22C:253 Algorithms for Discrete Optimization

Scribe: Rajiv Raman

November 14, 2002

Steiner Forest
We will obtain a 2-approximation algorithm for the steiner forest problem using the primal-dual
schema, with the idea of growing duals in a synchronized manner.

Definition Given an undirected graph G = (V, E), a cost function c on the edges, and a collection
of disjoint subsets of V', find a minimum cost subgraph in which each pair of vertices belonging to
the same subset are connected.

Input

An undirected graph G = (V, E),

a cost function on the edges, c: E — Q™, and

a collection of subsets of V', {S1,52,---, Sk}

Output

A minimum cost subgraph F' of G such that Yu,v € S;,3 a u — v path in F.

Notation

1. Define the connectivity requirement of G be a function r, the set of all unordered pair of
vertices to {0, 1}, such that

(u, v) = 1 ifu,v € §; for some 3
MUY= 0 otherwise

2. Recall that a cut in G is a partition (S, S) of V. We will use S to denote such a cut. Define

a fuction f such that,

f:2V —={0,1}
as follows : B
£(8) = { 1 if Ju € S,v € S such that r(u,v) =1
0 otherwise

Observation For any feasible solution F, f(S) < number of edges of F that cross the cut (S, S).
Notice that the converse also holds. i.e., For any subgraph F of G, if for every cut S CV, f(S) <
number of edges of F crossing (S, S), then F is a feasible solution to the problem.

Since the converse also holds, we have an alternate charecterization. We can write the opti-

mization problem as : B
A min-cost subgraph F' of G such that VS C V., f(S) < number of edges of F' crossing (S, .5).

20 v

16 9 19

12 12
S t

Example 1. Let G be the above graph, with vertices{u, v, a, b, s, t}, and edge weights as displayed on the edges.
Let S1={u, v} and S2 ={s, t} bethe two subsets of V. Then afeasible soultion is the subgraph defined by the bold edges.

Figure 1: A graph and a feasible subgraph

IP formulation and LP relaxation Let z. be an indicator variable for each edge e € E. The
objective function is :

min Z zec(e)
e€E
subject to,
Y > f(S) VSCV
e:e€d(S)
z. € {0,1}; Veec E

where, §(S) denotes the set of edges crossing the cut (S, S).
The LP relaxation is obtained by relaxing z, € {0, 1}byz. > 0.

Dual of the LP relaxation Let Yg denote the dual variable corresponding to cut S. The dual
of the primal LP defined above is :
maz Z Ysf(S)

SCcvV

subject to,
Z Ys < c(e) Vee E
S:e€d(S)

Complementary Slackness Conditions The primal and dual complementary slackness con-
ditions are defined as follows :
Primal:

Vedgee € E, zc # 0= Y g.ch5) Ys = cle).-

We wil use the exact version of the primal complementary slackness condition. i.e., we set
a=1
Dual :

Veuts SCV,Ys # 0= 3 ces(s) Te = f(9).

The approximate version of the dual complementary slackness condition is :

Veuts SCV Ys#A0= f(S) < 2 eiecs(s) Te < 2f(S).

ie, f=2.
If we can get an integral primal feasible solution, and a dual feasible solution satisfying these
constraints, that would imply a factor-2 algorithm for the steiner forest problem. However, we
don’t know how to satisfy the dual complementary slackness condition.

Algorithm rough sketch

1. Start withz, =0,Ve € F and Y¢s=0,VSCV
(ze = 0 represents an infeasible, integral primal solution; and Yg = 0 represents a feasible
dual solution).

2. Increase the Yg’s until some edge e becomes tight.
ie., Ygiees(s) Ys = c(e). Throw e into the solution (ze = 1).
Features of the algorithm
1. Ys values are increased in a synchronous fashion.
2. In each iteration, we will increase Ys for a small number of cuts S.

e Define a cut S to be unsatisfied if f(S) = 1, but no edge in the currently chosen set
crosses S.

e Define an active cut as a minimal unsatisfied cut (with respect to inclusion).
In each iteration, we increase Ys synchronously V active cut S.

Claim : A cut S is active iff it is a connected component in the current subgraph and f(S) = 1.
This claim will be proved later on.

Algorithm
1. Set F' = ¢ (the set of chosen edges; corresponds to saying z, = 0 Ve € E)

2. while(3 an unsatisfied cut) do
Increase Yg value synchronously for every active cut S, until some edge e becomes tight.
F' « F' U {e}.

3. endwhile

4. Prune the redundant edges from F’. i.e., delete every edge e from F’ such that F' — {e} is
feasible.

Claim : F' is a primal feasible solution, and y is a dual feasible solution.
Proof : Before the pruning step, F” satisfies all connectivity requirements (because there are no
unsatisfied cuts). F' is a forest because of the property of active cuts. edges that become tight,
and are added in any iteration connect one connected component to another.

Therefore, for any u,v such that the connectivity requirement is 1, ther is a unique uv path.
Hence, all edges in the path are non-redundant and hence not deleted. Hence, after the pruning
step also, connectivity is maintained. O

16 9 19

12 12

S t

6 6

In the begining of the iteration, the active setsare { s}, {t}, {u}, {v}. When their dual variables are raised

by 6 each, the edges{u,a} and {b,v} go tight. One of them, say {u,a} is picked, and in the next iteration,
{u,a} replacesthe active set { u}.In the next iteration, without having to raise any of the varaibles, the edge
{b,v} becomestight, and { b,v} replacesthe activeset {v}. The edgesthat are picked are marked in bold.

Figure 2: First instance when the Yg values become tight

Example execution of the algorithm Consider the graph and the subsets of the vertices as
in example 1. The following figures show the execution of the algorithm on the above graph.

6 6
u
20 v
6
16 9 19
a b
12 12

s t
6 6

When the Y_S values are increased by 2, the edge {u,a} becomes tight, and the active setsare now : {u,s,a}, {v,b}, {t}.

Figure 3: Instance when the Ys values become tight

3
6
20 v
6
9 19
b
12
t
9

At the next iteration, the edge { b,t} becomestight. The active setsare{u,s,a}, {v,b,t}

Figure 4: Instance when the Ys values become tight

At the next iteration, the edge {u,v} becomestight

Figure 5: Instance when the Ys values become tight

The subgraph produced by the algorithm consits of the edges{u,a}, {v,b}, {u,a}, {bt}, {u,v}

Figure 6: Final output of the algorithm

