22C:253 Lecture 2

Scribe: Chris Choi Chang-Hui

September 4, 2002

In the last lecture we studied a factor-2 approximation algorithm for Cardinality Vertex Cover
(CVCQC). There are three questions one can ask about that algorithm and its proof.

1. Is our analysis tight? In other words, is it the case that our algorithm, for some instance,
produces a vertex cover whose size is twice the size of the optimal.

The answer is yes. Consider the complete bipartite graph K, ,. The algorithm produces a
vertex cover of size 2n, while OPT = n.

2. Is there some other algorithm that uses the same lower bound (maximal matching), but
produces a factor-f approximation for some f < 27

The answer is no. Consider the complete graph K, for odd n. In this case, any maximal
matching has size (n —1)/2 and OPT =n — 1.

3. Is there some other algorithm that produces a better than 2 approximation factor?

No one knows. This is one of the most tantalizing open questions in this area.

Set Cover. Our next example is a problem for which we will present a factor-O(logn) greedy
approximation algorithm.

SET COVER (SC)

Input: Given a universe U of n elements and a collection C = {51, 52, ..., Sg } of subsets of U,
and an assignment ¢ : C — QT of costs to the subsets in C.

Output: A subcollection C’ with the minimum cost that covers the universe.

A subcollection C” covers U if Ugecr = U. The cost of a subcollection is simply the sum of the
costs of the subsets in it.

Example. Suppose U = {1,2,3,4,5,6,7,8}, C = {{1,4},{2,4,7},{3,7,8},{5,6,8},{357}},
and the costs of the sets in the collection are 3, 4,2, 1, 7 respectively. A subcollection C’ that covers
Uis {{1,4},{2,4,7},{5,6,8},{3,5,7}} and it has cost 3+4+ 147 = 15.

There is a simple “greedy algorithm” for the set cover problem. At each step pick a subset that
has the smallest cost per new element that it covers. This is also the same as saying “pick a subset
that covers the most number of new elements per unit cost.”

1. A=0
while (U # 0) do
Pick a set S; that minimizes qgfjg}gf)

4. A=AU{Si}

5. U=U-5;
6. output A
How do we show that this algorithm achieves a factor-O(log n) approximation? Let ey, €9, ..., €y

be the order in which elements are covered by the above algorithm, with ties broken arbitrarily.

Each element e, € U is first covered by some set S; in Step 3. Define the price of e, denoted

price(eg) as C‘giﬁjgﬁl) We can prove the following lemma.

Lemma 1 For each k, 1 <k <mn,

colen) < OPT
T1Cele _—.
p R A

Lemma 2
cost(A) < Hy, - OPT,

where Hy, is the Harmonic number 1 +1/24+1/3 4 -+ 1/n.

Proof: " o
cost(A) = me’ce(ek) < OPTZ 1/(n—k+1)=H, - OPT.
k=1 k=1
O
Proof: (Lemma 1) Let
C ={Siy,Siy, Sigs---,Si, }

be a minimal subcollection of OPT that covers ek, ekt1,-..,en. Let E = {e1,e2,...,ex_1} and let
E' = {eg,es1,.--,en}. For eg € E' let S;; be the first set that contains e;. Define
Cost(S;.)
fee) = . :
|Si; — B — Siy — Siy — - — Si;_,|
Note that

i f(eg) = cost(C) < OPT
=k

and so there is some e; € E' such that f(e;) < OPT/(n —k+1).

Just before the greedy algorithm covers eg, none of the sets S;,, S;,, .. .,S; have been picked
by the algorithm, because elements in E’ are still uncovered. If at this stage Si; were chosen, it
would assign to element ey the price

Cost(S;;)

5.~ B < f(ee) <OPT/(n—k+1).

price(eg) =
Since the greedy algorithms choses to pick a set that minimizes “price” and ey, is the next element
covered, price(ey) < price(eg) < %(n —k+1). 0
Question : Is this analysis tight? Yes. Consider the following example. Let U = {1,2,...,n}.
Let C = {S1,852,...,8n,Snt1} be a given collection of subsets of U such that S; = {i} for1 <i<n
and S, 11 ={1,2,...,n}. Let cost(S;) =1/i for 1 <7 <n and let cost(S,+1) = 1+ €. The greedy
algorithm picks {S1,So,...,S,} for a cost of H,, while OPT = (1 + ¢).

