22C:253 Lecture 3

Scribe: Samir Jain

September 9, 2002

KNAPSACK:

Input: Objects ay,as,...,a, with positive integer sizes given by size(a;), 1 < i < n, positive
integer profits given by profit(a;), 1 <4 < n, and a knapsack of capacity B € Q.

Output: A collection of objects with total size at most B and maximum total profit.

Note that the total size of a collection simply refers to the sum of sizes of the objects in the
collection and similarly, the total profit of a collection refers to the sum of profits of the objects in the
collection. In other words, we want to find a set A’ C {a1,a2,...,a,} such that 3°, . 4 size(a;) < B

and), c o profit(a;) is maximized.

Simple Dynamic Algorithm For Knapsack Let P = maz{profit(a;) |1 <i <n}. Since we
have n objects, nP is the maximum total profit possible. Recall that profits are positive integers.
For each p € {1,2,3,...... ,nP}, let A, denote the size of a smallest set with profit equal to p.
Suppose we have computed A, for every p € {1,2,....,nP} then we just have to find largest p such
that A, < B. To compute the A,’s, we first compute A;, where, 1 <7 <n,p € {1,2,...,nP} and
A; p is defined as the size of a smallest subset of {a1,a2,...,a;} with profit equal to p. Note that
“size of a subset” here does not refer to the cardinality of the subset, it refers to the sum of the
sizes of the objects in the set. Computing A; , is essentially filling an n X nP table. Also note that
Ap = A, for each p.
It is obvious that for each p € {1,2,...,nP},

A = 0 if p # profit(a;)
Y27 size(a;) if p = profit(a;)

For each i, 2 <4 <n,and p € {1,2,3,....,nP}

min{A;_1 p_profit(a;) + Size(a;), Ai—1p} if profit(a;) <p
A;p = min{size(a;), Ai—1p} if profit(a;) =p
A1y otherwise

This step of computing A;, for any i and p takes O(1) and since we have an n x nP table to fill
the total time taken is O(n?P).

Now note that this is not a polynomial time algorithm in general. For example, assume that
each of the object sizes can be represented in ¢ bits for some constant ¢. Further assume that
P = profit(a;) for all i and P = 2". Then the input can be represented in O(n?) bits, while
the running time of the algorithm is O(n? - 2"). Specifically, such an algorithm is said to run in

pseudopolynomial time. The notion of pseudopolynomial running time can be precisely defined as
follows. Let I be an instance of problem and I, denote I expressed in unary. If an algorithm for
the problem runs in time polynomial in |I,| then the running time is said to be pseudopolynomial.

We now convert this dynamic programming algorithm into FPTAS (Fully Polynomial Time
Approximation Scheme) for KNAPSACK. Like with other constructions of FPTASs and PTASs
here we trade off accuracy for running time.

Algorithm
1. “Shrink” the profits by assigning to each a; assign a new profit:

profit () = 7L,

for some fixed positive K to be chosen later.

2. Solve KNAPSACK using the new profits and using the dynamic programming algorithm
discussed earlier.

3. Report the subset produced as the solution.

Analysis
Let O be an optimal solution of KNAPSACK and let O’ be solution produced by above algo-
rithm. Clearly,

OPT = Z profit(a;) and Z profit(a;) < OPT
aieo aiEO’

Since O' is optimal in shrunken instance, we have

Z Lp?"ofzt aZ Z Lprof;gf(al)J
a; €0’ a; €0

We can bound the lefthand side (LHS) above as follows:

profit(a, profit(a;) profit(O’)
LHS = Z I— K Z K - K ’
a; €0’ a; €0’

Similarly, we can bound from below the righthand side (RHS) by

Ris = Y | POl | o 5~ profita)) s~ profitla) _, _ OPT

n =
a; €0 K a;€0 K a; €0 K K

Thus,
profit(O') S OPT
K - K
and multiplying both sides by K we get

—-—n

profit(O') > OPT — Kn.

For a given € > 0, choose K such that Kn = Pe. This implies that
profit(0') > OPT — Pe
and without loss of generality we can assume that P < OPT. Therefore,

profit(0') > OPT — ¢- OPT = (1 — ¢)OPT.

Running Time Analysis The dynamic programming algorithm takes O(n?|£]) time now and
since K = L€, the running time of the algorithm is O(n?/e). Therefore the algorithm is polynomial
in n and polynomial in 1/e.

So we have presented an FPTAS for knapsack. The precise definition of a PTAS and an FPTAS
is the following. For a minimization problem II, an algorithm A is a PTAS if, for every ¢ > 0 and
for every instance I of I, A produces solution s such that

Costy(I,s) < (1+¢€)OPT.

The running time of the algorithm is polynomial in the size of the input, but depends arbitrarily
on e. A FPTAS additionally satisfies the requirement that the running time depends polynomially
on 1/e. A PTAS and an FPTAS are defined similarly for a maximization problem except that the
algorithm produces a solution s such that

Costy(I,s) > (1 —€)OPT.

