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Analysis of the primal-dual Steiner forest algorithm (cont.).

Claim 2 A cut S is active iff S is a connected component w.r.t the current set of chosen edges
and f(S) = 1.
Proof:

(«<) If S is a connected component and f(S) = 1, then S is unsatisfied. Furthermore, S is
minimal, because any proper subset S’ C S has an edge going out of S’.

(=) Suppose S is active but S is not a connected componet, clearly, no currently chosen edge
crosses (S,5). Hence S is the union of two or more connected componets. Since S is active,f(S) =
1. Hence for some u € S and v € S, r(u,v) = 1. Suppose u € C for some connected component C
in S, then C is unsatisfied, implying S is not a minimal unsatisfied cut, a controdiction. O
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where degr (S) = |6(S) N F'|, denoting the number of edges in F’ that cross (S, S), which has
no relation to Ygs.
We need to show that

D Ys-degm(S) <2-) Ys- f(S)
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We will show something stronger, that is,
Changes in L.H.S < Changes in R.H.S.

Initially, L.H.S = R.H.S. = 0. Consider any arbitrary iteration and let A be the increate in
Ys, during that iteration,

Changes in LH.S = Y degw(S)=A- > (9)
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Changes in R.H.S. =2 - Z A-f(S)=2-A-( number of active cuts S)
active S



We want to show that

Z degpi (S) < 2- A - (number of active cuts S)
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that is, the average degree of active cuts w.r.t. F':
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To finish the proof, we need one additional claim.

Claim 4 Let C be a component w.r.t. the currently chosen set of edges such that f(C) = 0, then
degr (C) # 1.
Proof: Suppose the claim is false, that is f(C) = 0 but degp(C) = 1. So there exists a unique
e € F' that crosses (C,C).

Since e € F' = e is not redundant w.r.t. F’.

= e is an edge on a unique u — v path for some u,v, and r(u,v) =1

= W.lo.g. u € Candv € C.

= f(C) =1 a controdiction. 0

Claim 4 tells us that any inactive component C has degp(C) = 0( i.e. it is isolated) or
degp(C) > 2. From this observation, the result follows. O

To show that the analysis is tight for this algorithm. Consider the following example:
V={1,23,...,n,(n +1)}(1,2,...,(n + 1) are labels on vertices), where 1,2,3,...,n € K,, and

edges in K, cost 2 each, edges from (n+1) to each vertex in K, have unit cost. And S; = {1,2,...n}.
The OPT = n. Cost of solution is 2 - (n — 1).

Upper Bound on Integrality Gap Let OPT} denote the optimal solution for primal problem.

OPT < > Cce<2-)> ys-f(S), and
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thus giving a upper bound on integrity gap.
Lower Bound on Integrality Gap Consider a cycle on n vertices, with all edges of cost 1.

The cost of dual solution found by algorithm is 5, which is the optimal for the dual because there
is a primal feasible solution with cost 7. Therefore,

OPT} = g OPT = (n— 1)

OPT
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We will discuss ”Facility Location Problem” nextly.

Facility Location Problem

Input:A set C (of cities), a set F' (of facilities). The cost of opening facility i € F' is f;. The
cost of servicing a city j € C using a facility ¢ € F' is Cj;.

Output: A set I C F of open facilities and a function ® : C' — I such that total cost

O fi+ > Caj)
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is minimized.
We will discuss a factor-3 approximation algorithm using the primal-dual schema.



