider the case of 1 job (n = 1) of time P and m machines , OPT = P and OPTy = P/m

= Integrality Gap for MMS > m, ie. unbounded

Situations in which good integrality gap is guaranteed: Best possible integrality gap is 1.
In some cases, this is achieved. eg. Vertex cover for bipartite graphs.

Total Unimodularity. A square matrix B is unimodular if det(B) € {+1,—1}. A matrix A is
totally unimodular(TUM) if for every non-singular, square submatrix B of A, det(B) € {+1,—1}.

Theorem 3 Given an LP, min ¢’z subject to Az < b and = > 0, if A is TUM then every vertex
of the feasibility polytope is integral, provided b is integral.



