22C:253

Scribe: George Thomas
November 14, 2002

A factor-f algorithm for SET COVER via the primal-dual framework
The primal of this problem, which is the LP-relaxation for SET COVER is the following;:

Minimize "
DIERCH)
j=1

subject to

ij > lforeach:=1,2,---,m
JHEeS;
zj > Oforeachj=1,2,---,n

The dual of this problem is:

Maximize
m
Z Yi
i=1
subject to

Zyi < ¢(Sj) foreach j =1,2,---,n
iESj
y; > Oforeachi=1,2,---,m

The primal complementary slackness condition is:
For each j =1,2,-+-,n:z; =00r Yicg yi = c(S5)
The dual complementary slackness condition is:
For eachi=1,2,--- ,m:y; =0 or Ej:z'esj zj=1
The corresponding approximate primal complementary slackness condition is:

) < 3 < sy

’iESj
The corresponding approrimate dual complementary slackness condition is:

B> z;>1

JHES;

(Note that @« =1 and 8 = f gets us the original "exact” constraints.)

We would like these two approximate constraints to be maintained. If we can produce z and y
such that z is a feasible, integral, primal solution and y is a feasible dual solution satisfying these
approximate constraints, then x is a factor-f approximation solution for SET COVER.

Remarks on the approximate constraints
Approzimate Dual Constraint:
How hard is it to maintain the dual constraint? Easy. (It comes for free and is always satisfied.)
If z is a feasible integral solution, then the approximate dual complementary slackness condition
is satisfied.
Approzimate Primal Constraint:
Another way to write this condition is as follows:

For each j =1,2,--,n:2; # 0= Yicg, yi = c(5))
This suggests a way of setting xz;’s to 1’s: when a set S; becomes "tight” (ie. Dies; Vi = c(S5))
then set the corresponding z; = 1

Algorithm

1. Set = 0 (integral, infeasible primal solution) and y = 0 (feasible dual solution).
Note that approximate primal complementary slackness condition is satisfied. The approxi-
mate dual complementary slackness condition is NOT satisfied after the initial step, after we
start increasing 1;’s. We do not worry about this because as soon as z becomes feasible, the
dual constraint will be re-satisfied.

2. Pick an uncovered element 7. Increase y; to the minimum value such that some set containing
1 is tight.
3. For all sets S; that are tight, set z; = 1 (ie. throw set S; into solution).

4. Remove all elements ¢ covered by sets in solution. (This simply means their current y;’s
cannot be increased any further.) Go back to step 2.

In step 2, suppose we increased ¥;’s ”synchronously”. The first tight set is a set S; with minimum
cost(S;)
1551

. This is equivalent to our greedy choice in the greedy algorithm approach.

Steiner Tree

Input: A graph G = (V, E) with edge costs C : E — Q" and a set R C V of required vertices.
Output: A tree in G with minimum cost containing R. (If R is a tree, this becomes the minimum
spanning tree problem which we know how to solve in P. The generalization is in NP. The hard
part comes from choosing which vertices not in R should participate in the solution.)

Status: Easy factor-2 approximation algorithm via minimum spanning tree. The approximation
factor has been improved many times in the last decade (eg. 5/3-factor, all subsequent lower factors
are due to Zelikovsky).

There is a specific version of this problem called Fuclidean Steiner Tree
Input: Points in R"
Output: A tree with smallest cost connecting these points, but may include other points as well.

Status: There is a PTAS for this (due to S. Arora).

Solving the Steiner Tree problem

1. Reduce the problem to the Metric Steiner tree problem.
Specifically, construct the following:

G=(V,E) = GM = (V,EM)
where GM is the complete graph and c(u,v) = cost of cheapest path between » and v in G.

2. Solve the Steiner Tree problem on G™ and R. This is called the Metric Steiner Tree problem.
(The edge costs of GM satisfy triangle inequality.)

Lemma 1 Cost of optimal Steiner tree of R in G = cost of optimal Steiner tree of R in GM.

Proof: This is clear from the fact that for any edge (u,v), its cost in GM is no more than
its cost in G. So we might as well solve the problem on GM. O

3. Compute a minimum spanning tree T of GM.
Lemma 2 Cost of T, cost(T) <2-OPT

Proof: Consider an inorder traversal or tour of the edges in the optimal Steiner tree. When
backtracking, we skip the vertices that we have already traversed by adding an edge to an
unvisited vertex in our graph. So it is clear that we can, at most, end up doubling our edges.
These shortcut edges do not increase the cost of the tour because of triangle inequality.
Hence, the cost of our tour < 2 - OPT. Remove one edge in this cycle and we get a path
< 2-0PT. So if we used the minimum spanning tree, it would have to be less than this.
O

Steiner Forest

The algorithm we describe is by Goemans and Williamson (factor-2 approximation, best known).
Input: A graph G = (V, E) with edge costs C : E — QT . A collection of subsets of V', Sy, s, -+, Sk
Output: A subgraph of G with minimum cost such that for any S;, vertices in S; lie in the same
connected component of the subgraph.

