22C:253 Lecture 2

Scribe: Chris Choi Chang-Hui

September 4, 2002

In the last lecture we studied a factor-2 approximation algorithm for Cardinality Vertex Cover (CVC). There are three questions one can ask about that algorithm and its proof.

- 1. Is our analysis tight? In other words, is it the case that our algorithm, for some instance, produces a vertex cover whose size is twice the size of the optimal.
 - The answer is yes. Consider the complete bipartite graph $K_{n,n}$. The algorithm produces a vertex cover of size 2n, while OPT = n.
- 2. Is there some other algorithm that uses the same lower bound (maximal matching), but produces a factor-f approximation for some f < 2?
 - The answer is no. Consider the complete graph K_n , for odd n. In this case, any maximal matching has size (n-1)/2 and OPT = n-1.
- 3. Is there some other algorithm that produces a better than 2 approximation factor? No one knows. This is one of the most tantalizing open questions in this area.

Set Cover. Our next example is a problem for which we will present a factor- $O(\log n)$ greedy approximation algorithm.

SET COVER (SC)

Input: Given a universe U of n elements and a collection $C = \{S_1, S_2, ..., S_k\}$ of subsets of U, and an assignment $c: C \to Q^+$ of costs to the subsets in C.

Output: A subcollection C' with the minimum cost that covers the universe.

A subcollection C' covers U if $\bigcup_{S \in C'} = U$. The cost of a subcollection is simply the sum of the costs of the subsets in it.

Example. Suppose $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $C = \{\{1, 4\}, \{2, 4, 7\}, \{3, 7, 8\}, \{5, 6, 8\}, \{357\}\}$, and the costs of the sets in the collection are 3, 4, 2, 1, 7 respectively. A subcollection C' that covers U is $\{\{1, 4\}, \{2, 4, 7\}, \{5, 6, 8\}, \{3, 5, 7\}\}$ and it has cost 3 + 4 + 1 + 7 = 15.

There is a simple "greedy algorithm" for the set cover problem. At each step pick a subset that has the smallest cost per new element that it covers. This is also the same as saying "pick a subset that covers the most number of new elements per unit cost."

- 1. $A = \emptyset$
- 2. while $(U \neq \emptyset)$ do
- 3. Pick a set S_i that minimizes $\frac{\operatorname{Cost}(S_i)}{|S_i \cup U|}$

4.
$$A = A \cup \{Si\}$$

5.
$$U = U - S_i$$

6. output A

How do we show that this algorithm achieves a factor- $O(\log n)$ approximation? Let e_1, e_2, \ldots, e_n be the order in which elements are covered by the above algorithm, with ties broken arbitrarily. Each element $e_k \in U$ is first covered by some set S_i in Step 3. Define the *price* of e_k , denoted $price(e_k)$ as $\frac{\operatorname{Cost}(S_i)}{|S_i \cup U|}$. We can prove the following lemma.

Lemma 1 For each k, $1 \le k \le n$,

$$price(e_k) \leq \frac{OPT}{n-k+1}.$$

Lemma 2

$$cost(A) \leq H_n \cdot OPT$$

where H_n is the Harmonic number $1 + 1/2 + 1/3 + \cdots + 1/n$.

Proof:

$$cost(A) = \sum_{k=1}^{n} price(e_k) \le OPT \sum_{k=1}^{n} 1/(n-k+1) = H_n \cdot OPT.$$

Proof: (Lemma 1) Let

$$C = \{S_{i_1}, S_{i_2}, S_{i_3}, \dots, S_{i_t}\}$$

be a minimal subcollection of OPT that covers $e_k, e_{k+1}, \ldots, e_n$. Let $E = \{e_1, e_2, \ldots, e_{k-1}\}$ and let $E' = \{e_k, e_{k+1}, \ldots, e_n\}$. For $e_\ell \in E'$ let S_{i_j} be the first set that contains e_ℓ . Define

$$f(e_\ell) = rac{ ext{Cost}(S_{i_j})}{|S_{i_j} - E - S_{i_1} - S_{i_2} - \dots - S_{i_{j-1}}|}.$$

Note that

$$\sum_{\ell=-k}^{n} f(e_{\ell}) = \cot(C) \le OPT$$

and so there is some $e_{\ell} \in E'$ such that $f(e_{\ell}) \leq OPT/(n-k+1)$.

Just before the greedy algorithm covers e_k , none of the sets $S_{i_1}, S_{i_2}, \ldots, S_{i_t}$ have been picked by the algorithm, because elements in E' are still uncovered. If at this stage S_{i_j} were chosen, it would assign to element e_ℓ the price

$$price(e_{\ell}) = \frac{\operatorname{Cost}(S_{i_j})}{|S_{i_j} - E|} \le f(e_{\ell}) \le OPT/(n - k + 1).$$

Since the greedy algorithms choses to pick a set that minimizes "price" and e_k is the next element covered, $price(e_k) \leq price(e_\ell) \leq \frac{OPT}{I}(n-k+1)$.

Question: Is this analysis tight? Yes. Consider the following example. Let $U = \{1, 2, ..., n\}$. Let $C = \{S_1, S_2, ..., S_n, S_{n+1}\}$ be a given collection of subsets of U such that $S_i = \{i\}$ for $1 \le i \le n$ and $S_{n+1} = \{1, 2, ..., n\}$. Let $cost(S_i) = 1/i$ for $1 \le i \le n$ and let $cost(S_{n+1}) = 1 + \epsilon$. The greedy algorithm picks $\{S_1, S_2, ..., S_n\}$ for a cost of H_n , while $OPT = (1 + \epsilon)$.