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DUAL LP:

Let d;p be the dual variable corresponding to the Type I constraint for edge (i.j)-
Let P; be the dual variable for the Type II constraint for vertex i.
We want to minimize
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To obtain the dual constraints let us examine the primal constraint matrix.
Hence the dual constraint corresponding to primal variable f(i,j) are

dij—Pi-f—Pj ZOV(’L,]) eEFE
And dual constraint corresponding to f(t,s) are

P,—-P>1
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Hence Dual LP

min Y _ (i,7) € E - c(i, j)-dij



subject to

dij — P+ P; > 0¥(i,j) € E
P,—P>1

P>0vieV

Consider the IP obtained by replacing d;; > 0 by d;; € {0,1} and P, > 0 by P; € {0,1}
Observe that the above LP is a relaxation of this IP.
* How is this IP interpretted ?
In any feasible solution P; = 0 and P, = 0.
Let Vp ={ie V| P =0}
Vi={ieV|P =1}
In an optimal solution d;; =0V (i,j) E Eand { (i€ Vpand j € V) or (i € V; and j € Vi)}

dij = 0V(i,j) € E:i € Vhandj € V3

dij =1V(i,7) € E:i € Viandj € Vj

Hence the objective function is minimizing the total capacity of edges from V; to Vj
Primal Dual Schema For Approximation Algorithms

Consider the following approximate complementary slackness coditions:
Approximate Primal Complementary Slackness

For each j = 1,2,....., nz; =0
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Approximate Dual Complementary Slackness
Foreachi=1,2,..... my; =0
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B-b; > Zaii - x; > bywhere > 0
j=1

Claim: Let x and y be feasible primal and dual solutions satisfying all of the above constraints.
Then
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Proof:

Using this in Set Cover
Set Cover LP Relaxation

n
min z c(sj) - sj
i=1

Subject to
Z z;j > 1foreachelementi = 1,2, ...... , M
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zj > 0foreachj = 1,2, ...... T

Dual LP

m

max Z Yi
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Subject to

Z yi < c(S;)foreachj =1,2,......,n
1€S;

y; > 0foralli =1,2,.....,m

Let us state the Approximate Complementary Slackness Conditions with « = 1 and 8 = f, where
f = max. frequency of any element i.
Approximate Primal Complementary Slackness

For each set S; , ; = 0 or

> i = C(S))

i€S;
Approximate Dual Complementary Slackness
For each element i = 1,2,.....m , y; = 0 or
n
dozp>1
JHES;

If we can come up with an integral feasible solution x and a dual solution y satisfying the slackness
conditions mentioned, then we get a factor-f approximation algorithm for Set Cover.



How do we find such x and y ? First let us restate the primal complementary slackness
conditions: It is saying that for each set S; , j=1,2,....,n, we cannot have z; ; 0 and

> i < <(S))

1€S;

= For each set §; , j=1,2,.....,n, if z; ; 0 then

> yi = c(S))

i€S;
1. Start with x = 0 (integral non-feasible Primal solution) and y = 0 (feasible dual solution)
2. At each step we make x more feasible maintaining integrality.
3. At each step make y more optimal.

4. At all steps approximate complementary slackness conditions are maintained.



