22C:253 Lecture 10

Scribe: Chen Zhang

October 16, 2002

Last week three algorithms for MAX-SAT were introduced. The final algorithm was a com-
bination of the first two and gave us a factor—% approximation algorithm. The final algorithm
was:

Algorithm 3 : Toss an unbiased coin and depending on the outcome, pick algorithm 1 or algorithm
2 and run it.

For this algorithm we showed that if W is the random variable denoting the weight of the satisfied
clauses then E[W] > 3 . OPT. Alternately, a factor-2 approximation algorithm for MAX-SAT is
given as:

Run algorithm 1 and algorithm 2 respectively, and pick the better solution.

Claim: Let W’ denote the random variable that is the weight of clauses satisfied by the alternate
algorithm, then E[W'] > 3 . OPT. Proof:

w4+ w?

W' = max{W', W?} > 5

obtain expectation of both sides,

E[W!] + E[W?

EW' > 5

the right side is the expected weight of solution if we use algorithm 3, which > % -OPT O
Derandomization. For each of these algorithms, we have only given approximation guarantees in
an expected sense, which means it does not guarantee that we will not get a bad solution. However,
both Algorithms 1 and 2 can be derandomized, that is, we can construct equivalent deterministic
algorithms. We will derandomize Algorithm 1 using the technique of conditional probabilities to
have a guaranteed factor—% approximation.

In the computation tree for MAX-SAT, a level k& node is identified by the k-tuple of the truth

values (a1,as,as,...,a;), where 1 = a1,x2 = ag, ...,z = a; So each leaf of the computation tree
represnets a truth assignment Define the conditional expectation of a node (a1, a9, as,...,a;) as
E[W|z1 = a1,72 = ag,. .., T = ay]
From the definition and previous algorithms, we obtain:
Remarks:

e The conditional expectation of the root is E[W].

Level O

Level 1

Xz

Level 2

Level n-1

Level n

Figure 1: Computation tree for MAX-SAT
e The conditional expectation of a leaf (a1, as,as,...,a,) is the sum of the weights of satisfied
clauses obtained by setting z; = a;,1 =1,2,...,n
e The conditional expectation of any node can be computed in polynomial time.

Lemma 1 We can compute a path from root to a leaf, such that the conditional expectation at
every node in the path > E[W].

Proof: A node (a1,a9,as,...,a) has two children (a1, a2, as,...,ax,T), and (a1, a9, as, ..., ax, F).
Since we toss a coin to decide the truth value for z;, the conditional expectation at this node is

Elw|z1 = a1,29 = ag, ...,z = ag] = %E[w|w1 =a1,T9 =Qg9,...,Tk = A, Tp+1 = T
+ %E[w|a:1 =a1,T2 =Q2,...,Tk = A, Tp+1 = F)
If at node (a1,a9,as,...,ax)
Elw|z1 = a1,22 = a9, ...,z = ag] > E[W],

then the conditional expectation of at least one child > E[W]. This implies that if we go to the
child with a higher conditional expectation until we reach a leaf, the conditional expectation at
every node in the path > E[W]. O

So at the end of this path, the truth assignment represented by the leaf gives a solution which
satisfies W > E[W1] > 1 - OPT

For the Algorithm 2 also, though conditional expectation at a note might not be the average of
conditional expectations at its children, it is still true that the conditional expectation of at least
one child > E[W]. So this works for Algorithm 2 as well.

Scheduling on unrelated parrellel machines (SUPM)

INPUT: A set J of jobs and a set M of machines, for each job j € J and machine 1 € M, a
processing time p;; € Z*.

OUTPUT: An assignment of jobs to machines with minimum makespan.

Current status of this problem:

e A factor-2 approximate algorithm using LP-relaxation.

e A factor-1.5 hardness approximate algorithm (that is, if there exsits a factor-1.5 approxima-
tion algorithm, then P = N P).

Here is the IP for SUPM

mint
such that
t > Zpij'ivij for each 1 € M
jeJ
inj = 1foreach jeJ
1eEM
zi; € {0,1}Vie M,jeJ

And the LP-relaxation for SUPM is obtained by replacing z;; € {0,1} by z;; >0, Vie M,j € J

The integrality gap between this IP and LP-relaxation is huge! Let OPT be the optimal makespan,
and OPT} be the optimal makespan of the LP-relaxation. Consider such a case where there is a
single job, so
J={1}, M={1,2,...,m}
pijoforallieM

and T)
OPT =T, OPTy; = —(i.e.,, zjy = — fori € M)
m m

So the gap is m, and one might wonder if we can add constraints to the LP-relaxation to reduce
this gap. Let (z,T) be a feasible solution of the IP. If p;; > T then job j is not assigned to machine
i by the IP, and so z;; = 0. However X;; may be non-zero for the LP-relaxation. We could add a
constraint C' to the LP-relaxation as follows:

Constraint C: For each i € M,j € J, if p;; > T,then z;; =0

The problem here is that this is not a linear constraint. Let 7™ be solution of the LP-relaxation
with constraint C'. Then

OPT; < T < OPT
We know that the integrality gap between OPT and OPT} is large, but the gap between OPT
and T* could be small. In fact, this is the case. So our algorithm for the problem will be:
Algorithm:
Stepl. Compute (z*,T*) using parametric pruning.
Step2. Use rounding to go from z* to an integral solution with makespan 7' < 2-7* < 2- OPT.

